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Abstract
An orientable sequence of order n over an alphabet {0, 1, . . . , k−1} is a cyclic sequence such that each length-n substring appears at
most once in either direction. When k = 2, efficient algorithms are known to construct binary orientable sequences, with asymptotically
optimal length, by applying the classic cycle-joining technique. The key to the construction is the definition of a parent rule to construct a
cycle-joining tree of asymmetric bracelets. Unfortunately, the parent rule does not generalize to larger alphabets. Furthermore, unlike the
binary case, a cycle-joining tree does not immediately lead to a simple successor-rule when k ≥ 3 unless the tree has certain properties.
In this paper, we derive a parent rule to derive a cycle-joining tree of k-ary asymmetric bracelets. This leads to a successor rule that
constructs asymptotically optimal k-ary orientable sequences in O(n) time per symbol using O(n) space. In the special case when
n = 2, we provide a simple construction of k-ary orientable sequences of maximal length.

1 Introduction

Given a set S of k-ary strings of length n, a universal cycle is a cyclic sequence of length |S| that contains each string
in S as a substring exactly once. When S consists of all k-ary strings of length n, universal cycles are known as
de Bruijn sequences. Universal cycles have been studied for many fundamental objects including permutations, subsets,
and graphs [3, 6]. Universal cycles do not exist directly for permutations; however, efficient constructions exist using
a shorthand representation [21, 34]. Universal cycles for n-subsets of a k-set must satisfy the following necessary
condition: k divides

(
k
n

)
, or equivalently n divides

(
k−1
n−1

)
. For, if 3-subsets of a 6-set, S will contain exactly one of

{123, 132, 213, 231, 312, 321}. Universal cycles for subsets, are only known to exist for small values of n [23, 24, 33, 39].
This gives rise to studying subset packings, that is, cyclic sequences that contains each n-subset at most once as a
substring [8, 10, 39].

In this paper we are interested in a set S that does not contain both a string and its reversal. Similar to the problem of
subset packings, determining a maximal set S that admits a universal cycle is extremely challenging. A universal cycle
for such a k-ary set of length-n strings is known as an orientable sequence of order n (an OSk(n)). By definition, an
orientable sequence does not contain a length-n substring that is a palindrome.
Orientable sequences were introduced for binary strings by Dai, Martin,
Robshaw, and Wild [9] with an application related to robotic position
sensing. In particular, consider an autonomous robot with limited sen-
sors. To determine its location on a cyclic track labeled with coloured
squares, the robot scans a window of n squares directly beneath it (see
the graphic on the right). For the position and orientation to be uniquely determined, the track is designed with the property
that each length n window can appear at most once in either direction.

Example 1 Consider the sequence S = 012013023123 over the alphabet {0, 1, 2, 3}. In the forward direction,
including the wraparound, S contains

012, 120, 201, 013, 130, 302, 023, 231, 312, 123, 230, 301
as substrings; in the reverse direction S contains

321, 213, 132, 320, 203, 031, 310, 102, 021, 210, 103, 032.
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Since each substring is unique, S is an OS4(3) with length 12. For biological applications, {0, 1, 2, 3} represents the
four nucleotide bases {A, C, G, T} of a DNA strand – see the discussion at the end of the section.

Recently, Mitchell and Wild developed a recursive algorithm to construct long orientable sequences for a binary
alphabet [30]. Subsequently, efficient constructions of OS2(n)s with asymptotically optimal length have been developed
based on cycle-joining [18], and a previously known existence proof [9]. However, there is no known construction of long
orientable sequences for k > 2. In this paper we demonstrate that the binary cycle-joining approach does not naturally
generalize to larger alphabets. In particular, there are special cases for k = 3 that arise for n ≥ 12 (see Example 6
in Section 5), and there are additional challenges in deriving successor rules from cycle-joining trees for k ≥ 3 (see
Section 2.2). However, by deriving a new parent rule that satisfies the Chain Property (see Section 2.2), we are able to
obtain the first efficient construction of long OSk(n)s.

Main result: For k ≥ 3, we develop a successor rule to construct an OSk(n) of asymptotically optimal length in
O(n) time per symbol using O(n) space. For n = 2, we construct OSk(2)s of maximal length in O(1) time per
symbol.

Let Mk(n) denote the maximum length of an OSk(n). When k = 2, the maximum length of an orientable sequence is
known only for n ≤ 7 [9, 18]. For n = 2 and k ≥ 3, we demonstrate that Mk(2) = k⌊(k − 1)/2⌋ by a simple construction
(see Section 3). For n ≥ 3, exhaustive search demonstrates that M3(3) = 9, M4(3) = 20, and M3(4) = 30. Search also
reveals an OS5(3) of length 50 which attains the upper bound stated in [2], and thus M5(3) = 50. Orientable sequences
that admit these maximal lengths are given below:

n = 3, k = 3: 001120122 (9),
n = 3, k = 4: 00112012230130231233 (20),
n = 3, k = 5: 00112003102210320331140142042132143043144223342344 (50),
n = 4, k = 3: 000102001201112022101121022212 (30).

Since the number of palindromes of length n is k⌊(n+1)/2⌋, a trivial upper bound on Mk(n) is (kn − k⌊(n+1)/2⌋)/2. A
deeper analysis on upper bounds is given in [2].

Recall the problem of determining a robot’s position and orientation on a track. Suppose now that we allow the
track to be non-cyclic. The corresponding sequence that allows one to determine orientation and position is called an
acyclic orientable sequence. One can construct an acyclic OSk(n) from a cyclic OSk(n) by taking the cyclic OSk(n)
and appending its prefix of length n−1 to the end. See the paper by Burns and Mitchell [5] for more on binary acyclic
orientable sequences, which they call aperiodic 2-orientable window sequences. Gabric and Sawada provide some long
acyclic orientable sequences in [17]. Rampersad and Shallit [32] showed that for every alphabet size k ≥ 2 there is an
infinite sequence such that for every sufficiently long substring, the reversal of the substring does not appear in the sequence.
Fleischer and Shallit [15] later reproved the results of the previous paper using theorem-proving software. See [7, 29] for
more work on sequences avoiding reversals of substrings.

Families of strings related to orientable sequences also appear in DNA computing. Two single strands of DNA can
bind to each other if they are “reverse complements” of each other, where A is the complement of T and C of G. The
binding of DNA strands allows for the creation of secondary structures, which are useful in certain DNA computing
techniques [31]. For example, a stem-loop, also known as a hairpin, is a DNA secondary structure that has applications in
DNA computing [11, 28, 41]. Roughly speaking, a string of symbols u contains a hairpin if it has substring v and θ(v),
where θ is an antimorphic involution. Hairpin-free strings, that is, strings that do not contain a hairpin of sufficient length,
have been studied with the motivation of creating a large collection of DNA molecules that do not bind to themselves
in undesirable ways [27]. In the case that θ is the mirror involution (i.e., reversal), hairpin-free strings are essentially
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orientable sequences without the restriction that every substring of a specified length occurs at most once. Thus, every
orientable sequence is a hairpin-free sequence. See [26, 40] for more on applications of long hairpin-free sequences.

Outline. In Section 2, we provide background definitions and notation, including a review of the cycle-joining technique,
and k-ary successor rules. In Section 3, we present a simple construction for OSk(2)s and demonstrate they are of
maximal length. In Section 4, we define k-ary symmetric/asymmetric necklaces and bracelets, and provide some useful
properties of these objects. In Section 5, we provide a parent rule for constructing a cycle-joining tree composed of
asymmetric bracelets. This leads to an O(n) time per symbol successor-rule construction of OSk(n)s that we demonstrate
has asymptotically optimal length in Section 6. An implementation of our construction is available for download at
http://debruijnsequence.org/db/orientable.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , k−1} be an alphabet of size k ≥ 2. Let Σn denote the set of all length-n strings over Σ. Let
α = a1a2 · · · an ∈ Σn and β = b1b2 · · · bm ∈ Σm for some m, n ≥ 0, Throughout this paper, we use lexicographic order
when comparing two strings. More specifically, α < β if α is a prefix of β or if ai < bi for the smallest i such that ai ̸= bi.
Let αR denote the reversal anan−1 · · · a1 of α; α is a palindrome if α = αR. For j ≥ 1, let αj denote j copies of α

concatenated together. If α = γj for some non-empty string γ and some j > 1, then α is said to be periodic; otherwise, α

is said to be aperiodic (or primitive). Let ap(α) denote the shortest string γ such that α = γt for some positive integer t;
we say γ is the aperiodic prefix of α.

A necklace class is an equivalence class of strings under rotation. Let [α] denote the set of strings in α’s necklace
class. We say α is a necklace if it is the lexicographically smallest string in [α]. Let α̃ denote the necklace in [α]. For
example, if α = 0201, then [α] = {0201, 2010, 0102, 1020} and α̃ = 0102. Let Nk(n) denote the set of k-ary necklaces
of length n. A bracelet class is an equivalence class of strings under rotation and reversal. We say α is a bracelet if it is the
lexicographically smallest string in [α] ∪ [αR]. A bracelet is always a necklace, but a necklace need not be a bracelet.

Given S ⊆ Σn, a universal cycle U for S is a cyclic sequence of length |S| that contains each string in S as a substring
(exactly once). An orientable sequence is a universal cycle where if α ∈ S, then αR /∈ S. If S = Σn then U is known as a
de Bruijn sequence. Given a universal cycle U for a set S ⊆ Σn, a successor rule for U is a function f : S → Σ such that
f(α) is the symbol following α in U .

2.1 Cycle-joining trees

In this section we review how two universal cycles can be joined to obtain a larger universal cycle. Cycle joining is perhaps
the most fundamental technique applied to construct universal cycles; it has graph-theoretic underpinnings related to
Hierholzer’s algorithm for constructing Euler cycles [20]. For some applications, see [12, 13, 14, 16, 19, 22, 25, 36, 38].

Let x, y be distinct symbols in Σ. If α = xa2 · · · an and α̂ = ya2 · · · an, then α and α̂ are said to be conjugates of each
other, and (α, α̂) is called a conjugate pair. We say γ belongs to a conjugate pair (α, α̂) if either γ = α or γ = α̂. The
following well-known result (see for instance Lemma 3 in [37]) based on conjugate pairs is the crux of the cycle-joining
approach.

▶ Theorem 1. Let S1 and S2 be disjoint subsets of Σn such that α = xa2 · · · an ∈ S1 and α̂ = ya2 · · · an ∈ S2; (α, α̂)
is a conjugate pair. If U1 is a universal cycle for S1 with suffix α and U2 is a universal cycle for S2 with suffix α̂ then
U = U1U2 is a universal cycle for S1 ∪ S2.

Let Ui denote a universal cycle for Si ⊆ Σn. Two universal cycles U1 and U2 are said to be disjoint if S1 ∩ S2 = ∅.
Theorem 1 states that two disjoint universal cycles can be joined to form a single universal cycle if they each contain one
string of a conjugate pair as a substring. Note that necklaces correspond to disjoint cycles that partition the set Σn.

A cycle-joining tree T is an unordered tree where the nodes correspond to a disjoint set of universal cycles U1, U2, . . . , Ut;
an edge between Ui and Uj is defined by a conjugate pair (α, α̂) such that α ∈ Si and α̂ ∈ Sj . For our purposes, we
consider cycle-joining trees to be rooted.

http://debruijnsequence.org/db/orientable
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Example 2 Let n = 3 and k = 4. Consider necklace classes S1 = [021], S2 = [011], and S3 = [031]

210

110 310

with corresponding universal cycles U1 = 210, U2 = 110 and U3 = 310. The three cycles
can be joined via conjugate pairs (210, 110) and (210, 310) to form the cycle-joining tree
on the right. Joining U1 and U2 we obtain the larger cycle 210110; joining U3 to this cycle
we obtain the universal cycle 110210310 for (S1 ∪ S2) ∪ S3. If we join U1 and U3 first, we
obtain a different universal cycle 310210110.

Many universal cycle constructions have a corresponding cycle-joining tree that can be defined by a rather simple parent
rule. For example, when S = Σn and α = a1a2 · · · an ∈ Nk(n), the following are four of the simplest parent rules that
define how to construct cycle-joining trees with nodes corresponding to Nk(n) [19]:

firstSymbol(α) = the necklace of [(a1−1)a2 · · · an] with root (k−1)n,
lastSymbol(α) = the necklace of [a1a2 · · · an−1(an+1)] with root 0n,
firstNonMin(α) = 0i−1(ai−1)ai+1 · · · an with root 0n, and
lastNonMax(α) = a1 · · · aj−1(aj+1)(k−1)n−j with root (k−1)n,

where i denotes the index of the first non-zero in α and j denotes the index of the last non-(k−1) in α. Addition on the
symbols is modulo k. From the definition of a necklace, it is straightforward to see that if α is a (non-root) necklace, then
both 0i−1(ai−1)ai+1 · · · an and a1 · · · aj−1(aj+1)(k−1)n−j are also necklaces. Note that if a necklace α is periodic,
the corresponding universal cycle for α is its aperiodic prefix. However, for simplicity of understanding, we use the full
necklace to represent a node in our cycle-joining trees. For instance, when n = 3, we use 000 instead of 0. As an example,
Figure 1 illustrates the cycle-joining trees induced by the four parent rules above with nodes N3(3). Each node α and its
parent β are joined by a conjugate pair, where the highlighted bit in α is the first bit in one of the conjugates. When k > 3,
we apply the last three of the four parent rules to construct an OSk(n) with length that is asymptotically optimal. When
k = 3, we must introduce one additional function.

000

001

002

012

022

122

222

011

111

021

112

lastSymbol(α)

000

001

002

012

022

122

222

011

111 021

112

firstNonMin(α)

000

001

002

012

022

122

222

011

111021

112

lastNonMax(α)

000

001

002

012

022

122

222

011

111

112

021

firstSymbol(α)

Figure 1 Cycle-joining trees for N3(3) induced by four different parent rules.

2.2 Successor rules

In this section we outline how to derive a successor-rule from a cycle-joining tree T for an underlying set S. In the binary
case, each cycle-joining tree corresponds to a unique universal cycle; however, when k > 2, this is not necessarily the case.
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Uniqueness Property: The cycles in a cycle-joining tree T are joined such that no two conjugate pairs that have a string
in common, i.e., there are no two conjugate pairs of the form (xa2 · · · an, ya2 · · · an) and (xa2 · · · an, za2 · · · an).

The Uniqueness Property is always satisfied when k = 2, but is not necessarily the case for k > 2. For example, none
of the trees in Figure 1 satisfy the Uniqueness Property. If T has the Uniqueness Property, then a successor rule for the
corresponding unique universal cycle is given by f(α), where α = a1a2 · · · an:

f(α) =
{

y if α belongs to some conjugate pair (α, ya2 · · · an);
a1 otherwise.

When the Uniqueness Property is not satisfied, a universal cycle derived from a cycle-joining tree depends on the order that
the cycles are joined together, as illustrated in Example 2. See [35] for a deeper analysis on different universal cycles that
can be obtained from the same cycle-joining tree. Our challenge is to create a relatively simple successor rule that defines a
universal cycle derived from a cycle-joining tree T that does not satisfy the Uniqueness Property. Ultimately, we require
our cycle-joining tree to be defined with the following property:

Chain Property: If a node in a cycle-joining tree T has two children joined via conjugate pairs (xa2 · · · an, ya2 · · · an)
and (x′b2 · · · bn, y′b2 · · · bn), then a2 · · · an ̸= b2 · · · bn.

Let α1, α2, . . . , αm denote a maximal-length path of nodes in T such that for each 1 ≤ i < m, the node αi is the
parent of αi+1 and they are joined via a conjugate pair of the form (xiβ, xi+1β), where β is the same in each conjugate
pair. We call such a path a chain of length m. Any node with j children will belong to at least j chains. Given a chain let
NEXT(xiβ) = xi+1, where xm+1 = x1.

Example 3 The nodes α1 = 112, α2 = 011, and α3 = 111 in the first tree of Figure 1 form a chain with length
m = 3 joined by conjugate pairs (211,011) and (011,111). NEXT(211) = 0, NEXT(011) = 1, and NEXT(111) = 2.

If T is a cycle-joining tree with the Chain Property for an underlying set S, then the following function g is a successor
rule for a universal cycle of S (based on theory in [19]):

g(α) =
{

NEXT(α) if α belongs to some conjugate pair;
a1 otherwise.

When k = 2, f = g. As stated, this successor rule requires exponential space to store the conjugate pairs. In our application
(see Section 5.2), the corresponding successor rule will run in O(n) time per symbol and use O(n) space.

3 A maximal-length construction for OSk(2)s

In this section we consider the case when n = 2. There does not exist an OS1(2) or an OS2(2), so we assume k ≥ 3.
Since there are no substrings of the form xx in any OS2(2), each symbol in any OSk(2) can appear at most ⌊(k − 1)/2⌋
times. Thus, Mk(2) ≤ k⌊(k − 1)/2⌋. In fact, we show that this bound is tight via a simple construction that depends on
the parity of k.

For each pair of distinct symbols x and y, an OSk(2) can contain either xy or yx, but not both. If k is odd, our OSk(2)
will contain exactly one such substring for each pair of symbols. If k is even, we must remove k/2 such pairs to meet the
upper bound. In particular, we remove the pairs {0, 1}, {2, 3}, . . . , {k−2, k−1}. We outline our choices from each pair
of symbols, and illustrate OSk(2)s in Figure 2 for k = 7 and k = 8; it is straightforward to generalize the construction
depending on the parity of k, as follows.
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k odd. Let σ3 = 012. For k ≥ 5, let σk = s1s2 · · · s2k−3 where s1s3s5 · · · s2k−5 = 012 · · · (k−3) and
s2s4s6 · · · s2k−4s2k−3 = ((k−2)(k−1))(k−1)/2.

k even. Let σ4 = 0213. For k ≥ 6, let τk = t1t2 · · · t2k−4 where t1t3t5 · · · t2k−5 = 012 · · · (k−3) and
t2t4t6 · · · t2k−4 = ((k−2)(k−1))k/2−1.

Let Uk = σ3σ5 · · · σk for k odd, and let Uk = τ4τ6 · · · τk for k even.
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02 21

30

04

50

06

13

41

15

61

32

24
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35
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54

46 65

70 17 72 37 74 57 76

U7 = 012031423405162536456 U8 = 021304152435061726374657
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40
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62

34

53

36

45

64 56

Figure 2 Illustrating the construction of U7 and U8.

Example 4 The following illustrates Uk for 3 ≤ k ≤ 8:

U3 = 012
U5 = 012 0314234
U7 = 012 0314234 05162536456

U4 = 0213
U6 = 0213 04152435
U8 = 0213 04152435 061726374657

▶ Theorem 2. For k > 2, Uk is an OSk(2) with length k⌊(k − 1)/2⌋ that can be generated in O(1)-time per symbol.

Proof. We provide a high-level proof outline. Clearly U3 is an OS3(2) with length 3, and U4 is an OS4(2) with length
4. Suppose k ≥ 5 is odd. The sequences σ3, σ5, · · · , σk are disjoint OSk(2)s that are cycle-joined to obtain Uk. Simple
math shows Uk has length k⌊(k − 1)/2⌋. A similar analysis can be applied for even k. It is straightforward to generate Uk

in constant time per symbol. ◀

An immediate consequence of this theorem is Mk(2) = k⌊(k − 1)/2⌋.
Observe that when n is odd, Uk is a universal cycle for the 2-subsets of a k-set. Previously, such universal cycles

were claimed to exist in [6], with justification in [24]. No construction was previously provided. When n is even, Uk is a
maximal 2-subset packing of a k-set.

4 Symmetric and asymmetric necklaces and bracelets

In this section, we present properties for symmetric/asymmetric necklaces and bracelets that are necessary for our main
results in Section 5. A necklace α is symmetric if it belongs to the same necklace class as αR, i.e., both α and αR belong
to [α]. By this definition, a symmetric necklace is a bracelet. If a necklace or bracelet is not symmetric, it is said to be
asymmetric. Let Ak(n) denote the set of all k-ary asymmetric bracelets of length n. Table 1 lists all 70 necklaces in N4(4)
partitioned into asymmetric necklace pairs and symmetric necklaces. The asymmetric necklace pairs belong to the same
bracelet class, and the first string in each pair is an asymmetric bracelet. Thus, |A4(4)| = 15. In general, |Ak(n)| is equal
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Asymmetric necklace pairs Symmetric necklaces
0012 , 0021 0133 , 0331 0000 0102 0222 1113 1323
0013 , 0031 0213 , 0312 0001 0103 0232 1122 1333
0023 , 0032 0223 , 0322 0002 0111 0303 1133 2222
0112 , 0211 0233 , 0332 0003 0121 0313 1212 2223
0113 , 0311 1123 , 1132 0011 0131 0323 1213 2233
0122 , 0221 1223 , 1322 0022 0202 0333 1222 2323
0123 , 0321 1233 , 1332 0033 0203 1111 1232 2333
0132 , 0231 0101 0212 1112 1313 3333

Table 1 The 70 necklaces in N4(4) partitioned into 15 asymmetric necklace pairs and 40 symmetric necklaces. The first (highlighted)
necklace in each pair is an asymmetric bracelet in A4(4).

to the number of k-ary necklaces of length n minus the number of k-ary bracelets of length n. For more background on
asymmetric bracelets, see [1, 18].

Let α1, α2, . . . , αm denote the asymmetric bracelets in Ak(n). Let Sk(n) denote the set [α1] ∪ [α2] ∪ · · · ∪ [αm].

Important property: If α ∈ Sk(n), then αR /∈ Sk(n).

Let Lk(n) = |Sk(n)|. Our main result defines a cycle-joining tree with nodes Ak(n), producing an OSk(n) of length
Lk(n). In Section 6, we provide a formula for Lk(n) and demonstrate it to be an asymptotically optimal lower bound for
Mk(n) (the maximal length of an OSk(n)). The reminder of this section is devoted to properties of symmetric/asymmetric
necklaces and bracelets required to prove our main results in Section 5.

▶ Lemma 3 ([18]). A necklace α is symmetric if and only if there exists palindromes β1 and β2 such that α = β1β2.

▶ Lemma 4. Let α = a1a2 · · · an ̸= 0n be a bracelet, where i is the index of the first non-zero symbol. If ai > 1, then
firstNonMin(α) is a bracelet; moreover, if α ∈ Ak(n), then firstNonMin(α) ∈ Ak(n).

Proof. Suppose ai > 1. It is straightforward to apply the definition of a bracelet to verify that β = firstNonMin(α) =
0i−1(ai−1)ai+1 · · · an is a bracelet, given α is a bracelet. Let α ∈ Ak(n). Suppose β is symmetric. From Lemma 3,
β = β1β2 for palindromes β1 and β2. Clearly |β1| ≥ i−1. Since α is a bracelet ai ≤ an, and thus |β1| ≠ i−1. If |β1| = i,
then i = 1 which implies that α is symmetric; otherwise, since β1 has prefix 0i−1, it must have length at least 2i − 1. If
|β1| = 2i − 1, then α is symmetric; if |β1| > 2i − 1 then α is not a bracelet. Each case contradicts that α ∈ Ak(n). Thus,
β is an asymmetric bracelet. ◀

The following lemma follows by applying the definition of a bracelet.

▶ Lemma 5. If α ̸= (k−1)n is a bracelet, then lastNonMax(α) is a bracelet.

Note that lastSymbol(α) = lastNonMax(α) when an < k−1.

▶ Lemma 6. Let α = a1a2 · · · an ∈ Ak(n), where j is the index of the last non-(k−1) and ℓ is the index of the second
last non-(k−1). If (i) an < k−1 or (ii) aj < k−2 or (iii) a1 · · · aℓ ̸= (a1 · · · aℓ)R, then lastNonMax(α) ∈ Ak(n);
otherwise, lastNonMax(α) is a symmetric bracelet.

Proof. From Lemma 5, β = lastNonMax(α) is a bracelet. If β is symmetric, then from Lemma 3 it can be written as
β1β2 for some palindromes β1 and β2. Since a1 < an because α ∈ Ak(n), we clearly have β1 and β2 are non-empty.

(i) Let an < k−1. Suppose β is symmetric. Let γ be β2 with its last symbol decremented; α = β1γ. Then (γβ1)R ≤ α,
contradicting that α ∈ Ak(n).
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(ii) Let aj < k−2. Suppose β is symmetric. If |β1| > j, then it must start and end with (k−1) and include aj . This
contradicts that β is a bracelet. If |β1| = j, then since β1 is a palindrome, the length j prefix of α is greater than
its reversal, contradicting that α is a bracelet. Thus β2 has suffix (aj+1)aj+1 · · · an. If |β2| = 2(n − j) + 1, then
the suffix of α with the same length is also a palindrome, which implies α is symmetric, contradiction. Otherwise,
|β2| > 2(n−j)+1. Let γ denote the suffix of α of length |β2|. It must be that γ > γR, which implies that (γβ1)R < α,
contradicting that α is a bracelet. Thus, β ∈ Ak(n).

(iii) Let a1 · · · aℓ ̸= (a1 · · · aℓ)R. By the definition of a bracelet, a1 · · · aℓ < (a1 · · · aℓ)R. If aj < k−2, then β is in Ak(n)
by the previous case. Consider aj = k−2. Suppose β = a1 · · · aℓ(k−1)n−ℓ is symmetric. We must have |β1| < ℓ.
Since aℓ < (k−1), |β2| ≥ 2(n − ℓ) + 1 . But this implies that α is not a bracelet, contradiction. Thus, β ∈ Ak(n).

Finally, if an = k−1, aj = k−2, and a1 · · · aℓ = (a1 · · · aℓ)R, then lastNonMax(α) = a1 · · · aℓ(k−1)n−ℓ, which is
symmetric by Lemma 3. ◀

▶ Lemma 7. If α ∈ Ak(n) such that lastNonMax(α) /∈ Ak(n), lastSymbol(α) /∈ Ak(n) and firstNonMin(α) ∈
Ak(n), then lastNonMax(firstNonMin(α)) ∈ Ak(n) or lastSymbol(firstNonMin(α)) ∈ Ak(n).

Proof. Consider α = a1a2 · · · an ∈ Ak(n) where i is the index of the first non-zero, j is the index of the last non-(k−1),
and ℓ is the index of the second-last non-(k−1). Since lastNonMax(α) /∈ Ak(n), from Lemma 6, aj = k−2, an = k−1,
and a1 · · · aℓ = (a1 · · · aℓ)R. Since α ∈ Ak(n), α = a1 · · · aℓ(k−1)j−ℓ−1(k−2)(k−1)n−j where j − ℓ − 1 < n − j.
This implies that lastSymbol(α) = 0a1 · · · an−1 has prefix 0i; it is a necklace since α has no 0i substring. Since
lastSymbol(α) /∈ Ak(n), ai · · · an−1 ≥ (ai · · · an−1)R, which means that ai ≥ an−1 ≥ k−2. Let β = firstNonMin(α).
If i ≥ n − 1, then α = 0n−2(k−2)(k−1) and lastNonMax(β) = α. Thus, assume i < n − 1 and consider two cases.

Suppose i > ℓ. Then i = ℓ + 1 and α = 0ℓ(k−1)j−i(k−2)(k−1)n−j . Since j − i < n − j and ai · · · an−1 ≥
(ai · · · an−1)R, j − i = n − j − 1 > 1. Thus, lastSymbol(β) = 0ℓ(k−2)(k−1)n−i which is in Ak(n).
Suppose i ≤ ℓ. If the first ℓ symbols of β are not a palindrome, then by Lemma 6, lastNonMax(β) ∈ Ak(n).
Otherwise, ℓ is odd, i = (ℓ + 1)/2, and α has prefix 0i−1ai0i−1. If ai = k−2, since ai · · · an−1 ≥ (ai · · · an−1)R, we
have an−1 = k−2, α = 0i−1(k−2)0i−1(k−2)(k−1), and lastSymbol(β) = 0i(k−3)0i−1(k−2) which is in Ak(n).
Otherwise, ai = k−1 and an−1 = k−1 which means i > 1, j < n − 1 and an−2 ≥ k−2. But this contradicts that
ai · · · an−1 ≥ (ai · · · an−1)R.

◀

5 A cycle-joining construction for orientable sequences

In this section we provide a parent rule to create a cycle-joining tree with nodes Ak(n). We then apply the tree to derive an
O(n)-time successor rule for a corresponding universal cycle, which is an OSk(n) of length Lk(n).

5.1 A simple parent rule

The parent rule for the binary case defined in [18] uses 0n−41011 as the root, and the parent of each non-root node α ∈
A2(n) is the first string in the list ⟨firstNonMin(α), lastSymbol(α), lastNonMax(α)⟩ that is also in A2(n). However,
there are several issues when generalizing to a larger alphabet. In particular, the rule is not well-defined for k = 3, and
the corresponding cycle-joining tree does not have the Chain Property. We will demonstrate each of these short-comings
before deriving a new parent rule for alphabets of arbitrary size.

Assume n, k ≥ 3. Let rn,k = 0n−2(k−2)(k−1) denote the root of our upcoming cycle-joining tree. The following
example is for this specific root; however, similar examples exist for any arbitrary root.
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Example 5 Consider any parent rule with root rn,k where the the parent of α ∈ Ak(n) is the first string in a
list starting with ⟨firstNonMin(α), lastSymbol(α), . . .⟩ that is also in Ak(n). Let α = 012202 and β = 010122.
Then the parent of α is lastSymbol(α) = 000122 and the parent of β is firstNonMin(β) = 000122; α is joined via
conjugate pair (201220, 001220) and β is joined via conjugate pair (101220, 001220). The two conjugate pairs share
a string, and thus the corresponding cycle-joining tree does not have the Chain Property.

The next example, and following lemma, demonstrate that the four functions firstSymbol, firstNonMin, lastSymbol,
and lastNonMax alone are not sufficient to define a parent rule with root rn,k when k = 3.

Example 6 Consider α = 001022010012 which is in A3(12). No matter how we change the first, last, first
non-zero, or last non-(k−1) symbol in α, the resulting string is not in A3(12). In particular:

firstSymbol(α) = 001220102201 is not a bracelet,
lastSymbol(α) = 000102201001 is not a bracelet,
firstNonMin(α) = 0000022010012 is not a bracelet, and
lastNonMax(α) = 001022010022 is symmetric.

Such strings are uncommon. There are only 82 such strings in A3(20) and they all have suffix 0012.

▶ Lemma 8. Let α = 00102(n−10)010012 for n ≥ 12 and k = 3. Then α is in Ak(n) and each of firstSymbol(α),
lastSymbol(α), firstNonMin(α), and lastNonMax(α) is not in Ak(n).

Proof. It is straightforward to observe that α is a bracelet by definition and is asymmetric by Lemma 3. Applying
the definitions, firstSymbol(α) = 001220102(n−10)01, lastSymbol(α) = 000102(n−10)01001, and firstNonMin(α) =
000002(n−10)010012 are all not bracelets, and lastNonMax(α) = 00102(n−10)010022 is symmetric. ◀

Lemma 8, demonstrates that for k = 3, no parent rule exists for A3(n) that applies only a combination of the four rules
from Section 2.1. Thus, we define an additional function in order to define our parent rule for A3(n). Let ℓ denotes the
second last symbol in α that is not (k−1), and define

secondLastNonMax(α) = a1 · · · aℓ−1(aℓ+1)aℓ+1 · · · an.

This function is well-defined, since each α ∈ Ak(n) must contain at least two symbols that are not k−1. Recall Example 6,
where α = 001022010012. Observe that secondLastNonMax(α) = 001022010112, which is in A3(12).

Parent rule for cycle-joining Ak(n) with root rn,k. If α = a1a2 · · · an ∈ Ak(n) \ {rn,k}, then define par(α) to
be the first string that is an asymmetric bracelet in the list

⟨ lastNonMax(α), lastSymbol(α), firstNonMin(α), secondLastNonMax(α) ⟩.

In the upcoming Lemma 9, we demonstrate that par(α) is well-defined and interestingly, that secondLastNonMax(α) is
only necessary for k = 3. The upcoming Theorem 10 demonstrates that the above parent rule induces a cycle-joining tree,
which we denote by Tk(n). Moreover, we demonstrate Tk(n) has the Chain Property in Theorem 12. In proving these
results, we do not consider the case when n = 3 and k = 3, since A3(3) = {012}. Figure 3 illustrates T3(6).

▶ Lemma 9. Let α = a1a2 · · · an ∈ Ak(n) \ {rn,k} for some n ≥ 3, k ≥ 4 or n ≥ 4, k = 3 such that
lastNonMax(α) and lastSymbol(α) are not in Ak(n). If k ≥ 4, then firstNonMin(α) ∈ Ak(n). Furthermore, if
k = 3 and firstNonMin(α) /∈ A3(n), then α = 0γ012 where γ is a palindrome, and secondLastNonMax(α) ∈ A3(n).



10 Orientable sequences

000012

000112

000122

001012

001202

011202 011012 002012001011

012202

010122

001122

012012

002122001112

010112

000102

001222

001022

011112

001102

001121011222

001212012222

021122

011122

012212

011212 021222011221

012122

112122

012112

011121

002022001021012022

Figure 3 The cycle-joining tree T3(6). Each node differs from its parent (cyclically) at the highlighted symbol. The symbols
highlighted in blue indicate that par(α) = lastNonMax(α); the symbols highlighted in red indicate that par(α) = lastSymbol(α);
the symbols highlighted in bold black indicate that par(α) = firstNonMin(α). There are no nodes in this tree such that par(α) =
secondLastNonMax(α); the first instance of such a case arises when n = 12.

Proof. Consider α where i is the index of the first non-zero, i′ is the index of the second non-zero, j is the index of
the last non-(k−1), and ℓ is the index of the second-last non-(k−1). Since lastNonMax(α) /∈ Ak(n), from Lemma 6,
aj = k−2, an = k−1, and a1 · · · aℓ = (a1 · · · aℓ)R. Thus, since α ∈ Ak(n), α = a1 · · · aℓ(k−1)j−ℓ−1(k−2)(k−1)n−j

where j − ℓ − 1 < n − j. Thus, if j = n − 1, then ℓ = n − 2. This implies that lastSymbol(α) = 0a1 · · · an−1 with
prefix 0i, which is a necklace since α has no 0i substring. Since lastSymbol(α) /∈ Ak(n), ai · · · an−1 ≥ (ai · · · an−1)R,
which means that ai ≥ an−1 ≥ k−2. If k ≥ 4, then ai > 1, and thus by Lemma 4 firstNonMin(α) ∈ Ak(n). If k = 3,
suppose firstNonMin(α) /∈ Ak(n). Then by Lemma 4, ai = 1, and ai′ · · · an ≥ (ai′ · · · an)R. Since 1 = ai ≥ an−1,
j = n − 1 and an−1 = (k−2) = 1. If i = 1 then α does not contain any 0s, and thus i′ = 2. Thus a2 = an = 2. The
only bracelet that both starts and ends with 12 is of the form (12)s which is asymmetric, contradicting that α ∈ Ak(n).
Thus i > 1 and a1 = aℓ = 0. Recall j = n − 1 which implied ℓ = n − 2. Thus, α = 0γ012 where γ is a palindrome.
Let β = secondLastNonMax(α); it has suffix 112. Observe β is a bracelet by applying the definition. Suppose β is
symmetric. By Lemma 3, β = β1β2 where β1 and β2 are both palindromes. Clearly, |β2| > 3. Note that α does not
have prefix 02, since α is a necklace containing 012 as a substring. If β2 = 2112, then α has prefix 02, contradiction. If
β2 = 21112, then α starts and ends with 012. Since α is a necklace, this implies that α = (012)t for some integer t, which
contradicts the form of β2. Thus |β| > 5. Let δ denote the suffix of α of length |β2|. Then α is not a bracelet since δ > δR

and thus αR < α. Contradiction. Thus, β is asymmetric and in A3(n). ◀

Given a node α in Tk(n), we say that γ is an ancestor of α if γ = α or γ = part(α) for some t ≥ 1.

▶ Theorem 10. For n, k ≥ 3, the parent rule par(α) for Ak(n) induces a cycle-joining tree Tk(n) with nodes Ak(n)
rooted at rn,k.

Proof. Let α = a1a2 · · · an ∈ A(n)\{rn,k}, where i is the index of the first non-zero, j is the index of the last non-(k−1),
and ℓ is the index of the second last non-(k−1) symbol in α. We demonstrate that rn,k is an ancestor of α. If i = n − 1
then par(k−1−an)+(k−2−an−1)(α) = rn,k = 0n−2(k−2)(k−1), where each application of par uses lastNonMax. For
i ≤ n − 2, we demonstrate that α has an ancestor β such that β < α, and thus must have an ancestor where i = n − 1.
If i = j, then α = 0i−1ai(k−1)n−i and park−1−ai(α) = 0i(k−2)(k−2)n−i−1 < α. Otherwise i < j. If k = 3, then
from Lemma 9, par(α) = secondLastNonMax(α) occurs only when α has suffix 012. Thus, repeated applications of
only lastNonMax and secondLastNonMax to α will never change any of the first i symbols. Since both operations
only increment symbols to at most (k−1), one of lastSymbol or firstNonMin must eventually be applied by repeated
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application of par starting with α. If firstNonMin is applied then it will decrement ai leading to an ancestor that is less
than α. Similarly, lastSymbol will change the last symbol from (k−1) to 0 leading to a node with prefix 0i which is also
less than α. ◀

By repeatedly joining cycles from Tk(n) via conjugate pairs, we can construct an OSk(n) (universal cycle) of length
Lk(n) using exponential time per symbol (to search for the conjugates) and exponential space. Table 2 illustrates the
lengths of the OSk(n)s constructed for small n, k. In Section 6, we present an exact formula for Lk(n).

▶ Theorem 11. There exists a universal cycle for Sk(n), which is an OSk(n), of length Lk(n).

n

k
3 4 5 6 7 8

3 3 12 30 60 105 168
4 12 60 180 420 840 1512
5 60 360 1260 3360 7560 15120
6 225 1608 6750 21150 54831 124320
7 819 7308 36890 135450 403389 1034264
8 2676 30300 187980 821940 2844408 8315496
9 8778 126516 962580 5003970 20101326 66961608

10 27180 511680 4836300 30097620 140902440 536135040
11 84579 2074644 24328150 181141950 988016337 4293525544
12 257205 8327808 121790490 1087414170 6917824935 34352668560
13 782964 33447960 609843780 6528527460 48439152216 274864275504
14 2361177 133931952 3050119450 39175228260 339088485771 2198957209792
15 7125423 536379792 15255860130 235079896440 2373737520945 17592060218208
16 21419076 2146175580 76284577980 1410507942900 16616280850008 140736884449896
17 64402800 8587706400 381453125040 8463244062000 116314913988000 1125898765992000
18 193357350 34353845664 1907295914700 50779660926240 814205346309138 9007193819084160
19 580569795 137428992036 9536650390670 304679295576630 5699444909171768 72057583837380680
20 1742213832 549729612720 47683422899280 1828077103852860 39896121850134479 576460703985782112

Table 2 Lower bounds Lk(n) on the maximal length of an OSk(n) for n ≤ 20 and k ≤ 8.

▶ Theorem 12. Tk(n) has the chain property.

Proof. By contradiction. Suppose Tk(n) has a node γ with two children α and β joined via conjugate pairs (xσ, yσ) and
(xσ, y′σ), respectively, for some string σ. Note that α, β, γ ∈ Ak(n). Since α ̸= β, the functions they apply to obtain
their parent γ cannot both increment a symbol. Without loss of generality, assume par(β) = firstNonMin(β) and par(α)
applies one of lastNonMax, lastSymbol, or secondLastNonMax. Let α = a1a2 · · · an and consider the three possible
cases for par(α).

par(α) = lastNonMax(α). Let j denote the index of the last non-(k−1) in α. Since γ = a1 · · · aj−1(aj+1)aj+1 · · · an,
β = a1 · · · aj−1(aj+2)aj+1 · · · an where aj+2 ≤ (k−1). However, from Lemma 4, either par(β) = lastNonMax(β),
or β is not in Ak(n). Contradiction.
par(α) = lastSymbol(α). As noted in the proof of Lemma 9, γ = 0a1 · · · an−1. Therefore β = 1a1 · · · an−1.
Since β ∈ Ak(n), 1a1 · · · an−2 < (1a1 · · · an−2)R; otherwise, β is not a bracelet or it is symmetric (see Lemma 3).
Since par(β) ̸= lastNonMax(β), from Lemma 6, an−1 = k−1. However, this means that lastSymbol(β) =
01a1 · · · an−2 ∈ Ak(n), which contradicts that par(β) = firstNonMin(β).
par(α) = secondLastNonMax(α). From Lemma 9, α has suffix 012 and thus γ = a1 · · · an−3112. Therefore
β = a1 · · · an−3212 with its first non-0 at index n − 2, which means β is symmetric. Contradiction.

◀
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5.2 An O(n)-time successor rule

In this section, we apply the generic successor rule g(α) defined in Section 2.2 to the cycle-joining tree Tk(n) that admits
the Chain Property. In particular, we determine whether or not α belongs to a conjugate pair, and if so, how to efficiently
compute the function NEXT(α).

Given α = a1a2 · · · an ∈ Sk(n), let i be the largest index such that ai > 0, let j be the smallest index greater than
1 such that aj < k−1, and let ℓ be the second smallest index greater than 1 such that aℓ < k−1. Recall that α̃ denotes
the necklace of [α]. If α belongs to some conjugate pair (possibly more than one) used to create Tk(n), then we consider
the possibilities for α depending on whether or not it belongs to a parent or child node joined by a given conjugate
pair. If α belongs to the child, let β = α̃. If par(β) = lastNonMax(β), then β = ajaj+1 · · · ana1(k−1)j−2. In other
words, a1 corresponds to the last non-(k−1) symbol in β. If α belongs to the parent, let γ denote the child node. If
par(γ) = lastNonMax(γ) = α̃, then it must be that γ = ajaj+1 · · · an(a1−1)(k−1)j−2. A similar analysis holds for the
other three cases of the parent rule par(α) giving rise to the definitions of the following eight strings:

β1 = ajaj+1 · · · ana1(k−1)j−2 γ1 = ajaj+1 · · · an(a1−1)(k−1)j−2 (lastNonMax)
β2 = a2a3 · · · ana1 γ2 = a2a3 · · · an(a1−1) (lastSymbol)
β3 = 0n−ia1a2 · · · ai γ3 = 0n−i(a1+1)a2 · · · ai (firstNonMin)
β4 = aℓaℓ+1 · · · ana1a2 · · · aℓ−1 γ4 = aℓaℓ+1 · · · an(a1−1)a2 · · · aℓ−1 (secondLastNonMax).

Assume addition on the symbols is modulo k; i.e., (k−1) + 1 = 0 and 0 − 1 = (k−1). The above strings can be tested
to determine whether or not α belongs to a conjugate pair. For instance if γ1 ∈ Ak(n) and par(γ1) = lastNonMax(γ1),
then α belongs to the conjugate pair (α, (a1−1)a2 · · · an). If α is found to belong to some conjugate pair, then the second
issue is to efficiently compute the function NEXT(α). If α belongs to some parent node of a conjugate pair, then NEXT(α)
is simply the incremented or decremented value of a1 defined by the parent rule for the corresponding γi. If α does not
belong to a parent in any conjugate pair, then it belongs to the last node in its corresponding chain which contains some βi;
to compute NEXT(α) we must determine the first node in the chain. Naïvely, we can repeatedly check the ancestors α until
we reach the top of the chain. In the worst case this will take O(kn) time. With a deeper analysis of the four cases, we can
remove the factor k. Let σ = ajaj+1 · · · an(k−2)(k−1)j−2.

Suppose β1 ∈ Ak(n) and par(β1) = lastNonMax(β1). Then Lemma 6 implies that σ ∈ Ak(n) and NEXT(α) is
either (k−2) or (k−1), depending on whether or not par(σ) = lastNonMax(σ).

Suppose β2 ∈ Ak(n) and par(β2) = lastSymbol(β2) = δ. Since lastNonMax(β2) /∈ Ak(n), from Lemma 6,
a1 = k−1. Furthermore, δ = 0a2 · · · an since from Lemma 6, an is either (k−2) or (k−1). It is easy to see that δ (if
not the root) is not joined to par(δ) via a conjugate pair containing 0a2 · · · an. Thus, NEXT(α) = 0.

Suppose β3 ∈ Ak(n) and par(β3) = firstNonMin(β3) = δ. Then Lemma 7 implies that par(δ) = lastNonMax(δ)
or par(δ) = lastSymbol(δ). Thus, δ is not joined to par(δ) via a conjugate pair containing the string (a1−1)a2 · · · an

because it implies par(δ) = α̃. Thus NEXT(α) = a1 − 1.

Suppose β4 ∈ Ak(n) and par(β4) = secondLastNonMax(β4) = δ. Then k = 3 and by Lemma 9, β4 starts with 0
and has suffix 012. This implies δ starts with 0 and has suffix 112. By Lemma 6, lastNonMax(δ) ∈ A3(n) and hence
par(δ) = lastNonMax(δ). Thus, NEXT(α) = a1 + 1.

The above analysis gives rise to the following successor rule h(α) = g(α) based on Tk(n).

Successor-rule based on Tk(n) to construct an OSk(n) of length Lk(n) Apply the conditions top down:



13

h(α) =



a1 − 1 if γ1 ∈ Ak(n) and par(γ1) = lastNonMax(γ1);
a1 − 1 if γ2 ∈ Ak(n) and par(γ2) = lastSymbol(γ2);
a1 + 1 if γ3 ∈ Ak(n) and par(γ3) = firstNonMin(γ3);
a1 − 1 if γ4 ∈ Ak(n) and par(γ4) = secondLastNonMax(γ4);

k−1 if β1 ∈ Ak(n) and par(β1) = lastNonMax(β1) and par(σ) = lastNonMax(σ);
k−2 if β1 ∈ Ak(n) and par(β1) = lastNonMax(β1);
0 if β2 ∈ Ak(n) and par(β2) = lastSymbol(β2);
a1 − 1 if β3 ∈ Ak(n) and par(β3) = firstNonMin(β3);
a1 + 1 if β4 ∈ Ak(n) and par(β4) = secondLastNonMax(β4);

a1 otherwise.

▶ Theorem 13. For n, k ≥ 3, h(α) is a successor rule for an OSk(n) of length Lk(n) that runs in O(n) time and uses
O(n) space.

Proof. Let α = a1a2 · · · an ∈ Sk(n). Our previous analysis demonstrates that h(α) = g(α) for the cycle joining tree
Tk(n). Determining whether or not a string is a symmetric/asymmetric necklace or bracelet can be computed in O(n)
time and O(n) space [4, 18]. Thus, all of the membership tester and functions required in the definition of h(α) can be
computed in O(n) time using O(n) space. ◀

In the next section, we demonstrate that length of the OSk(n) generated by our successor rule h(α) is asymptotically
optimal.

6 Bounds on the maximal length of an OSk(n)

Recall that Lk(n) = |Sk(n)| and Mk(n) is the maximal length of an OSk(n). Our construction in Section 5 demonstrates
that Lk(n) ≤ Mk(n) or k ≥ 3. Dai et al. [9] provide the following lower bound L2(n) for M2(n), where µ is the Möbius
function:

L2(n) = 1
2

2n −
∑
d|n

µ(n/d)n

d
H2(d)

 , where H2(d) = 1
2

∑
i|d

i
(

2⌊ i+1
2 ⌋ + 2⌊ i

2 ⌋+1
)

.

Applying the same techniques, this formula can be generalized to Lk(n),

Lk(n) = 1
2

kn −
∑
d|n

µ(n/d)n

d
Hk(d)

 , where Hk(d) = 1
2

∑
i|d

i
(

k⌊ i+1
2 ⌋ + k⌊ i

2 ⌋+1
)

.

Exact values of Lk(n) for some small n, k are given in Table 2.

▶ Theorem 14. For n ≥ 3 and k ≥ 3, lim
n→∞

Mk(n) − Lk(n)
Lk(n) = 0.

Proof. Since µ(n/d) ≤ 1 and Hk(d) = 1
2

∑
i|d

i
(

k⌊ i+1
2 ⌋ + k⌊ i

2 ⌋+1
)

≤
d∑

i=1
ik⌊ i

2 ⌋+1 ≤ d2k⌊ d
2 ⌋+1, we have

∑
d|n

µ(n/d)n

d
Hk(d) ≤

n∑
d=1

n

d
d2k⌊ d

2 ⌋+1 ≤ n3k⌊ n
2 ⌋+1.
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Thus, Lk(n) = 1
2

kn −
∑
d|n

µ(n/d)n

d
Hk(d)

 ≥ 1
2

(
kn − n3k⌊ n

2 ⌋+1
)

. Recalling from Section 1 that Mk(n) ≤

1
2 (kn − k⌊(n+1)/2⌋), we have

Mk(n) − Lk(n)
Lk(n) ≤

1
2 (kn − k⌊(n+1)/2⌋) − 1

2
(
kn − n3k⌊ n

2 ⌋+1)
1
2

(
kn − n3k⌊ n

2 ⌋+1)
= n3k⌊ n

2 ⌋+1 − k⌊(n+1)/2⌋

kn − n3k⌊ n
2 ⌋+1 .

The result follows. ◀

▶ Corollary 15. The OSk(n) generated by the successor rule h(α) has asymptotically optimal length.
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