

Intel® Threading Building Blocks

Tutorial

Copyright © 2006 – 2009 Intel Corporation

All Rights Reserved

Document Number 319872-001US

Revision: 1.13

World Wide Web: http://www.intel.com

Intel® Threading Building Blocks

ii 319872-001US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or
MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside,
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2005 - 2009, Intel Corporation. All rights reserved.

Revision History

Version Version Information Date

1.7 Added discussion of affinity_partitioner and cache affinity.
Deleted Partitioner as a concept. Changed parallel_while to
parallel_do. Add recursive_mutex.

2007-Dec-19

1.8 Update copyright to 2008. 2008-Jan-18

1.9 Change pipeline filter constructors to use filter::mode. 2008-Mar-31

1.10 Add vc9. Add local_sum to parallel_reduce example. 2008-May-1

1.11 Revise discussion of parallel_reduce. Fix set_ref_count calls in
scheduler bypass and recycling examples.

2008-Aug-21

1.12 Update discussion of serial pipeline filters for distinction between
serial_in_order and serial_out_of_order.

2008-Oct-28

1.13 Correct descriptions of class pipeline. Add sample compilation
commands to Section 3.1. Update copyright to 2009. Mention
null_mutex.

2009-Jan-22

http://www.intel.com/

Introduction

Tutorial iii

Intel® Threading Building Blocks

iv 319872-001US

Contents

1 Introduction ...1
1.1 Document Structure ...1
1.2 Benefits ..1

2 Package Contents ...3
2.1 Debug Versus Release Libraries ..3
2.2 Scalable Memory Allocator ...4
2.3 Windows* Systems...4

2.3.1 Microsoft Visual Studio* Code Samples...5
2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects6

2.4 Linux* Systems ...8
2.5 Mac OS* X Systems..9

3 Parallelizing Simple Loops ..10
3.1 Initializing and Terminating the Library..10
3.2 parallel_for..12

3.2.1 Automatic Grainsize...13
3.2.2 Explicit Grainsize...14
3.2.3 Bandwidth and Cache Affinity..16
3.2.4 Partitioner Summary..17

3.3 parallel_reduce ..18
3.3.1 Advanced Example ..21

3.4 Advanced Topic: Other Kinds of Iteration Spaces22
3.4.1 Code Samples...23

4 Parallelizing Complex Loops..24
4.1 Cook Until Done: parallel_do..24

4.1.1 Code Sample ..25
4.2 Working on the Assembly Line: pipeline...25

4.2.1 Throughput of pipeline ...29
4.2.2 Non-Linear Pipelines ..30

4.3 Summary of Loops ...31
5 Containers ...32

5.1 concurrent_hash_map ..32
5.1.1 More on HashCompare ...34

5.2 concurrent_vector ..35
5.2.1 Clearing is Not Concurrency Safe...36

5.3 concurrent_queue ..36
5.3.1 Iterating Over a concurrent_queue for Debugging37
5.3.2 When Not to Use Queues..37

5.4 Summary of Containers...38
6 Mutual Exclusion...39

6.1.1 Mutex Flavors ...40
6.1.2 Reader Writer Mutexes...42
6.1.3 Upgrade/Downgrade..43
6.1.4 Lock Pathologies ...43

7 Atomic Operations ..45

Introduction

Tutorial v

7.1.1 Why atomic<T> Has No Constructors...47
7.1.2 Memory Consistency..47

8 Timing ..49
9 Memory Allocation...50

9.1 Which Dynamic Libraries to Use..50
10 The Task Scheduler ...52

10.1 Task-Based Programming..52
10.1.1 When Task-Based Programming Is Inappropriate53

10.2 Simple Example: Fibonacci Numbers ...54
10.3 How Task Scheduling Works ..56
10.4 Useful Task Techniques ...59

10.4.1 Recursive Chain Reaction ...59
10.4.2 Continuation Passing ...59
10.4.3 Scheduler Bypass ..61
10.4.4 Recycling ...62
10.4.5 Empty Tasks...63
10.4.6 Lazy Copying..63

10.5 Task Scheduler Summary ..64
Appendix A Costs of Time Slicing ...65
Appendix B Mixing With Other Threading Packages...66
References 68

Introduction

Tutorial 1

1 Introduction
This tutorial teaches you how to use Intel® Threading Building Blocks, a library that
helps you leverage multi-core performance without having to be a threading expert.
The subject may seem daunting at first, but usually you only need to know a few key
points to improve your code for multi-core processors. For example, you can
successfully thread some programs by reading only up to Section 3.4 of this
document. As your expertise grows, you may want to dive into more complex subjects
that are covered in advanced sections.

1.1 Document Structure
This tutorial is organized to cover the high-level features first, then the low-level
features, and finally the mid-level task scheduler. This Using Intel® Threading
Building Blocks Tutorial contains the following sections:

Table 1 Document Organization

Section Description

Chapter 1 Introduces the document.

Chapter 2 Describes how to install the library.

Chapters 3-4 Describe templates for parallel loops.

Chapter 5 Describes templates for concurrent containers.

Chapters 6- 9 Describe low-level features for mutual exclusion, atomic operations, timing,
and memory allocation.

Chapter 10 Explains the task scheduler.

1.2 Benefits
There are a variety of approaches to parallel programming, ranging from using
platform-dependent threading primitives to exotic new languages. The advantage of
Intel® Threading Building Blocks is that it works at a higher level than raw threads,
yet does not require exotic languages or compilers. You can use it with any compiler
supporting ISO C++. The library differs from typical threading packages in the
following ways:

• Intel® Threading Building Blocks enables you to specify tasks instead of
threads. Most threading packages require you to specify threads. Programming

Intel® Threading Building Blocks

2 319872-001US

directly in terms of threads can be tedious and lead to inefficient programs,
because threads are low-level, heavy constructs that are close to the hardware.
Direct programming with threads forces you to efficiently map logical tasks onto
threads. In contrast, the Intel® Threading Building Blocks run-time library
automatically schedules tasks onto threads in a way that makes efficient use of
processor resources.

• Intel® Threading Building Blocks targets threading for performance. Most
general-purpose threading packages support many different kinds of threading,
such as threading for asynchronous events in graphical user interfaces. As a
result, general-purpose packages tend to be low-level tools that provide a
foundation, not a solution. Instead, Intel® Threading Building Blocks focuses on
the particular goal of parallelizing computationally intensive work, delivering
higher-level, simpler solutions.

• Intel® Threading Building Blocks is compatible with other threading
packages. Because the library is not designed to address all threading problems,
it can coexist seamlessly with other threading packages.

• Intel® Threading Building Blocks emphasizes scalable, data parallel
programming. Breaking a program up into separate functional blocks, and
assigning a separate thread to each block is a solution that typically does not scale
well since typically the number of functional blocks is fixed. In contrast, Intel®
Threading Building Blocks emphasizes data-parallel programming, enabling
multiple threads to work on different parts of a collection. Data-parallel
programming scales well to larger numbers of processors by dividing the collection
into smaller pieces. With data-parallel programming, program performance
increases as you add processors.

• Intel® Threading Building Blocks relies on generic programming.
Traditional libraries specify interfaces in terms of specific types or base classes.
Instead, Intel® Threading Building Blocks uses generic programming. The essence
of generic programming is writing the best possible algorithms with the fewest
constraints. The C++ Standard Template Library (STL) is a good example of
generic programming in which the interfaces are specified by requirements on
types. For example, C++ STL has a template function sort that sorts a sequence
abstractly defined in terms of iterators on the sequence. The requirements on the
iterators are:

• Provide random access

• The expression *i<*j is true if the item pointed to by iterator i should
precede the item pointed to by iterator j, and false otherwise.

• The expression swap(*i,*j) swaps two elements.

Specification in terms of requirements on types enables the template to sort many
different representations of sequences, such as vectors and deques. Similarly, the
Intel® Threading Building Blocks templates specify requirements on types, not
particular types, and thus adapt to different data representations. Generic
programming enables Intel® Threading Building Blocks to deliver high performance
algorithms with broad applicability.

Package Contents

Tutorial 3

2 Package Contents
Intel® Threading Building Blocks includes dynamic shared library files, header files,
and code examples for Windows*, Linux*, and Mac OS* X systems that you can
compile and run as described in this chapter.

2.1 Debug Versus Release Libraries
Intel® Threading Building Blocks includes dynamic shared libraries that come in
debug and release versions, as described in Table 2.

Table 2: Dynamic Shared Libraries Included in Intel® Threading Building Blocks

Library

(*.dll, lib*.so, or
lib*.dylib)

Description When to Use

tbb_debug

tbbmalloc_debug

These versions have extensive
internal checking for incorrect use
of the library.

Use with code that is compiled
with the macro TBB_DO_ASSERT
set to 1.

tbb

tbbmalloc

These versions deliver top
performance. They eliminate
most checking for correct use of
the library.

Use with code compiled with
TBB_DO_ASSERT undefined or
set to zero.

TIP: Test your programs with the debug versions of the libraries first, to assure that you
are using the library correctly. With the release versions, incorrect usage may result
in unpredictable program behavior.

All versions of the libraries support Intel® Thread Checker and Intel® Thread Profiler.
The debug versions always have full support enabled. The release version requires
compiling code with the macro TBB_DO_THREADING_TOOLS set to 1 for full support.

CAUTION: The instrumentation support for Intel® Thread Checker becomes live after the first
initialization of the task library (3.1). If the library components are used before this
initialization occurs, Intel® Thread Checker may falsely report race conditions that are
not really races.

Intel® Threading Building Blocks

4 319872-001US

2.2 Scalable Memory Allocator
Both the debug and release versions of Intel® Threading Building Blocks are divided
into two dynamic shared libraries, one with general support and the other with a
scalable memory allocator. The latter is distinguished by malloc in its name. For
example, the release versions for Windows* system are tbb.dll and tbbmalloc.dll

respectively. Applications may choose to use only the general library, or only the
scalable memory allocator, or both. Section 9.1 describes which parts of Intel®
Threading Building Blocks depend upon which libraries.

2.3 Windows* Systems
The default installation location for Windows* systems depends on the host
architecture, as described in Table 3.

Table 3: Intel® Threading Building Blocks Default Installation Location

Host Default Installation Location

Intel® IA-32 processor C:\Program Files\Intel\TBB\<version>\

Intel® Extended Memory 64
Technology (Intel® EM64T)
processor

C:\Program Files (x86)\Intel\TBB\<version>\

Table 4 describes the subdirectories' contents for Windows* systems.

Table 4: Intel® Threading Building Blocks Subdirectories on Windows

Item Location Environment
Variable

Include files include\tbb*.h INCLUDE

.lib files <arch>\vc<vcversion>\lib\<lib>.lib LIB

.dll files <arch>\vc<vcversion>\bin\<lib><malloc>.dll

where <arch> is:

<arch> Processor

ia32 Intel® IA-32 processors

em64t Intel® EM64T processors

and <vcversion> is:

<vcversion> Environment

7.1 Microsoft Visual Studio .NET* 2003

8 Microsoft Visual Studio* 2005

PATH

Package Contents

Tutorial 5

Item Location Environment
Variable

9 Microsoft Visual Studio* 2008

and <lib> is

<lib> Version

tbb Release version

tbb_debug Debug version

and <malloc> is

<malloc> Version

(none) General library

malloc Memory allocator

Examples examples\<class>*\.

Microsoft Visual
Studio*
Solution File for
Example

examples\<class>*\vc<vcversion>*.sln

where class describes the class being demonstrated and
vcversion is as described for .dll files.

The last column shows which environment variables are used by the Microsoft* or
Intel compilers to find these subdirectories.

CAUTION: Ensure that the relevant product directories are mentioned by the environment
variables; otherwise the compiler might not find the required files.

CAUTION: Windows* run-time libraries come in thread-safe and thread-unsafe forms. Using non-
thread-safe versions with Intel® Threading Building Blocks may cause undefined
results. When using Intel® Threading Building Blocks, be sure to link with the thread-
safe versions. Table 5 shows the required options when using cl or icl:

Table 5: Compiler Options for Linking with Thread-safe Versions of C/C++ Run-time

Option Description

/MDd Debug version of thread-safe run-time

/MD Release version of thread-safe run-time

Not using one of these options causes the library to report an error during
compilation.

2.3.1 Microsoft Visual Studio* Code Samples
To run one of the solution files in examples**\.:

Intel® Threading Building Blocks

6 319872-001US

1. Open up the vc7.1 directory (if using Microsoft Visual Studio .NET* 2003), vc8
directory (if using Microsoft Visual Studio* 2005), or vc9 directory (if using
Microsoft Visual Studio* 2008).

2. Double-click the .sln file.

3. In Microsoft Visual Studio*, press ctrl-F5 to compile and runs the example. Use
Ctrl-F5, not Shift-F5, so that you can inspect the console window after the
example finishes.

The Microsoft Visual Studio* solution files for the examples require that an
environment variable specify where the library is installed. The installer sets this
variable.

The makefiles for the examples require that INCLUDE, LIB, and PATH be set as
indicated in Table 4. The recommended way to set INCLUDE, LIB, and PATH is to do
one of the following:

TIP: Check the Register environment variables" box when running the installer.

Otherwise, go to the library's <arch>\vc<vcversion>\bin\ directory and run the
batch file tbbvars.bat from there, where <arch> and <vcversion> are described in
Table 4.

2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects
The plug-in simplifies integration of Intel® TBB into Microsoft Visual Studio* projects. It can
be downloaded from http://threadingbuildingblocks.org → Downloads → Extras. The
plug-in enables you to quickly add the following to Microsoft Visual C++* projects:

 the path to the TBB header files

 the path to the TBB libraries

 the specific TBB libraries to link with

The plug-in works with C++ projects created in Microsoft* Visual Studio* 2003, 2005
and 2008 (except Express editions).

To use this functionality unzip the downloaded package msvs_plugin.zip, open it,
and follow the instructions in README.txt to install it.

TIP: To check that installation succeeded, select “Tools” → “Add-in Manager” in the main
Microsoft Visual Studio* menu and check that the table lists the TBB integration plug-
in. Also, the list of installed products in the Microsoft Visual Studio* “Help” → “About
dialog” should mention "TBB Integration".

Package Contents

Tutorial 7

To enable Intel® TBB for a C++ project, in Microsoft Visual Studio* Solution Explorer
right-click the project item and open the "TBB Integration" sub-menu, as shown in
Figure 1.

Figure 1: Integration Plug-In

The sub-menu contains:

 A list of installed Intel® TBB versions. Select a version to update your project
to use that version.

 "Cancel TBB Integration". Selects this to delete all TBB-specific settings from
your project.

Intel® Threading Building Blocks

8 319872-001US

2.4 Linux* Systems
On Linux* systems, the default installation location is /opt/intel/tbb/<version>/.
Table 6 describes the subdirectories.

Table 6: Intel® Threading Building Blocks Subdirectories on Linux* Systems

Item Location Environment
Variable

Include files include/tbb/*.h CPATH

Shared
libraries

<arch>/cc<gccversion>_libc<glibcversion>_kernel<kernel
version>/lib/lib<lib><malloc>.so

where

<arch> Processor

ia32 Intel® IA-32 processors

em64t Intel® EM64T processors

itanium Intel® Itanium processors

<*version>
strings

Linux configuration

<gccversion> gcc version number

<glibcversion> glibc.so version number

<kernelversion> Linux kernel version number

<lib> Version

tbb Release version

tbb_debug Debug version

<malloc> Version

(none) General library

malloc Memory allocator

LIBRARY_PATH

LD_LIBRARY_PATH

Examples examples/<class>/*/.

GNU Makefile
for example

examples/<class>/*/linux/Makefile

where class describes the class being demonstrated.

Package Contents

Tutorial 9

2.5 Mac OS* X Systems
For Mac OS* X systems, the default installation location for the library is
/Library/Frameworks/Intel_TBB.framework/Versions/<version>/. Table 7

describes the subdirectories.

Table 7: Intel® Threading Building Blocks Subdirectories on Mac OS* X Systems

Item Location Environment
Variable

Include files include/tbb/*.h CPATH

Shared
libraries

ia32/cc<gccversion>_os<osversion>/lib/<lib><malloc>
.dylib

where:

<*version>
string

OS/X configuration

<gccversion> gcc version number

<osversion> Mac OS* X version number

<lib> Version

libtbb Release version

libtbb_debug Debug version

<malloc> Version

(none) General library

malloc Memory allocator

LIBRARY_PATH

DYLD_LIBRARY_PATH

Examples examples/<class>/*/.

GNU Makefile
for example

examples/<class>/*/mac/Makefile

where class describes the class being demonstrated.

Intel® Threading Building Blocks

10 319872-001US

3 Parallelizing Simple Loops
The simplest form of scalable parallelism is a loop of iterations that can each run
simultaneously without interfering with each other. The following sections
demonstrate how to parallelize simple loops.

3.1 Initializing and Terminating the Library
Any thread that uses an algorithm template from the library or the task scheduler
must have an initialized tbb::task_scheduler_init object.

NOTE: Intel® Threading Building Blocks components are in defined in namespace tbb. For

brevity’s sake, the namespace is explicit in the first mention of a component, but
implicit afterwards.

A thread may have more than one of these objects initialized at a time. The objects
indicate when the task scheduler is needed. The task scheduler shuts down when all
task_scheduler_init objects terminate. By default, the constructor for
task_scheduler_init does the initialization and the destructor does termination.
Declaring a task_scheduler_init in main(), as follows, both starts and shuts down

the scheduler:
#include "tbb/task_scheduler_init.h"
using namespace tbb;

int main() {
 task_scheduler_init init;
 ...
 return 0;
}

When compiling TBB programs, be sure to link in the TBB shared library, otherwise
undefined references will occur. Table 8 shows compilation commands that use the
debug version of the library. Remove the “_debug” portion to link against the
production version of the library. Section 2.1 explains the difference. See
doc/Getting_Started.pdf for other command line possibilities. Section 9.1 describes
when the memory allocator library should be linked in explicitly.

Parallelizing Simple Loops

Tutorial 11

Table 8: Sample command lines for simple debug builds

Windows* Systems icl /MD example.cpp tbb_debug.dll

Linux* Systems icc example.cpp tbb_debug.lib

Mac OS* X Systems icc example.cpp tbb_debug.dylib

 Appendix B explains how to construct task_scheduler_init objects if your program

creates threads itself using another interface.

The using directive in the example enables you to use the library identifiers without
having to write out the namespace prefix tbb before each identifier. The rest of the
examples assume that such a using directive is present.

The constructor for task_scheduler_init takes an optional parameter that specifies
the number of desired threads, including the calling thread. The optional parameter
can be one of the following:

• The value task_scheduler_init::automatic, which is the same as not specifying
the parameter at all. It exists for sake of the method
task_scheduler_init::initialize.

• The value task_scheduler_init::deferred, which defers the initialization until
method task_scheduler_init::initialize(n) is called. The value n can be
any legal value for the constructor’s optional parameter.

• A positive integer specifying the number of threads to use. The argument should
be specified only when doing scaling studies during development. Omit the
parameter, or use task_scheduler_init::automatic, for production code.

The parameter is ignored if another task_scheduler_init is active. That is,
disagreements in the number of threads are resolved in favor of the first
task_scheduler_init to specify a number of threads. The reason for not specifying

the number of threads in production code is that in a large software project, there is
no way for various components to know how many threads would be optimal for other
threads. Hardware threads are a shared global resource. It is best to leave the
decision of how many threads to use to the task scheduler.

TIP: Design your programs to try to create many more tasks than there are threads, and
let the task scheduler choose the mapping from tasks to threads.

There is a method task_scheduler_init::terminate for terminating the library early
before the task_scheduler_init is destroyed. The following example defers the
decision of the number of threads to use the scheduler, and terminates it early:
int main(int argc, char* argv[]) {
 int nthread = strtol(argv[0],0,0);
 task_scheduler_init init(task_scheduler_init::deferred);
 if(nthread>=1)
 init.initialize(nthread);
 ... code that uses task scheduler only if nthread>=1 ...
 if(nthread>=1)

Intel® Threading Building Blocks

12 319872-001US

 init.terminate();
 return 0;
}

In the example above, you can omit the call to terminate(), because the destructor
for task_scheduler_init checks if the task_scheduler_init was initialized, and if
so, performs the termination.

TIP: The task scheduler is somewhat expensive to start up and shut down, put the
task_scheduler_init in main, and do not try to create a scheduler every time you

use a parallel algorithm template.

3.2 parallel_for
Suppose you want to apply a function Foo to each element of an array, and it is safe
to process each element concurrently. Here is the sequential code to do this:
void SerialApplyFoo(float a[], size_t n) {
 for(size_t i=0; i!=n; ++i)
 Foo(a[i]);
}

The iteration space here is of type size_t, and goes from 0 to n−1. The template
function tbb::parallel_for breaks this iteration space into chunks, and runs each
chunk on a separate thread. The first step in parallelizing this loop is to convert the
loop body into a form that operates on a chunk. The form is an STL-style function
object, called the body object, in which operator() processes a chunk. The following
code declares the body object. The extra code required for Intel® Threading Building
Blocks is shown in blue.
#include "tbb/blocked_range.h"

class ApplyFoo {
 float *const my_a;
public:
 void operator()(const blocked_range<size_t>& r) const {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}
};

Note the argument to operator(). A blocked_range<T> is a template class provided
by the library. It describes a one-dimensional iteration space over type T. Class
parallel_for works with other kinds of iteration spaces too. The library provides
blocked_range2d for two-dimensional spaces. You can define your own spaces as
explained in section 3.4.

Parallelizing Simple Loops

Tutorial 13

An instance of ApplyFoo needs member fields that remember all the local variables
that were defined outside the original loop but used inside it. Usually, the constructor
for the body object will initialize these fields, though parallel_for does not care how
the body object is created. Template function parallel_for requires that the body
object have a copy constructor, which is invoked to create a separate copy (or copies)
for each worker thread. It also invokes the destructor to destroy these copies. In most
cases, the implicitly generated copy constructor and destructor work correctly. If they
do not, it is almost always the case (as usual in C++) that you must define both to be
consistent.

Because the body object might be copied, its operator() should not modify the body.

Otherwise the modification might or might not become visible to the thread that
invoked parallel_for, depending upon whether operator() is acting on the original
or a copy. As a reminder of this nuance, parallel_for requires that the body object's
operator() be declared const.

The example operator() loads my_a into a local variable a. Though not necessary,

there are two reasons for doing this in the example:

• Style. It makes the loop body look more like the original.

• Performance. Sometimes putting frequently accessed values into local variables
helps the compiler optimize the loop better, because local variables are often
easier for the compiler to track.

Once you have the loop body written as a body object, invoke the template function
parallel_for, as follows:

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a),
 auto_partitioner());
}

The blocked_range constructed here represents the entire iteration space from 0 to
n-1, which parallel_for divides into subspaces for each processor. The general form
of the constructor is blocked_range<T>(begin,end,grainsize). The T specifies the
value type. The arguments begin and end specify the iteration space STL-style as a
half-open interval [begin,end). The argument grainsize is explained in Section 3.2.2.
The example uses the default grainsize of 1 because it is using auto_partitioner().

3.2.1 Automatic Grainsize

A parallel loop construct incurs overhead cost for every chunk of work that it
schedules. If the chunks are too small, the overhead may exceed the useful work. The
grainsize of a parallel loop specifies the number of iterations that is a “reasonable
size” chunk to deal out to a processor. An auto_partitioner indicates that chunk
sizes should be chosen automatically, depending upon load balancing needs. The

Intel® Threading Building Blocks

14 319872-001US

heuristic attempts to limit overheads while still providing ample opportunities for load
balancing.

As with most heuristics, there are situations where the auto_partitioner’s guess
might be suboptimal, and omitting the heuristic would yield better performance. Use
auto_partitioner unless you need to tune the grainsize for machines of interest.

3.2.2 Explicit Grainsize
Class blocked_range allows a grainsize to be specified by the constructor
blocked_range<T>(begin,end,grainsize). The grainsize parameter is in units of

iterations, and sets a minimum threshold for parallelization. Specifying
auto_partitioner and affinity_partitioner may cause larger chunk sizes.
Specifying a simple_partitioner or no partitioner at all guarantees that each chunk
is no larger than the grainsize. Following is the previous example modified to use an
explicit grainsize G.
#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n,G), ApplyFoo(a));
}

Because of the impact of grainsize on parallel loops, it is worth reading the following
material even if you rely on auto_partitioner and affinity_partitioner to choose
the grainsize automatically.

Case A Case B

Figure 2: Packaging Overhead Versus Grainsize

Figure 2 illustrates the impact of grainsize by showing the useful work as the gray
area inside a brown border that represents overhead. Both Case A and Case B have
the same total gray area. Case A shows how too small a grainsize leads to a relatively
high proportion of overhead. Case B shows how a large grainsize reduces this
proportion, at the cost of reducing potential parallelism. The overhead as a fraction of

Parallelizing Simple Loops

Tutorial 15

useful work depends upon the grainsize, not on the number of grains. Consider this
relationship and not the total number of iterations or number of processors when
setting a grainsize.

A rule of thumb is that grainsize iterations of operator() should take at least

10,000-100,000 instructions to execute. When in doubt, do the following:

1. Set the grainsize parameter higher than necessary. Setting it to 10,000 is
usually a good starting point, because each loop iteration typically requires at
least a few instructions per iteration.

2. Run your algorithm on one processor.

3. Start halving the grainsize parameter and see how much the algorithm slows
down as the value decreases.

A slowdown of about 5-10% when running with a single thread is a good setting for
most purposes. The drawback of setting a grainsize too high is that it can reduce
parallelism. For example, if your grainsize is 10,000 and the loop has 20,000
iterations, the parallel_for distributes the loop across only two processors, even if

more are available. However, if you are unsure, err on the side of being a little too
high instead of a little too low, because too low a value hurts serial performance,
which in turns hurts parallel performance if there is other parallelism available higher
up in the call tree.

TIP: You do not have to set the grainsize too precisely.

Figure 3 shows the typical "bathtub curve" for execution time versus grainsize, based
on the floating point a[i]=b[i]*c computation over a million indices. There is little

work per iteration. The times were collected on a four-socket machine with eight
hardware threads.

1

10

100

1 10 100 1000 10000 100000 1000000

grainsize

tim
e

(m
ill

is
ec

on
ds

)

Figure 3: Wallclock Time Versus Grainsize

The scale is logarithmic. The downward slope on the left side indicates that with a
grainsize of one, most of the overhead is parallel scheduling overhead, not useful
work. An increase in grainsize brings a proportional decrease in parallel overhead.
Then the curve flattens out because the parallel overhead becomes insignificant for a

Intel® Threading Building Blocks

16 319872-001US

sufficiently large grainsize. At the end on the right, the curve turns up because the
chunks are so large that there are fewer chunks than available hardware threads.
Notice that a grainsize over the wide range 100-100,000 works quite well.

TIP: A general rule of thumb for parallelizing loop nests is to parallelize the outermost one
possible. The reason is that each iteration of an outer loop is likely to provide a bigger
grain of work than an iteration of an inner loop.

3.2.3 Bandwidth and Cache Affinity
For a sufficiently simple function Foo, the examples might not show good speedup

when written as parallel loops. The cause could be insufficient system bandwidth
between the processors and memory. In that case, you may have to rethink your
algorithm to take better advantage of cache. Restructuring to better utilize the cache
usually benefits the parallel program as well as the serial program.

An alternative to restructuring that works in some cases is affinity_partitioner. It

not only automatically chooses the grainsize, but also optimizes for cache affinity.
Using affinity_partitioner can significantly improve performance when:

• The computation does a few operations per data access.

• The data acted upon by the loop fits in cache.

• The loop, or a similar loop, is re-executed over the same data.

• There are more than two hardware threads available. If only two threads are
available, the default scheduling in TBB usually provides sufficient cache affinity.

The following code shows how to use affinity_partitioner.

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[], size_t n) {
 static affinity_partitioner ap;
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a), ap);
}

void TimeStepFoo(float a[], size_t n, int steps) {
 for(int t=0; t<steps; ++t)
 ParallelApplyFoo(a, n);
}

In the example, the affinity_partitioner object ap lives between loop iterations.
It remembers where iterations of the loop ran, so that each iteration can be handed to
the same thread that executed it before. The example code gets the lifetime of the
partitioner right by declaring the affinity_partitioner as a local static object.

Another approach would be to declare it at a scope outside the iterative loop in
TimeStepFoo, and hand it down the call chain to parallel_for.

Parallelizing Simple Loops

Tutorial 17

If the data does not fit across the system’s caches, there may be little benefit. Figure
4 contrasts the situations.

die 3 die 2 die 1 die 0

die 3 die 2 die 1 die 0

Benefit from affinity.

No benefit from affinity.

data set

data set

Figure 4: Benefit of Affinity Determined by Relative Size of Data Set and Cache

Figure 5 shows how parallel speedup might vary with the size of a data set. The
computation for the example is A[i]+=B[i] for i in the range [0,N). It was chosen for
dramatic effect. You are unlikely to see quite this much variation in your code. The
graph shows not much improvement at the extremes. For small N, parallel scheduling
overhead dominates, resulting in little speedup. For large N, the data set is too large
to be carried in cache between loop invocations. The peak in the middle is the sweet
spot for affinity. Hence affinity_partitioner should be considered a tool, not a
cure-all, when there is a low ratio of computations to memory accesses.

0

4
8

12
16

20

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

N (number of array elements)

Sp
ee

du
p

affinity_partitioner
auto_partitioner

s

Figure 5: Improvement from Affinity Dependent on Array Size

3.2.4 Partitioner Summary
The parallel loop templates parallel_for (3.2) and parallel_reduce (3.3) take an
optional partitioner argument, which specifies a strategy for executing the loop. Table
9 summarizes the three partitioners.

Intel® Threading Building Blocks

18 319872-001US

Table 9: Partitioners

Partitioner Description

simple_partitioner (default)1 Chunk size = grainsize

auto_partitioner Automatic chunk size.

affinity_partitioner Automatic chunk size and cache affinity.

A simple_partitioner is used when no partitioner is specified, in which case the loop
breaks the range down to its grainsize. In general, the auto_partitioner or
affinity_partitioner should be used. However, simple_partitioner can be
useful in the following situations:

• You need to guarantee that a subrange size for operator() does not exceed a
limit. That might be advantageous, for example, if your operator() needs a
temporary array proportional to the size of the range. With a limited subrange
size, you can use an automatic variable for the array instead of having to use
dynamic memory allocation.

• You want to tune to a specific machine.

3.3 parallel_reduce
A loop can do reduction, as in this summation:
float SerialSumFoo(float a[], size_t n) {
 float sum = 0;
 for(size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

If the iterations are independent, you can parallelize this loop using the template class
parallel_reduce as follows:

float ParallelSumFoo(const float a[], size_t n) {
 SumFoo sf(a);
 parallel_reduce(blocked_range<size_t>(0,n), sf, auto_partitioner());
 return sf.my_sum;
}

The class SumFoo specifies details of the reduction, such as how to accumulate
subsums and combine them. Here is the definition of class SumFoo:
class SumFoo {
 float* my_a;

1 In retrospect, the default should be auto_partitioner. But
simple_partitioner is the default for sake of backwards compatibility with
TBB 1.0.

Parallelizing Simple Loops

Tutorial 19

public:
 float my_sum;
 void operator()(const blocked_range<size_t>& r) {
 float *a = my_a;
 float sum = my_sum;
 size_t end = r.end();
 for(size_t i=r.begin(); i!=end; ++i)
 sum += Foo(a[i]);
 my_sum = sum;
 }

 SumFoo(SumFoo& x, split) : my_a(x.my_a), my_sum(0) {}

 void join(const SumFoo& y) {my_sum+=y.my_sum;}

 SumFoo(float a[]) :
 my_a(a), my_sum(0)
 {}
};

Note the differences with class ApplyFoo from Section 3.2. First, operator() is not
const. This is because it must update SumFoo::my_sum. Second, SumFoo has a
splitting constructor and a method join that must be present for parallel_reduce to
work. The splitting constructor takes as arguments a reference to the original object,
and a dummy argument of type split, which is defined by the library. The dummy
argument distinguishes the splitting constructor from a copy constructor.

TIP: In the example, the definition of operator() uses local temporary variables (a, sum,

end) for scalar values accessed inside the loop. This technique can improve
performance by making it obvious to the compiler that the values can be held in
registers instead of memory. If the values are too large to fit in registers, or have
their address taken in a way the compiler cannot track, the technique might not help.
With a typical optimizing compiler, using local temporaries for only written variables
(such as sum in the example) can suffice, because then the compiler can deduce that
the loop does not write to any of the other locations, and hoist the other reads to
outside the loop.

When a worker thread is available, as decided by the task scheduler,
parallel_reduce hands off work to it by invoking the splitting constructor to create a
subtask for the processor. When the task completes, parallel_reduce uses method
join to accumulate the result of the subtask. The graph at the top of Figure 6 shows
the split-join sequence that happens when a worker is available:

Intel® Threading Building Blocks

20 319872-001US

split iteration space in half

wait for thief

x.join(y);

steal second half of iteration space

SumFoo y(x,split()); reduce first half of iteration space
i

reduce second half of iteration space into y

Available Worker

split iteration space in half

reduce first half of iteration space
i

reduce second half of iteration space

No Available Worker

Figure 6: Graph of the Split-join Sequence

An arc in the Figure 6 indicates order in time. The splitting constructor might run
concurrently while object x is being used for the first half of the reduction. Therefore,
all actions of the splitting constructor that creates y must be made thread safe with
respect to x. So if the splitting constructor needs to increment a reference count
shared with other objects, it should use an atomic increment.

If a worker is not available, the second half of the iteration is reduced using the same
body object that reduced the first half. That is the reduction of the second half starts
where reduction of the first half finished.

CAUTION: Because split/join are only used if workers are available, parallel_reduce does not
necessarily execute in a tree-like fashion.

The rules for partitioners and grain sizes for parallel_reduce are the same as for
parallel_for.

parallel_reduce generalizes to any associative operation. In general, the splitting

constructor does two things:

• Copy read-only information necessary to run the loop body.

Parallelizing Simple Loops

Tutorial 21

• Initialize the reduction variable(s) to the identity element of the operation(s).

The join method should do the corresponding merge(s). You can do more than one
reduction at the same time: you can gather the min and max with a single
parallel_reduce.

NOTE: The reduction operation can be non-commutative. The example still works if floating-
point addition is replaced by string concatenation.

3.3.1 Advanced Example

An example of a more advanced associative operation is to find the index where
Foo(i) is minimized. A serial version might look like this:
long SerialMinIndexFoo(const float a[], size_t n) {
 float value_of_min = FLT_MAX; // FLT_MAX from <climits>
 long index_of_min = -1;
 for(size_t i=0; i<n; ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 return index_of_min;
}

The loop works by keeping track of the minimum value found so far, and the index of
this value. This is the only information carried between loop iterations. To convert the
loop to use parallel_reduce, the function object must keep track of the carried

information, and how to merge this information when iterations are spread across
multiple threads. Also, the function object must record a pointer to a to provide
context.

The following code shows the complete function object.
class MinIndexFoo {
 const float *const my_a;
public:
 float value_of_min;
 long index_of_min;
 void operator()(const blocked_range<size_t>& r) {
 const float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 }

Intel® Threading Building Blocks

22 319872-001US

 MinIndexFoo(MinIndexFoo& x, split) :
 my_a(x.my_a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1)
 {}

 void join(const SumFoo& y) {
 if(y.value_of_min<x.value_of_min) {
 value_of_min = y.value_of_min;
 index_of_min = y.index_of_min;
 }
 }

 MinIndexFoo(const float a[]) :
 my_a(a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1),
 {}
};

Now SerialMinIndex can be rewritten using parallel_reduce as shown below:

long ParallelMinIndexFoo(float a[], size_t n) {
 MinIndexFoo mif(a);
 parallel_reduce(blocked_range<size_t>(0,n), mif, auto_partitioner());
 return mif.index_of_min;
}

The directory examples/parallel_reduce/primes contains a prime number finder
based on parallel_reduce.

3.4 Advanced Topic: Other Kinds of Iteration
Spaces
The examples so far have used the class blocked_range<T> to specify ranges. This
class is useful in many situations, but it does not fit every situation. You can use
Intel® Threading Building Blocks to define your own iteration space objects. The
object must specify how it can be split into subspaces by providing two methods and a
“splitting constructor”. If your class is called R, the methods and constructor could be

as follows:
class R {
 // True if range is empty
 bool empty() const;
 // True if range can be split into non-empty subranges
 bool is_divisible() const;
 // Split r into subranges r and *this
 R(R& r, split);
 ...
};

Parallelizing Simple Loops

Tutorial 23

The method empty should return true if the range is empty. The method
is_divisible should return true if the range can be split into two non-empty

subspaces, and such a split is worth the overhead. The splitting constructor should
take two arguments:

• The first of type R

• The second of type tbb::split

The second argument is not used; it serves only to distinguish the constructor from an
ordinary copy constructor. The splitting constructor should attempt to split r roughly
into two halves, and update r to be the first half, and let constructed object be the
second half. The two halves should be non-empty. The parallel algorithm templates
call the splitting constructor on r only if r.is_divisible is true.

The iteration space does not have to be linear. Look at tbb/blocked_range2d.h for an
example of a range that is two-dimensional. Its splitting constructor attempts to split
the range along its longest axis. When used with parallel_for, it causes the loop to

be “recursively blocked” in a way that improves cache usage. This nice cache behavior
means that using parallel_for over a blocked_range2d<T> can make a loop run

faster than the sequential equivalent, even on a single processor.

3.4.1 Code Samples
The directory examples/parallel_for/seismic contains a simple seismic wave
simulation based on parallel_for and blocked_range. The directory
examples/parallel_for/tachyon contains a more complex example of a ray tracer
based on parallel_for and blocked_range2d.

Intel® Threading Building Blocks

24 319872-001US

4 Parallelizing Complex Loops
You can successfully parallelize many applications using only the constructs in Chapter
 3. However, some situations call for other parallel patterns. This section describes the
support for some of these alternate patterns.

4.1 Cook Until Done: parallel_do
For some loops, the end of the iteration space is not known in advance, or the loop
body may add more iterations to do before the loop exits. You can deal with both
situations using the template class tbb::parallel_do.

A linked list is an example of an iteration space that is not known in advance. In
parallel programming, it is usually better to use dynamic arrays instead of linked lists,
because accessing items in a linked list is inherently serial. But if you are limited to
linked lists, the items can be safely processed in parallel, and processing each item
takes at least a few thousand instructions, you can use parallel_do to gain some
parallelism.

For example, consider the following serial code:
void SerialApplyFooToList(const std::list<Item>& list) {
 for(std::list<Item>::const_iterator i=list.begin() i!=list.end();
++i)
 Foo(*i);
}

If Foo takes at least a few thousand instructions to run, you can get parallel speedup
by converting the loop to use parallel_do. To do so, define an object with a const

operator(). This is similar to a C++ function object from the C++ standard header
<functional>, except that operator() must be const.

class ApplyFoo {
public:
 void operator()(Item& item) const {
 Foo(item);
 }
};

The parallel form of SerialApplyFooToList is as follows:

void ParallelApplyFooToList(const std::list<Item>& list) {
 parallel_do(list.begin(), list.end(), ApplyFoo());
}

An invocation of parallel_do never causes two threads to act on an input iterator
concurrently. Thus typical definitions of input iterators for sequential programs work

Parallelizing Complex Loops

Tutorial 25

correctly. This convenience makes parallel_do unscalable, because the fetching of
work is serial. But in many situations, you still get useful speedup over doing things
sequentially.

There are two ways that parallel_do can acquire work scalably.

• The iterators can be random-access iterators.

• The body argument to parallel_do, if it takes a second argument feeder of type
parallel_do<Item>&, can add more work by calling feeder.add(item). For
example, suppose processing a node in a tree is a prerequisite to processing its
descendants. With parallel_do, after processing a node, you could use
feeder.add to add the descendant nodes. The instance of parallel_do does not
terminate until all items have been processed.

4.1.1 Code Sample
The directory examples/parallel_do/parallel_preorder contains a small
application that uses parallel_do to perform parallel preorder traversal of an acyclic
directed graph. The example shows how parallel_do_feeder can be used to add

more work.

4.2 Working on the Assembly Line: pipeline
Pipelining is a common parallel pattern that mimics a traditional manufacturing
assembly line. Data flows through a series of pipeline stages, and each stage
processes the data in some way. Given an incoming stream of data, some of these
stages can operate in parallel, and others cannot. For example, in video processing,
some operations on frames do not depend on other frames, and so can be done on
multiple frames at the same time. On the other hand, some operations on frames
require processing prior frames first.

The Intel® Threading Building Blocks classes pipeline and filter implement the
pipeline pattern. A simple text processing problem will be used to demonstrate the
usage of pipeline and filter. The problem is to read a text file, capitalize the first

letter of each word, and write the modified text to a new file. Below is a picture of the
pipeline.

Read chunk
from input file

Capitalize words
in chunk

Write chunk
to output file

Assume that the file I/O is sequential. However, the capitalization stage can be done
in parallel. That is, if you can serially read n chunks very quickly, you can capitalize
each of the n chunks in parallel, as long as they are written in the proper order to the
output file.

Intel® Threading Building Blocks

26 319872-001US

To decide whether to capitalize a letter, inspect whether the previous character is a
blank. For the first letter in each chunk, inspect the last letter of the previous chunk.
But doing so would introduce a complicating dependence in the middle stage. The
solution is to have each chunk also store the last character of the previous chunk. The
chunks overlap by one character. This “overlapping window” strategy is quite common
to pipeline-processing problems. In the example, the window is represented by an
instance of class MyBuffer. It looks like a typical STL container for characters, except
that begin()[-1] is legal and holds the last character of the previous chunk.
// Buffer that holds block of characters and last character of previous
buffer.
class MyBuffer {
 static const size_t buffer_size = 10000;
 char* my_end;
 // storage[0] holds the last character of the previous buffer.
 char storage[1+buffer_size];
public:
 // Pointer to first character in the buffer
 char* begin() {return storage+1;}
 const char* begin() const {return storage+1;}
 // Pointer to one past last character in the buffer
 char* end() const {return my_end;}
 // Set end of buffer.
 void set_end(char* new_ptr) {my_end=new_ptr;}
 // Number of bytes a buffer can hold
 size_t max_size() const {return buffer_size;}
 // Number of bytes in buffer.
 size_t size() const {return my_end-begin();}
};

Below is the top-level code for building and running the pipeline
 // Create the pipeline
 tbb::pipeline pipeline;

 // Create file-reading writing stage and add it to the pipeline
 MyInputFilter input_filter(input_file);
 pipeline.add_filter(input_filter);

 // Create capitalization stage and add it to the pipeline
 MyTransformFilter transform_filter;
 pipeline.add_filter(transform_filter);

 // Create file-writing stage and add it to the pipeline
 MyOutputFilter output_filter(output_file);
 pipeline.add_filter(output_filter);

 // Run the pipeline
 pipeline.run(MyInputFilter::n_buffer);

 // Remove all filters from the pipeline
 pipeline.clear();

Parallelizing Complex Loops

Tutorial 27

The parameter to method pipeline::run controls the level of parallelism.
Conceptually, tokens flow through the pipeline. In a serial in order stage, each token
must be processed serially in order. In a parallel stage, multiple tokens can by
processed in parallel by the stage. If the number of tokens were unlimited, there
might be a problem where the unordered stage in the middle keeps gaining tokens
because the output stage cannot keep up. This situation typically leads to undesirable
resource consumption by the middle stage. The parameter to method pipeline::run
specifies the maximum number of tokens that can be in flight. Once this limit is
reached, class pipeline never creates a new token at the input stage until another

token is destroyed at the output stage.

This top-level code also shows the method clear that removes all stages from the

pipeline. This call is optional, because a filter’s destructor automatically removes it
from a pipeline.2

Now look in detail at how the stages are defined. Each stage is derived from class
filter. First consider the output stage, because it is the simplest.

// Filter that writes each buffer to a file.
class MyOutputFilter: public tbb::filter {
 FILE* my_output_file;
public:
 MyOutputFilter(FILE* output_file);
 /*override*/void* operator()(void* item);
};

MyOutputFilter::MyOutputFilter(FILE* output_file) :
 tbb::filter(serial_in_order),
 my_output_file(output_file)
{
}

void* MyOutputFilter::operator()(void* item) {
 MyBuffer& b = *static_cast<MyBuffer*>(item);
 fwrite(b.begin(), 1, b.size(), my_output_file);
 return NULL;
}

The portions that “hook” it to the pipeline are shown in blue. The class is derived from
the class filter. When its constructor calls the base class constructor for filter, it

specifies that this is a serial in order filter. It must be a serial in order filter because it
must write chunks in the same order the input stage reads them. The class overrides
the virtual method filter::operator(), which is the method invoked by the pipeline
to process an item. The parameter item points to the item to be processed. The value
returned points to the item to be processed by the next filter. Because this is the last
filter, the return value is ignored, and thus can be NULL.

2 In TBB 2.0 and prior, filter destructors did not automatically remove filters,
and thus the call to clear was mandatory.

Intel® Threading Building Blocks

28 319872-001US

The middle stage is similar. Its operator() returns a pointer to the item to be sent to
the next stage.
// Filter that changes the first letter of each word
// from lower case to upper case.
class MyTransformFilter: public tbb::filter {
public:
 MyTransformFilter();
 /*override*/void* operator()(void* item);
};

MyTransformFilter::MyTransformFilter() :
 tbb::filter(parallel)
{}

/*override*/void* MyTransformFilter::operator()(void* item) {
 MyBuffer& b = *static_cast<MyBuffer*>(item);
 bool prev_char_is_space = b.begin()[-1]==' ';
 for(char* s=b.begin(); s!=b.end(); ++s) {
 if(prev_char_is_space && islower(*s))
 *s = toupper(*s);
 prev_char_is_space = isspace(*s);
 }
 return &b;
}

Also, this stage operates on purely local data. Thus any number of invocations on
operator() can run concurrently on the same instance of MyTransformFilter. It

communicates this fact to the pipeline by specifying parallel as the parameter to the
constructor of its base class filter.

The input filter is the most complicated, because it has to decide when it reaches the
end of the input, and must allocate buffers.
class MyInputFilter: public tbb::filter {
public:
 static const size_t n_buffer = 8;
 MyInputFilter(FILE* input_file_);
private:
 FILE* input_file;
 size_t next_buffer;
 char last_char_of_previous_buffer;
 MyBuffer buffer[n_buffer];
 /*override*/ void* operator()(void*);
};

MyInputFilter::MyInputFilter(FILE* input_file_) :
 filter(serial_in_order),
 next_buffer(0),
 input_file(input_file_),
 last_char_of_previous_buffer(' ')
{
}

void* MyInputFilter::operator()(void*) {

Parallelizing Complex Loops

Tutorial 29

 MyBuffer& b = buffer[next_buffer];
 next_buffer = (next_buffer+1) % n_buffer;
 size_t n = fread(b.begin(), 1, b.max_size(), input_file);
 if(!n) {
 // end of file
 return NULL;
 } else {
 b.begin()[-1] = last_char_of_previous_buffer;
 last_char_of_previous_buffer = b.begin()[n-1];
 b.set_end(b.begin()+n);
 return &b;
 }
}

The input filter must be serial_in_order in this example because the filter reads
chunks from a sequential file and the output filter must write the chunks in the same
order. All serial_in_order filters process items in the same order. There is another kind
of serial stage, serial_out_of_order, that does not preserve order. In the example,
the override of operator() ignores its parameter, because it is generating a stream,

not transforming it. It remembers the last character of the previous chunk, so that it
can properly overlap windows.

The buffers are allocated from a circular queue of size n_buffer. This might seem
risky, because after the initial n_buffer input operations, buffers are recycled without

any obvious checks as to whether they are still in use. The recycling is indeed safe,
because of two constraints:

• The pipeline received n_buffer tokens when pipeline::run was called.
Therefore, no more than n_buffer buffers are ever in flight simultaneously.

• The first and last stages are serial_in_order. Therefore, the buffers are retired
by the last stage in the order they were allocated by the first stage.

Notice that if the first and last stage were not serial_in_order, then you would have
to keep track of which buffers are currently in use, because buffers might not be
retired in the same order they were allocated.

The directory examples/pipeline/text_filter contains the complete code for the

text filter.

4.2.1 Throughput of pipeline
The throughput of a pipeline is the rate at which tokens flow through it, and is
limited by two constraints. First, if a pipeline is run with N tokens, then obviously
there cannot be more than N operations running in parallel. Selecting the right value
of N may involve some experimentation. Too low a value limits parallelism; too high a
value may demand too many resources (for example, more buffers). Second, the
throughput of a pipeline is limited by the throughput of the slowest sequential stage.
This is true even for a pipeline with no parallel stages. No matter how fast the other
stages are, the slowest sequential stage is the bottleneck. So in general you should

Intel® Threading Building Blocks

30 319872-001US

try to keep the sequential stages fast, and when possible, shift work to the parallel
stages.

The text processing example has relatively poor speedup, because the serial stages
are limited by the I/O speed of the system. Indeed, even with files are on a local disk,
you are unlikely to see a speedup much more than 2. To really benefit from a
pipeline, the parallel stages need to be doing some heavy lifting compared to the
serial stages.

The window size, or sub-problem size for each token, can also limit throughput.
Making windows too small may cause overheads to dominate the useful work. Making
windows too large may cause them to spill out of cache. A good guideline is to try for
a large window size that still fits in cache. You may have to experiment a bit to find a
good window size.

4.2.2 Non-Linear Pipelines
Class pipeline supports only linear pipelines. It does not directly handle more
baroque plumbing, such as in the diagram below.

However, you can still use pipeline for this. Just topologically sort the stages into a
linear order, like this:

The light gray arrows are the original arrows that are now implied by transitive closure
of the other arrows. It might seem that lot of parallelism is lost by forcing a linear
order on the stages, but in fact the only loss is in the latency of the pipeline, not the
throughput. The latency is the time it takes a token to flow from the beginning to the
end of the pipeline. Given a sufficient number of processors, the latency of the original
non-linear pipeline is three stages. This is because stages A and B could process the
token concurrently, and likewise stages D and E could process the token concurrently.
In the linear pipeline, the latency is five stages. The behavior of stages A, B, D and E

A

B

C

D

E

A

B

C

D

E

Parallelizing Complex Loops

Tutorial 31

above may need to be modified in order to properly handle objects that don’t need to
be acted upon by the stage other than to be passed along to the next stage in the
pipeline.

The throughput remains the same, because regardless of the topology, the throughput
is still limited by the throughput of the slowest serial stage. If pipeline supported

non-linear pipelines, it would add a lot of programming complexity, and not improve
throughput. The linear limitation of pipeline is a good tradeoff of gain versus pain.

4.3 Summary of Loops
The high-level loop templates in Intel® Threading Building Blocks give you efficient
scalable ways to exploit the power of multi-core chips without having to start from
scratch. They let you design your software at a high task-pattern level and not worry
about low-level manipulation of threads. Because they are generic, you can customize
them to your specific needs. Have fun using the loop templates to unlock the power of
multi-core.

Intel® Threading Building Blocks

32 319872-001US

5 Containers
Intel® Threading Building Blocks provides highly concurrent container classes. These
containers can be used with raw Windows or Linux threads, or in conjunction with
task-based programming (10.1).

A concurrent container allows multiple threads to concurrently access and update
items in the container. Typical C++ STL containers do not permit concurrent update;
attempts to modify them concurrently often result in corrupting the container. STL
containers can be wrapped in a mutex to make them safe for concurrent access, by
letting only one thread operate on the container at a time, but that approach
eliminates concurrency, thus restricting parallel speedup.

Containers provided by Intel® Threading Building Blocks offer a much higher level of
concurrency, via one or both of the following methods:

• Fine-grained locking. With fine-grain locking, multiple threads operate on the
container by locking only those portions they really need to lock. As long as
different threads access different portions, they can proceed concurrently.

• Lock-free algorithms. With lock-free algorithms, different threads account and
correct for the effects of other interfering threads.

Notice that highly-concurrent containers are come at a cost. They typically have
higher overheads than regular STL containers. Operations on highly-concurrent
containers may take longer than for STL containers. Therefore, use highly-concurrent
containers when the speedup from the additional concurrency that they enable
outweighs their slower sequential performance.

CAUTION: As with most objects in C++, the constructor or destructor of a container object must
not be invoked concurrently with another operation on the same object. Otherwise the
resulting race may cause the operation to be executed on an undefined object.

5.1 concurrent_hash_map
A concurrent_hash_map<Key, T, HashCompare > is a hash table that permits

concurrent accesses. The table is a map from a key to a type T. The traits type
HashCompare defines how to hash a key and how to compare two keys.

The following example builds a concurrent_hash_map where the keys are strings and
the corresponding data is the number of times each string occurs in the array Data.

#include "tbb/concurrent_hash_map.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"

Containers

Tutorial 33

#include <string>

using namespace tbb;
using namespace std;

// Structure that defines hashing and comparison operations for user's
type.
struct MyHashCompare {
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; ++s)
 h = (h*17)^*s;
 return h;
 }
 //! True if strings are equal
 static bool equal(const string& x, const string& y) {
 return x==y;
 }
};

// A concurrent hash table that maps strings to ints.
typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings.
struct Tally {
 StringTable& table;
 Tally(StringTable& table_) : table(table_) {}
 void operator()(const blocked_range<string*> range) const {
 for(string* p=range.begin(); p!=range.end(); ++p) {
 StringTable::accessor a;
 table.insert(a, *p);
 a->second += 1;
 }
 }
};

const size_t N = 1000000;

string Data[N];

void CountOccurrences() {
 // Construct empty table.
 StringTable table;

 // Put occurrences into the table
 parallel_for(blocked_range<string*>(Data, Data+N, 1000),
 Tally(table));

 // Display the occurrences
 for(StringTable::iterator i=table.begin(); i!=table.end(); ++i)
 printf("%s %d\n",i->first.c_str(),i->second);
}

A concurrent_hash_map acts as a container of elements of type std::pair<const
Key,T>. Typically, when accessing a container element, you are interested in either

Intel® Threading Building Blocks

34 319872-001US

updating it or reading it. The template class concurrent_hash_map supports these two
purposes respectively with the classes accessor and const_accessor that act as

smart pointers. An accessor represents update (write) access. As long as it points to
an element, all other attempts to look up that key in the table block until the
accessor is done. A const_accessor is similar, except that is represents read-only
access. Multiple const_accessors can point to the same element at the same time.

This feature can greatly improve concurrency in situations where elements are
frequently read and infrequently updated.

The methods find and insert take an accessor or const_accessor as an argument.
The choice tells concurrent_hash_map whether you are asking for update or read-only
access. Once the method returns, the access lasts until the accessor or
const_accessor is destroyed. Because having access to an element can block other
threads, try to shorten the lifetime of the accessor or const_accessor. To do so,

declare it in the innermost block possible. To release access even sooner than the end
of the block, use method release. The following example is a rework of the loop body
that uses release instead of depending upon destruction to end thread lifetime:

 StringTable accessor a;
 for(string* p=range.begin(); p!=range.end(); ++p) {
 table.insert(a, *p);
 a->second += 1;
 a.release();
 }

The method remove(key) can also operate concurrently. It implicitly requests write
access. Therefore before removing the key, it waits on any other extant accesses on
key.

5.1.1 More on HashCompare

In general, the definition of HashCompare must provide two signatures:

• A method hash that maps a Key to a size_t

• A method equal that determines if two keys are equal

The signatures are said to travel together in a single class because if two keys are
equal, then they must hash to the same value, otherwise the hash table might not
work. You could trivially meet this requirement by always hashing to 0, but that would
cause tremendous inefficiency. Ideally, each key should hash to a different value, or
at least the probability of two distinct keys hashing to the same value should be kept
low.

The methods of HashCompare should be static unless you need to have them

behave differently for different instances. If so, then you should construct the
concurrent_hash_map using the constructor that takes a HashCompare as a
parameter. The following example is a variation on an earlier example with instance-

Containers

Tutorial 35

dependent methods. The instance performs both case-sensitive or case-insensitive
hashing, and comparison, depending upon an internal flag ignore_case.

// Structure that defines hashing and comparison operations
class VariantHashCompare {
 // If true, then case of letters is ignored.
 bool ignore_case;
public:
 size_t hash(const string& x) const {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*16777179)^*(ignore_case?tolower(*s):*s);
 return h;
 }
 // True if strings are equal
 bool equal(const string& x, const string& y) const {
 if(ignore_case)
 strcasecmp(x.c_str(), y.c_str())==0;
 else
 return x==y;
 }
 VariantHashCompare(bool ignore_case_) : ignore_case(ignore_case_)
 {}
};

typedef concurrent_hash_map<string,int, VariantHashCompare>
VariantStringTable;

VariantStringTable CaseSensitiveTable(VariantHashCompare(false));
VariantStringTable CaseInsensitiveTable(VariantHashCompare(true));

The directory examples/concurrent_hash_map/count_strings contains a complete
example that uses concurrent_hash_map to enable multiple processors to

cooperatively build a histogram.

5.2 concurrent_vector
A concurrent_vector<T> is a dynamically growable array of T. It is safe to grow a
concurrent_vector while other threads are also operating on elements of it, or even
growing it themselves. For safe concurrent growing, concurrent_vector has two
methods for resizing that support common uses of dynamic arrays: grow_by and
grow_to_at_least.

Method grow_by(n) enables you to safely append n consecutive elements to a vector,

and returns the index of the first appended element. Each element is initialized with
T(). So for example, the following routine safely appends a C string to a shared
vector:
void Append(concurrent_vector<char>& vector, const char* string) {
 size_t n = strlen(string)+1;
 std::copy(string, string+n, vector.begin()+vector.grow_by(n));

Intel® Threading Building Blocks

36 319872-001US

}

The related method grow_to_at_least(n)grows a vector to size n if it is shorter.
Concurrent calls to grow_by and grow_to_at_least do not necessarily return in the

order that elements are appended to the vector.

Method size() returns the number of elements in the vector, which may include
elements that are still undergoing concurrent construction by methods grow_by and
grow_to_at_least. The example uses std::copy and iterators, not strcpy and
pointers, because elements in a concurrent_vector might not be at consecutive
addresses. It is safe to use the iterators while the concurrent_vector is being grown,
as long as the iterators never go past the current value of end(). However, the

iterator may reference an element undergoing concurrent construction. You must
synchronize construction and access.

A concurrent_vector<T> never moves an element until the array is cleared, which
can be an advantage over the STL std::vector even for single-threaded code.
However, concurrent_vector does have more overhead than std::vector. Use
concurrent_vector only if you really need the ability to dynamically resize it while

other accesses are (or might be) in flight, or require that an element never move.

5.2.1 Clearing is Not Concurrency Safe

CAUTION: Operations on concurrent_vector are concurrency safe with respect to growing, not
for clearing or destroying a vector. Never invoke method clear() if there are other
operations in flight on the concurrent_vector.

5.3 concurrent_queue
Template class concurrent_queue<T> implements a concurrent queue with values of
type T. Multiple threads may simultaneously push and pop elements from the queue.

Notice the behavior of concurrent queue. In a single-threaded program, a queue is a
first-in first-out structure. But if multiple threads are pushing and popping
concurrently, the definition of “first” is uncertain. Use of concurrent_queue

guarantees is that if a thread pushes two values, and another thread pops those two
values, they will be popped in the same order that they were pushed.

There are blocking and non-blocking flavors of pop. Method pop_if_present is non-
blocking. It attempts to pop a value, and if it cannot because the queue is empty,
returns anyway. Method pop blocks until it pops a value. If a thread must wait for an
item to become available, and has nothing else to do, it should use pop(item), and
not while(!pop_if_present(item)) continue;, because pop uses processor

resources more efficiently than the loop.

Containers

Tutorial 37

Unlike most STL containers, concurrent_queue::size_type is a signed integral type,
not unsigned. This is because concurrent_queue::size() is defined as the number of

push operations started minus the number of pop operations started. If pops
outnumber pushes, size() becomes negative. For example, if a concurrent_queue is
empty, and there are n pending pop operations, size() returns −n. This provides an

easy way for producers to know how many consumers are waiting on the queue.
Method empty() is defined to be true if and only if size() is not positive.

By default, a concurrent_queue<T> is unbounded. It may hold any number of values,

until memory runs out. It can be bounded by setting the queue capacity with method
set_capacity. Setting the capacity causes push to block until there is room in the

queue. Bounded queues are slower than unbounded queues, so if there is a constraint
elsewhere in your program that prevents the queue from becoming too large, it is
better not to set the capacity.

5.3.1 Iterating Over a concurrent_queue for Debugging
The template class concurrent_queue supports STL-style iteration. This support is
intended only for debugging, when you need to dump a queue. The iterators go
forwards only, and are too slow to be very useful in production code. If a queue is
modified, all iterators pointing to it become invalid and unsafe to use. The following
snippet dumps a queue. The operator<< is defined for a Foo.

concurrent_queue<Foo> q;
...
for(concurrent_queue<Foo>::const_iterator i(q.begin()); i!=q.end(); ++i)
{
 cout << *i;
}

5.3.2 When Not to Use Queues

Queues are widely used in parallel programs to buffer consumers from producers.
Before using an explicit queue, however, consider using parallel_do (4.1) or
pipeline (4.2) instead. These options are often more efficient than queues for the

following reasons:

• A queue is inherently a bottle neck, because it must maintain first-in first-out
order.

• A thread that is popping a value may have to wait idly until the value is pushed.

• A queue is a passive data structure. If a thread pushes a value, it could take time
until it pops the value, and in the meantime the value (and whatever it
references) becomes “cold” in cache. Or worse yet, another thread pops the value,
and the value (and whatever it references) must be moved to the other processor.

In contrast, parallel_do and pipeline avoid these bottlenecks. Because their

threading is implicit, they optimize use of worker threads so that they do other work
until a value shows up. They also try to keep items hot in cache. For example, when

Intel® Threading Building Blocks

38 319872-001US

another work item is added to a parallel_do, it is kept local to the thread that added
it unless another idle thread can steal it before the “hot” thread processes it. This
way, items are more often processed by the hot thread.

5.4 Summary of Containers
The high-level containers in Intel® Threading Building Blocks enable common idioms
for concurrent access. They are suitable for scenarios where the alternative would be
a serial container with a lock around it.

Mutual Exclusion

Tutorial 39

6 Mutual Exclusion
Mutual exclusion controls how many threads can simultaneously run a region of code.
In Intel® Threading Building Blocks, mutual exclusion is implemented by mutexes and
locks. A mutex is an object on which a thread can acquire a lock. Only one thread at a
time can have a lock on a mutex; other threads have to wait their turn.

The simplest mutex is spin_mutex. A thread trying to acquire a lock on a spin_mutex

busy waits until it can acquire the lock. A spin_mutex is appropriate when the lock is
held for only a few instructions. For example, the following code uses a mutex
FreeListMutex to protect a shared variable FreeList. It checks that only a single

thread has access to FreeList at a time. The black font shows the usual sequential
code. The blue text shows code added to make the code thread-safe.
Node* FreeList;
typedef spin_mutex FreeListMutexType;
FreeListMutexType FreeListMutex;

Node* AllocateNode() {
 Node* n;
 {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 }
 if(!n)
 n = new Node();
 return n;
}

void FreeNode(Node* n) {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n->next = FreeList;
 FreeList = n;
}

The constructor for scoped_lock waits until there are no other locks on
FreeListMutex. The destructor releases the lock. The braces inside routine
AllocateNode may look unusual. Their role is to keep the lifetime of the lock as short
as possible, so that other waiting threads can get their chance as soon as possible.

CAUTION: Be sure to name the lock object, otherwise it will be destroyed too soon. For example,
if the creation of the scoped_lock object in the example is changed to

FreeListMutexType::scoped_lock (FreeListMutex);

then the scoped_lock is destroyed when execution reaches the semicolon, which
releases the lock before FreeList is accessed.

Intel® Threading Building Blocks

40 319872-001US

An alternative way to write AllocateNode is as follows:

Node* AllocateNode() {
 Node* n;
 FreeListMutexType::scoped_lock lock;
 lock.acquire(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 lock.release();
 if(!n)
 n = new Node();
 return n;
}

Method acquire waits until it can acquire a lock on the mutex; method release
releases the lock.

It is recommended that you add extra braces where possible, to clarify to maintainers
which code is protected by the lock.

If you are familiar with C interfaces for locks, you may be wondering why there are
not simply acquire and release methods on the mutex object itself. The reason is that
the C interface would not be exception safe, because if the protected region threw an
exception, control would skip over the release. With the object-oriented interface,
destruction of the scoped_lock object causes the lock to be released, no matter

whether the protected region was exited by normal control flow or an exception. This
is true even for our version of AllocateNode that used methods acquire and release
– the explicit release causes the lock to be released earlier, and the destructor then

sees that the lock was released and does nothing.

All mutexes in Intel® Threading Building Blocks have a similar interface, which not
only makes them easier to learn, but enables generic programming. For example, all
of the mutexes have a nested scoped_lock type, so given a mutex of type M, the
corresponding lock type is M::scoped_lock.

TIP: It is recommended that you always use a typedef for the mutex type, as shown in the

previous examples. That way, you can change the type of the lock later without
having to edit the rest of the code. In the examples, you could replace the typedef
with typedef queuing_mutex FreeListMutexType, and the code would still be

correct.

6.1.1 Mutex Flavors

Connoisseurs of mutexes distinguish various attributes of mutexes. It helps to know
some of these, because they involve tradeoffs of generality and efficiency. Picking the
right one often helps performance. Mutexes can be described by the following
qualities, also summarized in Table 10

Mutual Exclusion

Tutorial 41

• Scalable. Some mutexes are called scalable. In a strict sense, this is not an
accurate name, because a mutex limits execution to one thread at a time. A
scalable mutex is one that does not do worse than this. A mutex can do worse
than serialize execution if the waiting threads consume excessive processor cycles
and memory bandwidth, reducing the speed of threads trying to do real work.
Scalable mutexes are often slower than non-scalable mutexes under light
contention, so a non-scalable mutex may be better. When in doubt, use a scalable
mutex.

• Fair. Mutexes can be fair or unfair. A fair mutex lets threads through in the order
they arrived. Fair mutexes avoid starving threads. Each thread gets its turn.
However, unfair mutexes can be faster, because they let threads that are running
go through first, instead of the thread that is next in line which may be sleeping
on account of an interrupt.

• Recursive. Mutexes can be recursive or non-recursive. A recursive mutex allows
a thread that is already holding a lock on the mutex to acquire another lock on the
mutex. This is useful in some recursive algorithms, but typically adds overhead to
the lock implementation.

• Yield or Block. This is an implementation detail that impacts performance. On
long waits, a TBB mutex either yields or blocks. Here yields means to repeatedly
poll whether progress can be made, and if not, temporarily yield3 the processor.
To block means to yield the processor until the mutex permits progress. Use the
yiedling mutexes if waits are typically short and blocking mutexes if waits are
typically long.

The following is a summary of mutex behaviors:

• spin_mutex is non-scalable, unfair, non-recursive, and spins in user space. It
would seem to be the worst of all possible worlds, except that it is very fast in
lightly contended situations. If you can design your program so that contention is
somehow spread out among many spin_mutex objects, you can improve
performance over using other kinds of mutexes. If a mutex is heavily contended,
your algorithm will not scale anyway. Consider redesigning the algorithm instead
of looking for a more efficient lock.

• queuing_mutex is scalable, fair, non-recursive, and spins in user space. Use it
when scalability and fairness are important.

• spin_rw_mutex and queuing_rw_mutex are similar to spin_mutex and
queuing_mutex, but additionally support reader locks.

• mutex and recursive_mutex are wrappers around the system’s “native” mutual
exclusion. On Windows* systems it is implemented on top of CRITICAL_SECTION.
On Linux* and Mac OS* X systems it is implemented on top of pthread mutex.
The advantages of using the wrapper are that it adds an exception-safe interface
and it provides an interface identical to the other mutexes in Intel® Threading
Building Blocks, which makes it easy to swap in a different kind of mutex later if
warranted by performance measurements.

• null_mutex and null_rw_mutex do nothing. They can be useful as template
arguments. For example, suppose you are defining a container template and know

3 The yielding is implemented via SwitchToThread() on Microsoft Windows*
systems and by sched_yield() on other systems.

Intel® Threading Building Blocks

42 319872-001US

that some instantiations will be shared by multiple threads and need internal
locking, but others will be private to a thread and not need locking. You can define
the template to take a Mutex type parameter. The parameter can be one of the
real mutex types when locking is necessary, and null_mutex when locking is
unnecessary.

Table 10: Traits and Behaviors of Mutexes

Mutex Scalable Fair Recursive Long
Wait

Size

mutex OS dependent OS dependent no blocks ≥ 3
words

recursive_mutex OS dependent OS dependent yes blocks ≥ 3
words

spin_mutex no no no yields 1 byte

queuing_mutex no yields 1 word

spin_rw_mutex no no no yields 1 word

queuing_rw_mutex no yields 1 word

null_mutex4 moot never empty

null_rw_mutex moot never empty

6.1.2 Reader Writer Mutexes

Mutual exclusion is necessary when at least one thread writes to a shared variable.
But it does no harm to permit multiple readers into a protected region. The reader-
writer variants of the mutexes, denoted by _rw_ in the class names, enable multiple

readers by distinguishing reader locks from writer locks. There can be more than one
reader lock on a given mutex.

Requests for a reader lock are distinguished from requests for a writer lock via an
extra boolean parameter in the constructor for scoped_lock. The parameter is false to
request a reader lock and true to request a writer lock. It defaults to true so that
when omitted, a spin_rw_mutex or queuing_rw_mutex behaves like its non-_rw_

counterpart. The next section shows an example where the parameter is explicitly
false in order to obtain a reader lock.

4 Null mutexes are considered fair by TBB because they cannot cause
starvation. They lack any non-static data members.

Mutual Exclusion

Tutorial 43

6.1.3 Upgrade/Downgrade

It is possible to upgrade a reader lock to a writer lock, by using the method
upgrade_to_writer. Here is an example.

std::vector<string> MyVector;
typedef spin_rw_mutex MyVectorMutexType;
MyVectorMutexType MyVectorMutex;

void AddKeyIfMissing(const string& key) {
 // Obtain a reader lock on MyVectorMutex
 MyVectorMutexType::scoped_lock
lock(MyVectorMutex,/*is_writer=*/false);
 size_t n = MyVector.size();
 for(size_t i=0; i<n; ++i)
 if(MyVector[i]==key) return;
 if(!MyVectorMutex.upgrade_to_writer())
 // Check if key was added while lock was temporarily released
 for(int i=n; i<MyVector.size(); ++i)
 if(MyVector[i]==key) return;
 vector.push_back(key);
}

Note that the vector must sometimes be searched again. This is necessary because
upgrade_to_writer might have to temporarily release the lock before it can upgrade.
Otherwise, deadlock might ensue, as discussed in Section 6.1.4. Method
upgrade_to_writer returns a bool that is true if it successfully upgraded the lock

without releasing it, and false if the lock was released temporarily. Thus when
upgrade_to_writer returns false, the code must rerun the search to check that the

key was not inserted by another writer. The example presumes that keys are always
added to the end of the vector, and that keys are never removed. Because of these
assumptions, it does not have to re-search the entire vector, but only the elements
beyond those originally searched. The key point to remember is that when
upgrade_to_writer returns false, any assumptions established while holding a reader
lock may have been invalidated, and must be rechecked.

For symmetry, there is a corresponding method downgrade_to_reader, though in
practice there are few reasons to use it.

6.1.4 Lock Pathologies

Locks can introduce performance and correctness problems. If you are new to locking,
here are some of the problems to avoid:

6.1.4.1 Deadlock

Deadlock happens when threads are trying to acquire more than one lock, and each
holds some of the locks the other threads need to proceed. More precisely, deadlock
happens when:

Intel® Threading Building Blocks

44 319872-001US

• There is a cycle of threads

• Each thread holds at least one lock on a mutex, and is waiting on a mutex for
which the next thread in the cycle already has a lock.

• No thread is willing to give up its lock.

Think of classic gridlock at an intersection – each car has “acquired” part of the road,
but needs to “acquire” the road under another car to get through. Two common ways
to avoid deadlock are:

• Avoid needing to hold two locks at the same time. Break your program into small
actions in which each can be accomplished while holding a single lock.

• Always acquire locks in the same order. For example, if you have “outer
container” and “inner container” mutexes, and need to acquire a lock on one of
each, you could always acquire the “outer sanctum” one first. Another example is
“acquire locks in alphabetical order” in a situation where the locks have names. Or
if the locks are unnamed, acquire locks in order of the mutex’s numerical
addresses.

• Use atomic operations instead of locks, as discussed in the following section.

6.1.4.2 Convoying

Another common problem with locks is convoying. Convoying occurs when the
operating system interrupts a thread that is holding a lock. All other threads must wait
until the interrupted thread resumes and releases the lock. Fair mutexes can make
the situation even worse, because if a waiting thread is interrupted, all the threads
behind it must wait for it to resume.

To minimize convoying, try to hold the lock as briefly as possible. Precompute
whatever you can before acquiring the lock.

To avoid convoying, use atomic operations instead of locks where possible.

Atomic Operations

Tutorial 45

7 Atomic Operations
You can avoid mutual exclusion using atomic operations. When a thread performs an
atomic operation, the other threads see it as happening instantaneously. The
advantage of atomic operations is that they are relatively quick compared to locks,
and do not suffer from deadlock and convoying. The disadvantage is that they only do
a limited set of operations, and often these are not enough to synthesize more
complicate operations efficiently. But nonetheless you should not pass up an
opportunity to use an atomic operation in place of mutual exclusion. Class atomic<T>
implements atomic operations with C++ style.

A classic use of atomic operations is for thread-safe reference counting. Suppose x is
a reference count of type int, and the program needs to take some action when the
reference count becomes zero. In single-threaded code, you could use a plain int for
x, and write --x; if(x==0) action(). But this method might fail for multithreaded
code, because two threads might interleave their operations as shown in the following
table, where ta and tb represent machine registers, and time progresses downwards:

Table 11: Interleaving of Machine Instructions

Thread A Thread B

t
a
 = x

 t
b
 = x

x = t
a
 -

1

 x = t
b
 –

1

if(x==0)

 if(x==0)

Though the code intended for x to be decremented twice, it ends up with only one less
than its original value. Also, another problem results because the test of x is separate
from the decrement: If x starts out as two, and both threads decrement x before
either thread evaluates the if condition, both threads would call action(). To correct

this problem, you need to ensure that only one thread at a time does the decrement
and ensure that the value checked by the “if” is the result of the decrement. You can
do this by introducing a mutex, but it is much faster and simpler to declare x as
atomic<int> and write “if(--x==0) action()”. The method
atomic<int>::operator-- acts atomically; no other thread can interfere.

atomic<T> supports atomic operations on type T, which must be an integral or pointer

type. There are five fundamental operations supported, with additional interfaces in
the form of overloaded operators for syntactic convenience. For example, ++, --, -=,
and +=operations on atomic<T> are all forms of the fundamental operation fetch-and-

Intel® Threading Building Blocks

46 319872-001US

add. The following are the five fundamental operations on a variable x of type
atomic<T>.

Table 12: Fundamental Operations on a Variable x of Type atomic<T>

= x read the value of x

x = write the value of x, and return it

x.fetch_and_store(y) do y=x and return the old value of x

x.fetch_and_add(y) do x+=y and return the old value of x

x.compare_and_swap(y,z) if x equals z, then do x=y. In either case, return old value of
x.

Because these operations happen atomically, they can be used safely without mutual
exclusion. Consider the following example:
atomic<unsigned> counter;

unsigned GetUniqueInteger() {
 return counter.fetch_and_add(1);
}

The routine GetUniqueInteger returns a different integer each time it is called, until
the counter wraps around. This is true no matter how many threads call
GetUniqueInteger simultaneously.

The operation compare_and_swap is fundamental operation to many non-blocking
algorithms. A problem with mutual exclusion is that if a thread holding a lock is
suspended, all other threads are blocked until the holding thread resumes. Non-
blocking algorithms avoid this problem by using atomic operations instead of locking.
They are generally complicated and require sophisticated analysis to verify. However,
the following idiom is straightforward and worth knowing. It updates a shared variable
globalx in a way that is somehow based on its old value:

atomic<int> globalx;

int UpdateX() { // Update x and return old value of x.
 do {
 // Read globalX
 oldx = globalx;
 // Compute new value
 newx = ...expression involving oldx....
 // Store new value if another thread has not changed globalX.
 } while(globalx.compare_and_swap(newx,oldx)!=oldx);
 return oldx;
}

Worse, some threads iterate the loop until no other thread interferes. Typically, if the
update takes only a few instructions, the idiom is faster than the corresponding
mutual-exclusion solution.

Atomic Operations

Tutorial 47

CAUTION: If the following sequence thwarts your intent, then the update idiom is inappropriate:

1. A thread reads a value A from globalx
2. Other threads change globalx from A to B to A

3. The thread in step 1 does its compare_and_swap, reading A and thus not detecting
the intervening change to B.

The problem is called the ABA problem. It is frequently a problem in designing non-
blocking algorithms for linked data structures. See the Internet for more information.

7.1.1 Why atomic<T> Has No Constructors
Template class atomic<T> deliberately has no constructors, because examples like
GetUniqueInteger in Chapter 7 are commonly required to work correctly even before
all file-scope constructors have been called. If atomic<T> had constructors, a file-

scope instance might be initialized after it had been referenced. You can rely on zero-
initialization to initialize an atomic<T> to zero.

7.1.2 Memory Consistency

Some architectures, such as Itanium, have “weak memory consistency”, in which
memory operations on different addresses may be reordered by the hardware for sake
of efficiency. The subject is complex, and it is recommended that the interested
reader consult other works (Intel 2002, Robison 2003) on the subject. If you are
programming only IA-32 and Intel® Extended Memory 64 Technology (Intel® EM64T)
processor platforms, you can skip this section.

Class atomic<T> permits you to enforce certain ordering of memory operations as
described in Table 13:

Table 13: Ordering Constraints

Kind Description Default For

acquire Operations after the atomic operation never
move over it.

read

release Operations before the atomic operation never
move over it.

write

sequentially
consistent

Operations on either side never move over the
atomic operation and the sequentially
consistent atomic operations have a global
order.

fetch_and_store

fetch_and_add

compare_and_swap

The rightmost column lists the operations that default to a particular constraint. Use
these defaults to avoid unexpected surprises. For read and write, the defaults are the
only constraints available. However, if you are familiar with weak memory

Intel® Threading Building Blocks

48 319872-001US

consistency, you might want to change the default sequential consistency for the
other operations to weaker constraints. To do this, use variants that take a template
argument. The argument can be acquire or release, which are values of the enum
type memory_semantics.

For example, suppose various threads are producing parts of a data structure, and
you want to signal a consuming thread when the data structure is ready. One way to
do this is to initialize an atomic counter with the number of busy producers, and as
each producer finishes, it executes:
refcount.fetch_and_add<release>(-1);

The argument release guarantees that the producer's writes to shared memory
occurs before refcount is decremented. Similarly, when the consumer checks
refcount, the consumer must use an acquire fence, which is the default for reads, so

that the consumer's reads of the data structure do not happen until after the
consumer sees refcount become 0.

Timing

Tutorial 49

8 Timing
When measuring the performance of parallel programs, it is usually wall clock time,
not CPU time, that matters. The reason is that better parallelization typically increases
aggregate CPU time by employing more CPUs. The goal of parallelizing a program is
usually to make it run faster in real time.

The class tick_count in Intel® Threading Building Blocks provides a simple interface
for measuring wall clock time. A tick_count value obtained from the static method
tick_count::now() represents the current absolute time. Subtracting two
tick_count values yields a relative time in tick_count::interval_t, which you can

convert to seconds, as in the following example:
tick_count t0 = tick_count::now();
... do some work ...
tick_count t1 = tick_count::now();
printf(“work took %g seconds\n”,(t1-t0).seconds());

Unlike some timing interfaces, tick_count is guaranteed to be safe to use across
threads. It is valid to subtract tick_count values that were created by different

threads. A tick_count difference can be converted to seconds.

The resolution of tick_count corresponds to the highest resolution timing service on

the platform that is valid across threads in the same process. Since the CPU timer
registers are not valid across threads on some platforms, this means that the
resolution of tick_count can not be guaranteed to be consistent across platforms.

Intel® Threading Building Blocks

50 319872-001US

9 Memory Allocation
Intel® Threading Building Blocks provides two memory allocator templates that are
similar to the STL template class std::allocator. These two templates,
scalable_allocator<T> and cache_aligned_allocator<T>, address critical issues

in parallel programming as follows:

• Scalability. Problems of scalability arise when using memory allocators originally
designed for serial programs, on threads that might have to compete for a single
shared pool in a way that allows only one thread to allocate at a time. Use the
memory allocator template scalable_allocator<T> to avoid such scalability
bottlenecks. This template can improve the performance of programs that rapidly
allocate and free memory.

• False sharing. Problems of sharing arise when two threads access different
words that share the same cache line. The problem is that a cache line is the unit
of information interchange between processor caches. If one processor modifies a
cache line and another processor reads (or writes) the same cache line, the cache
line must be moved from one processor to the other, even if the two processors
are dealing with different words within the line. False sharing can hurt
performance because cache lines can take hundreds of clocks to move.

Use the class cache_aligned_allocator<T> to always allocate on a cache line. Two
objects allocated by cache_aligned_allocator are guaranteed to not have false
sharing. If an object is allocated by cache_aligned_allocator and another object
is allocated some other way, there is no guarantee. The interface to
cache_aligned_allocator is identical to std::allocator, so you can use it as the

allocator argument to STL template classes.

The following code shows how to declare an STL vector that uses
cache_aligned_allocator for allocation:

std::vector<int,cache_aligned_allocator<int> >;

TIP: The functionality of cache_aligned_allocator<T> comes at some cost in space,
because it must allocate at least one cache line’s worth of memory, even for a small
object. So use cache_aligned_allocator<T> only if false sharing is likely to be a real

problem.

The scalable memory allocator incorporates McRT technology developed by Intel’s PSL
CTG team.

9.1 Which Dynamic Libraries to Use
The template scalable_allocator<T> requires the Intel® Threading Building Blocks
scalable memory allocator library as described in Section 2.2. It does not require the

Memory Allocation

Tutorial 51

Intel® Threading Building Blocks general library, and can be used independently of
the rest of Intel® Threading Building Blocks.

The templates tbb_allocator<T> and cache_aligned_allocator<T> use the
scalable allocator library if it is present otherwise it reverts to using malloc and free.

Thus, you can use these templates even in applications that choose to omit the
scalable memory allocator library.

The rest of Intel® Threading Building Blocks can be used with or without the Intel®
Threading Building Blocks scalable memory allocator library.

Table 14: Templates and Libraries

Template Requirements Notes

scalable_allocator<T> Intel® Threading Building Blocks
scalable memory allocator
library. See Section 2.2

tbb_allocator<T>

cache_aligned_allocator<T>

 Uses the scalable
allocator library if it is
present otherwise it
reverts to using
malloc and free.

Intel® Threading Building Blocks

52 319872-001US

10 The Task Scheduler
This section introduces the Intel® Threading Building Blocks task scheduler . The task
scheduler is the engine that powers the loop templates. When practical, you should
use the loop templates instead of the task scheduler, because the templates hide the
complexity of the scheduler. However, if you have an algorithm that does not
naturally map onto one of the high-level templates, use the task scheduler. All of the
scheduler functionality that is used by the high-level templates is available for you to
use directly, so you can built new high-level templates that are just as powerful as the
existing ones.

10.1 Task-Based Programming
When striving for performance, programming in terms of threads can be a poor way to
do multithreaded programming. It is much better to formulate your program in terms
of logical tasks, not threads, for several reasons.

• Matching parallelism to available resources

• Faster task startup and shutdown

• More efficient evaluation order

• Improved load balancing

• Higher–level thinking

The following paragraphs explain these points in detail.

The threads you create with a threading package are logical threads, which map onto
the physical threads of the hardware. For computations that do not wait on external
devices, highest efficiency usually occurs when there is exactly one running logical
thread per physical thread. Otherwise, there can be inefficiencies from the mismatch.
Undersubscription occurs when there are not enough running logical threads to keep
the physical threads working. Oversubscription occurs when there are more running
logical threads than physical threads. Oversubscription usually leads to time sliced
execution of logical threads, which incurs overheads as discussed in Appendix A, Costs
of Time Slicing. The scheduler tries to avoid oversubscription, by having one logical
thread per physical thread, and mapping tasks to logical threads, in a way that
tolerates interference by other threads from the same or other processes.

The key advantage of tasks versus logical threads is that tasks are much lighter
weight than logical threads. On Linux systems, starting and terminating a task is

The Task Scheduler

Tutorial 53

about 18 times faster than starting and terminating a thread. On Windows systems,
the ratio is more than 100. This is because a thread has its own copy of a lot of
resources, such as register state and a stack. On Linux, a thread even has its own
process id. A task in Intel® Threading Building Blocks, in contrast, is typically a small
routine, and also, cannot be preempted at the task level (though its logical thread can
be preempted).

Tasks in Intel® Threading Building Blocks are efficient too because the scheduler is
unfair. Thread schedulers typically distribute time slices in a round-robin fashion. This
distribution is called “fair”, because each logical thread gets its fair share of time.
Thread schedulers are typically fair because it is the safest strategy to undertake
without understanding the higher-level organization of a program. In task-based
programming, the task scheduler does have some higher-level information, and so
can sacrifice fairness for efficiency. Indeed, it often delays starting a task until it can
make useful progress. Section 10.3 explains how this works, and how it saves both
time and space.

The scheduler does load balancing. In addition to using the right number of threads, it
is important to distribute work evenly across those threads. As long as you break your
program into enough small tasks, the scheduler usually does a good job of assigning
tasks to threads to balance load. With thread-based programming, you are often stuck
dealing with load-balancing yourself, which can be tricky to get right.

Finally, the main advantage of using tasks instead of threads is that they let you think
at a higher, task-based, level. With thread-based programming, you are forced to
think at the low level of physical threads to get good efficiency, because you have one
logical thread per physical thread to avoid undersubscription or oversubscription. You
also have to deal with the relatively coarse grain of threads. With tasks, you can
concentrate the logical dependences between tasks, and leave the efficient scheduling
to the scheduler.

10.1.1 When Task-Based Programming Is Inappropriate

Using the task scheduler is usually the best approach to threading for performance,
however there are cases when the task scheduler is not appropriate. The task
scheduler is intended for high-performance algorithms composed from non-blocking
tasks. It still works if the tasks rarely block. However, if threads block frequently,
there is a performance loss when using the task scheduler because while the thread is
blocked, it is not working on any tasks. Blocking typically occurs while waiting for I/O
or mutexes for long periods. If threads hold mutexes for long periods, your code is not
likely to perform well anyway, no matter how many threads it has. If you have
blocking tasks, it is best to use full-blown threads for those. The task scheduler is
designed so that you can safely mix your own threads with Intel® Threading Building
Blocks tasks.

Intel® Threading Building Blocks

54 319872-001US

10.2 Simple Example: Fibonacci Numbers
This section uses computation of the nth Fibonacci number as an example. This
example uses an inefficient method5 to compute Fibonacci numbers, but it
demonstrates the basics of a task library using a simple recursive pattern. To get
scalable speedup out of task-based programming, you need to specify a lot of tasks.
This is typically done in Intel® Threading Building Blocks with a recursive task
pattern.

This is the serial code:
long SerialFib(long n) {
 if(n<2)
 return n;
 else
 return SerialFib(n-1)+SerialFib(n-2);
}

The top-level code for the parallel task-based version is:
long ParallelFib(long n) {
 long sum;
 FibTask& a = *new(task::allocate_root()) FibTask(n,&sum);
 task::spawn_root_and_wait(a);
 return sum;
}

This code uses a task of type FibTask to do the real work. It involves the following
distinct steps :

1. Allocate space for the task. This is done by a special “overloaded new” and
method task::allocate_root. The _root suffix in the name denotes the fact that
the task created has no parent. It is the root of a task tree. Tasks must be
allocated by special methods so that the space can be efficiently recycled when
the task completes.

2. Construct the task with the constructor FibTask(n,&sum) invoked by new. When
the task is run in step 3, it computes the nth Fibonacci number and stores it into
*sum.

3. Run the task to completion with task::spawn_root_and_wait.

The real work is inside struct FibTask. Its definition is shown below.

class FibTask: public task {
public:
 const long n;
 long* const sum;

5 An efficient method is to compute

1

01
11 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

and take the upper left element.

The exponentiation can be done quickly via repeated squaring.

The Task Scheduler

Tutorial 55

 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function
task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 // Set ref_count to "two children plus one for the wait".
 set_ref_count(3);
 // Start b running.
 spawn(b);
 // Start a running and wait for all children (a and b).
 spawn_and_wait_for_all(a);
 // Do the sum
 *sum = x+y;
 }
 return NULL;
 }
};

It is a relatively large piece of code, compared to SerialFib, because it expresses
parallelism without the help of any extensions to standard C++.

Like all tasks scheduled by Intel® Threading Building Blocks, FibTask is derived from
class task. Fields n and sum hold respectively the input value and pointer to the
output. These are copies of the arguments passed to the constructor for FibTask.
Method execute does the actual computation. Every task must provide a definition of
execute that overrides the pure virtual method task::execute. The definition should

do the work of the task, and return either NULL, or a pointer to the next task to run.
In this simple example, it returns NULL. More is said about the non-NULL case in
Section 10.4.3.

Method FibTask::execute()does the following:

• Checks if n is so small that serial execution would be faster. Finding the right
value of CutOff requires some experimentation. A value of at least 16 works well
in practice for getting the most of the possible speedup out of this example.
Resorting to a sequential algorithm when the problem size becomes small is
characteristic of most divide-and-conquer patterns for parallelism. Finding the
point at which to switch requires experimentation, so be sure to write your code in
a way that allows you to experiment.

• If the else is taken, the code creates and runs two child tasks that compute the
(n-1)th and (n-2)th Fibonacci numbers. Here, inherited method
allocate_child() is used to allocate space for the task. Remember that the top-
level routine ParallelFib used allocate_root() to allocate space for a task. The
difference is that here the task is creating child tasks. This relationship is indicated
by the choice of allocation method.

Intel® Threading Building Blocks

56 319872-001US

• Calls set_ref_count(3). The number 3 represents the two children and an
additional implicit reference that is required by method spawn_and_wait_for_all.
Make sure to call set_reference_count(3) before spawning any children. Failure
to do so results in undefined behavior. The debug version of the library usually
detects and reports this type of error.

• Spawns two child tasks. Spawning a task indicates to the scheduler that it can run
the task whenever it chooses, possibly in parallel with executing other tasks. The
execution policy is explained later in Section 10.3. The first spawning, by method
spawn, returns immediately without waiting for the child task to start executing.
The second spawning, by method spawn_and_wait_for_all, causes the parent to
wait until all currently allocated child tasks are finished.

• After the two child tasks complete, the parent computes x+y and stores it in *sum.

At first glance, the parallelism might appear to be limited, because the task creates
only two child tasks. The trick here is recursive parallelism. The two child tasks each
create two child tasks, and so on, until n<Cutoff. This chain reaction creates a lot of

potential parallelism. The advantage of the task scheduler is that it turns this potential
parallelism into real parallelism in a very efficient way, because it chooses tasks to run
in a way that keeps physical threads busy with relatively little context switching.

10.3 How Task Scheduling Works
The scheduler evaluates a task graph. The graph is a directed graph where nodes are
tasks, and each points to its parent which is another task that is waiting on it to
complete, or NULL. Method task::parent() gives you read-only access to the parent
pointer. Each task has a refcount that counts the number of tasks that have it as a
parent. Each task also has a depth, which is usually one more than the depth of its
parent. The following snapshot shows a task graph for the Fibonacci example.

The Task Scheduler

Tutorial 57

depth=0

refcount=2

depth=1

refcount=0

depth=1

refcount=2

depth=2

refcount=0

depth=2

refcount=2

depth=3

refcount=0

depth=3

refcount=0

task A

task B

task C

task D

task G

task F

task E

Figure 7: Task Graph for the Fibonacci Example

In the snapshot, the tasks with non-zero reference counts (A, B, and C) wait for their
child tasks. The leaf tasks are running or ready to run.

The scheduler runs tasks in a way that tends to minimize both memory demands and
cross-thread communication. The intuition is that a balance must be reached between
depth-first and breadth-first execution. Assuming that the tree is finite, depth-first is
best for sequential execution for the following reasons:

• Strike when the cache is hot. The deepest tasks are the most recently created
tasks, and therefore are hottest in cache. Also, if they can complete, then task C
can continue executing, and though not the hottest in cache, it is still warmer than
the older tasks above it.

• Minimize space. Executing the shallowest task leads to breadth-first unfolding of
the tree. This creates an exponential number of nodes that coexist
simultaneously. In contrast, depth-first execution creates the same number of
nodes, but only a linear number have to exist at the same time, because it stacks
the other ready tasks (E, F, and G in the picture).

Though breadth-first execution has a severe problem with memory consumption, it
does maximize parallelism if you have an infinite number of physical threads. Since
physical threads are limited, it is better to use only enough breadth-first execution to

Intel® Threading Building Blocks

58 319872-001US

keep the available processors busy. The scheduler implements breadth-first execution
as follows:

• Each thread has its own ready pool, which is an array of lists of tasks.

• A task goes into the pool when it is deemed ready to run.

• Each thread steals tasks from other pools when necessary.6

Figure 8 shows a snapshot of a pool that corresponds to the task graph in Figure 7.

 task G

 task F

task E

task D deepest

shallowest

Figure 8: A Thread's Ready Pool

The pool comprises an array of lists. The array is subscripted by the task’s depth. The
lists are treated as stacks. Tasks are pushed onto the left side of a list, and likewise
popped from the left side. There are two intertwined actions on each ready pool:
putting tasks into the pool, and getting tasks out of the pools to run them.

The rule for getting is that when a thread participates in task graph evaluation and
needs a new task to run, it gets the task by the first of the following rules that
applies:

1. Use the task returned by method execute for the previous task. This rule does not
apply if execute returned NULL.

2. Take the task at the front of the deepest list of its own pool. This rule does not
apply if all lists in its pool are empty.

3. Steal from the front of the shallowest list of another randomly chosen pool. If the
chosen pool is empty, the thread tries this rule again until it succeeds.

Getting is always automatic; it just happens as part of task graph evaluation. Putting
can be explicit or automatic.

6 The task scheduler is inspired by the early Cilk scheduler. See “Cilk: An
Efficient Multithreaded Runtime System“, PPoPP 95 to read about it.

The Task Scheduler

Tutorial 59

Here are the ways in which a task can be put into a ready pool: The task always goes
into the ready pool of the putting thread. Stealing from another pool is allowed;
donating to another pool is not.

There are three ways that a task can be put into a ready pool:

• The task is explicitly spawned, for example, by method spawn.

• A task has been marked for re-execution by method
task::recycle_to_reexecute.

• The task’s reference count becomes zero after being implicitly decremented when
a child task completes. This does not always happen when the last child task
completes, because sometimes a fictitious “guard reference” is added, in scenarios
where automatic spawning of a task is not wanted.

To summarize, the task scheduler's fundamental strategy is "breadth-first theft and
depth-first work". The breadth-first theft rule raises parallelism sufficiently to keep
threads busy. The depth-first work rule keeps each thread operating efficiently once it
has sufficient work to do.

10.4 Useful Task Techniques
This section explains programming techniques for making best use of the scheduler.

10.4.1 Recursive Chain Reaction

The scheduler works best with tree-structured task graphs, because that is where the
strategy of “breadth-first theft and depth-first work” applies very well. Also, tree-
structured task graphs allow fast creation of many tasks. For example, if a master
task tries to create N children directly, it will take O(N) steps. But with tree structured
forking, it takes only O(lg(N)) steps.

Often domains are not obviously tree structured, but you can easily map them to
trees. For example, parallel_for (in tbb/parallel_for) works over an iteration
space, for example, a sequence of integers. Section 3.4 shows how the iteration space
is defined in terms of how to split it into two halves. Template function parallel_for
uses that definition to recursively map the iteration space onto a binary tree.

10.4.2 Continuation Passing
Method spawn_and_wait_for_all is a convenient way to wait on child tasks, but
incurs some inefficiency if a thread becomes idle. The idle thread attempts to keep
busy by stealing tasks from other threads. The scheduler limits possible victim tasks
to those deeper than the waiting task. This limit modifies the policy that the
shallowest task should be chosen. The limit restrains memory demands in worse-case

Intel® Threading Building Blocks

60 319872-001US

scenarios. A way around the constraint is for the parent to not wait, but simply spawn
both children and return. The children are allocated not as children of the parent, but
as children of the parent’s continuation task, which is a task that runs when both
children complete. The “continuation-passing” variant of FibTask is shown below, with
the changed portions in blue ink.
struct FibContinuation: public task {
 long* const sum;
 long x, y;
 FibContinuation(long* sum_) : sum(sum_) {}
 task* execute() {
 *sum = x+y;
 return NULL;
 }
};

struct FibTask: public task {
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children plus one for the wait".
 c.set_ref_count(23);
 c.spawn(b);
 c.spawn(a);
 return NULL;
 }
 }
};

The following differences between the original version and the continuation version
need to be understood:

The big difference is that in the original version x and y were local variables in method
execute. In the continuation-passing version, they cannot be local variables, because
the parent returns before its children complete. Instead, they are fields of the
continuation task FibContinuation.

The allocation logic is changed. The continuation is allocated with
allocate_continuation. It is similar to allocate_child, except that the depth of

the continuation is the same as the parent, not one deeper as it would be for a child.
Also, it forwards the parent of this to c, and sets the parent of this to NULL. The

following figure summarizes the transformation:

The Task Scheduler

Tutorial 61

depth=d depth=d depth=d

 null

this this c

refcount=0 refcount refcount

(parent) (parent)

Figure 9: Action of allocate_child

A property of the transformation is that it does not change the reference count of the
parent, and thus avoids interfering with reference-counting logic.

The reference count is set to 2, the number of children. In the original version, it was
set to 3 because spawn_and_wait_for_all required the augmented count.

Furthermore, the code sets the reference count of the continuation instead of the
parent, because it is the execution of the continuation that waits on the children.

The pointer sum is passed to the continuation by the constructor, because it is now
FibContinuation that stores into *sum. The children are still allocated with
allocate_child, but notice that now they are allocated as children of the
continuation c, not the parent. This is so that c, and not this, becomes the

“dependent” of the children that is automatically spawned when both children
complete. If you accidentally used this.allocate_child(), then the parent task

would run again after both children completed.

If you remember how the original top-level code, ParallelFib, was written, you

might be worried now that continuation-passing style breaks the code, because now
the root FibTask completes before the children are done, and the top-level code used
spawn_root_and_wait to wait on the root FibTask. This is not a problem, because
spawn_root_and_wait is designed to work correctly with continuation-passing style.
An invocation spawn_root_and_wait(x) does not actually wait for x to complete.
Instead, it constructs a dummy dependent of x, and waits for the dependent’s
reference count to be decremented. Because allocate_continuation forwards this

dummy dependent to the continuation, the dummy dependent’s reference count is not
decremented until the continuation completes.

10.4.3 Scheduler Bypass

Scheduler bypass is an improvement where you directly specify the next task to run.
Continuation-passing style often opens up an opportunity for scheduler bypass. For
example, in the continuation-passing example, it turns out that once
FibTask::execute() returns, by the “getting” rules described in Section 10.3, task
“a” is always the next task taken from the ready pool. Putting the task into the ready

pool and then getting it back out incurs some overhead that can be avoided. To do

Intel® Threading Building Blocks

62 319872-001US

this, method execute() should not spawn the task, but instead return a pointer to it
as the result. The following example shows the necessary changes:
struct FibTask: public task {
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children".
 c.set_ref_count(2);
 c.spawn(b);
 c.spawn(a);
 return NULL;
 return &a;
 }
 }
};

10.4.4 Recycling

Not only can you bypass the scheduler, you might also bypass task allocation and
deallocation. The opportunity frequently arises for recursive tasks that do scheduler
bypass, because the child is handed by a return statement at just the moment the
parent completes. The following code shows the changes required to implement
recycling in the scheduler-bypass example:
struct FibTask: public task {
 const long n;
 long* const sum;
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 recycle_as_child_of(c);
 n -= 2;
 sum = &c.x;
 // Set ref_count to "two children".
 c.set_ref_count(2);
 c.spawn(b);
 return &a;
 return this;

The Task Scheduler

Tutorial 63

 }
 }
};

The child that was previously called a is now the recycled this. The call
recycle_as_child_of(c) has several effects:

• It marks this as to not be automatically destroyed when execute() returns.

• It sets the depth of this to be 1 more than the depth of c.

• It sets the dependent of this to be c. To prevent reference-counting problems,
recycle_as_child_of has a prerequisite that this must have a NULL dependent.
This is the case after allocate_continuation occurs.

When recycling, ensure that the original task’s fields are not used after the task might
start running. The example uses the scheduler bypass trick to ensure this. You can
spawn the recycled task instead, as long as none of its fields are used after the
spawning. This restriction applies even to any const fields, because after spawning
the task might run and be destroyed before the parent progresses any further.

NOTE: A similar method, task::recycle_as_continuation()recycles a task as a

continuation instead of a child.

10.4.5 Empty Tasks

You might need a task that does not do anything but wait for its children to complete.
The header task.h defines class empty_task for this purpose. Its definition is as

follows:
// Task that does nothing. Useful for synchronization.
class empty_task: public task {
 /*override*/ task* execute() {
 return NULL;
 }
};

A good example of empty_task in action is provided in tbb/parallel_for.h, in
method start_for::execute(). The code there uses continuation-passing style. It
creates two child tasks, and uses an empty_task as the continuation when the child
tasks complete. The top level routine parallel_for (in tbb/parallel_for.h) waits

on the root

10.4.6 Lazy Copying

It can be useful to copy a data structure only when another thread steals a task. For
example, tbb/parallel_reduce.h uses a method, start_reduce::execute(), that

forks the “loop body” object you provided only when the thread runs a stolen task.
The forking permits the thief to run locally afterwards until it is done and joins its

Intel® Threading Building Blocks

64 319872-001US

result to the original thread’s result. Because the fork/join incur some overhead, they
are only worth doing when stealing occurs.

Method task::is_stolen_task provides a way to detect stealing. Call it on a running
task, typically by the task itself. Informally, it returns true if the task is stolen.
Formally, it returns true if the thread that owns the task is not the thread that owns
the thread’s dependent. For the usual fork-join task patterns, the informal and formal
definitions have the same effect, because usually when a task is created, it is created
by the thread that owns its dependent. For example, the dependent is typically the
parent or a continuation created by the parent.

The exception to the rule can occur if method allocate_additional_child_of(t) is

used. This method can be used by a task to create a child of another task t, even if t
already has running children. This is in contrast to method allocate_child, to which

a call must finish before any sibling starts running. The two methods are distinct
because you pay some overhead for the flexibility of
allocate_additional_child_of. For example, in tbb/parallel_do.h, method
allocate_additional_child_of is used by running child tasks to create new siblings.
In that case, task::is_stolen_task will report true unless the child is stolen by the
thread that is running t. The name
task::might_be_running_on_different_thread_than_dependent() would be more

accurate but tedious.

10.5 Task Scheduler Summary
The task scheduler works most efficiently for fork-join parallelism with lots of forks, so
that the task-stealing can cause sufficient breadth-first behavior to occupy threads,
which then conduct themselves in a depth-first manner until they need to steal more
work.

The task scheduler is not the simplest possible scheduler because it is designed for
speed. If you need to use it directly, it may be best to hide it behind a higher-level
interface, as the templates parallel_for, parallel_reduce, etc. do. Some of the
details to remember are:

• Always use new(allocation_method) T to allocate a task, where allocation_method
is one of the allocation methods of class task. Do not create local or file-scope
instances of a task.

• All siblings should be allocated before any start running, unless you are using
allocate_additional_child_of.

• Exploit continuation passing, scheduler bypass, and task recycling to squeeze out
maximum performance.

• If a task completes, and was not marked for re-execution, it is automatically
destroyed. Also, its dependent’s reference count is decremented, and if it hits
zero, the dependent is automatically spawned.

The Task Scheduler

Tutorial 65

Appendix A Costs of Time Slicing
Time slicing enables there to be more logical threads than physical threads. Each
logical thread is serviced for a time slice by a physical thread. If a thread runs longer
than a time slice, as most do, it relinquishes the physical thread until it gets another
turn. This appendix details the costs incurred by time slicing.

The most obvious is the time for context switching between logical threads. Each
context switch requires that the processor save all its registers for the previous logical
thread that it was executing, and load its registers for the next logical thread that it
runs.

A more subtle cost is cache cooling. Processors keep recently accessed data in cache
memory, which is very fast, but also relatively small compared to main memory.
When the processor runs out of cache memory, it has to evict items from cache and
put them back into main memory. Typically, it chooses the least recently used items
in the cache. (The reality of set-associative caches is a bit more complicated, but this
is not a cache primer.) When a logical thread gets its time slice, as it references a
piece of data for the first time, this data will be pulled into cache, taking hundreds of
cycles. If is referenced frequently enough to not be evicted, each subsequent
reference will find it in cache, and only take a few cycles. Such data is called “hot in
cache”. Time slicing undoes this, because if a thread A finishes its time slice, and
subsequently thread B runs on the same physical thread, B will tend to evict data that
was hot in cache for A, unless both threads need the data. When thread A gets its
next time slice, it will need to reload evicted data, at the cost of hundreds of cycles for
each cache miss. Or worse yet, the next time slice for thread A may be on a different
physical thread that has a different cache altogether.

Another cost is lock preemption. This happens if a thread acquires a lock on a
resource, and its time slice runs out before it releases the lock. No matter how short a
time the thread intended to hold the lock, it is now going to hold it for at least as long
as it takes for its next turn at a time slice to come up. Any other threads waiting on
the lock either pointlessly busy-wait, or lose the rest of their time slice. The effect is
called convoying, because the threads end up “bumper to bumper” waiting for the
preempted thread in front to resume driving.

Intel® Threading Building Blocks

66 319872-001US

Appendix B Mixing With Other Threading
Packages

Intel® Threading Building Blocks can be mixed with other threading packages. No
special effort is required to use the containers, synchronization primitives, or atomic
operations with other threading packages. However, using the parallel algorithms or
task scheduler requires extra effort, because each thread that uses one of those
features must construct its own task_scheduler_init object that is live while the
feature is in use.

Here is an example that parallelizes an outer loop with OpenMP and an inner loop with
Intel® Threading Building Blocks.
int M, N;

struct InnerBody {
 ...
};

void TBB_NestedInOpenMP() {
#pragma omp parallel
 {
 task_scheduler_init init;
#pragma omp for
 for(int i=0; i<M; ++j) {
 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
 }
 }
}

The details of InnerBody are omitted for brevity. What is important is the placement
of the task_scheduler_init declaration. The #pragma omp parallel causes the

OpenMP to create a team of threads, and each thread executes the block statement
associated with the pragma. Each thread must construct its own
task_scheduler_init inside the block. The #pragma omp for indicates that the

compiler should use the previously created thread team to execute the loop in
parallel. Because this pragma does not create threads, it has no corresponding
task_scheduler_init declaration.

Here is the same example written using POSIX* Threads.
int M, N;

struct InnerBody {
 ...
};

The Task Scheduler

Tutorial 67

void* OuterLoopIteration(void* args) {
 task_scheduler_init init;
 int i = (int)args;
 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
}

void TBB_NestedInPThreads() {
 std::vector<pthread_t> id(M);
 // Create thread for each outer loop iteration
 for(int i=0; i<M; ++i)
 pthread_create(&id[i], NULL, OuterLoopIteration, NULL);
 // Wait for outer loop threads to finish
 for(int i=0; i<M; ++i)
 pthread_join(&id[i], NULL);
}

Intel® Threading Building Blocks

68 319872-001US

References
[1] “Memory Consistency & .NET”, Arch D. Robison, Dr. Dobb’s

Journal, April 2003.

[2] A Formal Specification of Intel® Itanium® Processor Family
Memory Ordering, Intel Corporation, October 2002.

	 Disclaimer and Legal Information
	Revision History
	 Contents
	1 Introduction
	1.1 Document Structure
	1.2 Benefits

	2 Package Contents
	2.1 Debug Versus Release Libraries
	2.2 Scalable Memory Allocator
	2.3 Windows* Systems
	2.3.1 Microsoft Visual Studio* Code Samples
	2.3.2 Integration Plug-In for Microsoft Visual Studio* Projects

	2.4 Linux* Systems
	2.5 Mac OS* X Systems

	3 Parallelizing Simple Loops
	3.1 Initializing and Terminating the Library
	3.2 parallel_for
	3.2.1 Automatic Grainsize
	3.2.2 Explicit Grainsize
	3.2.3 Bandwidth and Cache Affinity
	3.2.4 Partitioner Summary

	3.3 parallel_reduce
	3.3.1 Advanced Example

	3.4 Advanced Topic: Other Kinds of Iteration Spaces
	3.4.1 Code Samples

	4 Parallelizing Complex Loops
	4.1 Cook Until Done: parallel_do
	4.1.1 Code Sample

	4.2 Working on the Assembly Line: pipeline
	4.2.1 Throughput of pipeline
	4.2.2 Non-Linear Pipelines

	4.3 Summary of Loops

	5 Containers
	5.1 concurrent_hash_map
	5.1.1 More on HashCompare

	5.2 concurrent_vector
	5.2.1 Clearing is Not Concurrency Safe

	5.3 concurrent_queue
	5.3.1 Iterating Over a concurrent_queue for Debugging
	5.3.2 When Not to Use Queues

	5.4 Summary of Containers

	6 Mutual Exclusion
	6.1.1 Mutex Flavors
	6.1.2 Reader Writer Mutexes
	6.1.3 Upgrade/Downgrade
	6.1.4 Lock Pathologies
	6.1.4.1 Deadlock
	6.1.4.2 Convoying

	7 Atomic Operations
	7.1.1 Why atomic<T> Has No Constructors
	7.1.2 Memory Consistency

	8 Timing
	9 Memory Allocation
	9.1 Which Dynamic Libraries to Use

	10 The Task Scheduler
	10.1 Task-Based Programming
	10.1.1 When Task-Based Programming Is Inappropriate

	10.2 Simple Example: Fibonacci Numbers
	10.3 How Task Scheduling Works
	10.4 Useful Task Techniques
	10.4.1 Recursive Chain Reaction
	10.4.2 Continuation Passing
	10.4.3 Scheduler Bypass
	10.4.4 Recycling
	10.4.5 Empty Tasks
	10.4.6 Lazy Copying

	10.5 Task Scheduler Summary

	Appendix A Costs of Time Slicing
	Appendix B Mixing With Other Threading Packages

