
Maximize the Rightmost Digit:
Gray Codes for Restricted Growth Strings

Yuan (Friedrich) Qiu1, Joe Sawada2, and Aaron Williams1[0000−0001−6816−4368]

1 Williams College, Williamstown MA 01267, USA
2 University of Guelph, Guelph ON N1G 2W1, Canada

yq1@williams.edu, jsawada@uoguelph.edu, aaron.williams@williams.edu

Abstract. The term restricted growth string typically refers to strings of
non-negative integers a1a2 · · · an (with a1 = 0) in which the next symbol
is at most one more than the maximum of the previous symbols: 0 ≤ ai ≤
max(a1 · · · ai−1)+ 1 for 2 ≤ i ≤ n. These strings are counted by the Bell
numbers Bn (Oeis A000110) and encode set partitions. Kerr showed
that the following algorithm generates a Gray code starting from 0n:
greedily maximize the rightmost possible digit that creates a new string.
For example, the result is 000, 001, 011, 012, 010 for n = 3; the last
transition causes the rightmost digit to decrease to 0 because that is the
largest value for that digit that creates a new string. Kerr’s algorithm
is a special case of more general results for e-restricted and st-restricted
strings by Mansour and Vajnovszki (and Nassar), although those authors
did not describe their results greedily. We show that the same greedy
max-right algorithm generates restricted growth strings parameterized
by (s, f, c): 0 ≤ a1 ≤ s−1 and 0 ≤ ai ≤ f(a1a2 · · · ai−1) + ci where
f is any function with f ≥ 0 and ci ≥ 1 are constants for each digit.
The resulting Gray codes change a single digit by −1 or −2 (cyclically).
Special cases include the binary reflected Gray code (s = 2, f = 0,
c = 1n) and the aforementioned results. We also consider restricted
growth string counted by the k-Catalan numbers and provide loopless
algorithms for generating these k-Catalan strings and Bell strings.

Keywords: restricted growth strings · Bell numbers · set partitions ·
Catalan numbers · k-Catalan numbers · Gray codes · greedy Gray codes.

1 Introduction

This paper efficiently orders and generates restricted growth strings. We first
describe two common types of restricted growth strings and their significance.

1.1 Bell and Catalan Strings

The term restricted growth string is often defined as a string of integers (called
digits) of the form a1a2 · · · an that satisfies the following conditions,

a1 = 0 and 0 ≤ ai ≤ max(a1a2 · · · ai−1) + 1 for 2 ≤ i ≤ n. (1)

In other words, the first digit is 0, and each subsequent digit is at least 0 and
at most one more than the maximum of the previous digits. For example, 0102
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is a restricted growth string of length n = 4, but 0103 is not. The number
of restricted growth strings of length n ≥ 0 is the nth Bell number Bn (Oeis
A000110): 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . . .

Since they are enumerated by the Bell numbers, we refer to this type of
restricted growth string as Bell strings. Bell strings provide a convenient repre-
sentation for the set partitions of [n] = {1, 2, . . . , n}, which are also Bell objects.
The standard bijection puts i into the athi part, as shown below for n ≤ 3 [36].

0 00 01 000 001 010 011 012
{1} {1,2} {1},{2} {1,2,3} {1,2},{3} {1,3},{2} {1},{2,3} {1},{2},{3}

Note that a small change in a set partition can lead to a large change in its Bell
string. For example, the set partition {1, 2}, {3}, {4}, . . . , {n} corresponds to the
Bell string 00123 · · · (n−2). If we move the 2 into its own subset to create the set
partition of singletons, then the corresponding Bell string becomes 0123 · · · (n−1)
(i.e., all digits change except the leading 0). On the other hand, changing a
single digit in a Bell string always corresponds to moving a single value in its
set partition. For this reason, when designing efficient orders of set partitions it
can be preferable to instead work with Bell strings.

Perhaps the most well-known ordering of set partitions was created by Knuth
and presented by Kaye [15]. Later work by Ruskey and Savage [29] adapted the
approach to Bell strings. A student project by Kerr [16] provided an alternate
ordering of Bell strings (see [26]) that uses a greedy approach [40]. This paper
generalizes Kerr’s result from Bell strings to other restricted growth strings.

Another type of restricted growth string is obtained by modifying (1),

a1 = 0 and 0 ≤ ai ≤ ai−1 + 1 for 2 ≤ i ≤ n. (2)

Here the bound on ai uses the previous digit ai−1 rather than all previous digits.
For example, 0102 is not valid since (2) is not satisfied for i = 4 as 2 > 0 + 1.
These Catalan strings of length n ≥ 0 are counted by the nth Catalan number Cn
(Oeis A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . . .

We let B(n) and C(n) be the sets of Bell and Catalan strings of length n,
respectively. Figure 3 has lists of B(n) and C(n) for n ≤ 5. In particular, the
reader can confirm that C(n) ⊆ B(n) and in particular B(4) \C(4) = {0102}.

Catalan strings provide an alternate representation for the large number of
other Catalan objects counted by Cn [37]. We will also provide a simple gener-
alization to k-Catalan strings Ck(n) in Section 2. There are several other types
of strings counted by Catalan and k-Catalan numbers (e.g., see [42, 41]).

1.2 Generalized Restricted Growth Strings

Although the term restricted growth string often refers specifically to Bell strings,
it is also used much more broadly in the literature. Here we consider a gener-
alization that allows for flexibility in the first digit, the function applied to the
previous digits, and the constant added to each digit. Formally, an (s, f, c)-
restricted growth string is a string of integers of the form a1a2 · · · an satisfying

0 ≤ a1 ≤ s− 1 and 0 ≤ ai ≤ f(a1a2 · · · ai−1) + ci for 2 ≤ i ≤ n (3)
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with s ≥ 1, f ≥ 0, and ci ≥ 1. In other words, the starting digit a1 has s possible
values 0 ≤ a1 ≤ s. Then each subsequent digit ai is a non-negative integer
limited by the sum of a function f that maps the previous digits a1a2 · · · ai−1

to a non-negative integer and a positive integer constant ci that depends only
on the index i. (For notational convenience, we write c = w and f = w when
ci = w and f(a1a2 · · · ai−1) = w for all 2 ≤ i ≤ n, respectively.)

Our generalization captures a wide variety of previously studied strings as
seen in Table 1. In particular, st-restricted strings are considered by Mansour
and Vajnovszki [20] and Sabri and Vajnovszki [30]. These strings start with
a1 = 0 and then bound each successive digit by a prefix statistic (e.g., number of
ascents): 0 ≤ ai ≤ st(a1a2 · · · ai−1) + 1. By carefully tailoring the statistic they
can also model our (s, f, c)-restricted growth strings. Both [19] and [20] use the
greedy max-right strategy discussed in Section 3, although they do not observe
this interpretation. For example, succ1,m and succ2,m in [19] mirror our g0 and
g1 expansions (see Section 4).

Type Start s Function f(a1a2 · · · ai−1) Constant ci References
(a) binary strings 2 0 1
(b) k-ary strings k 0 k − 1
(c) mixed-radix strings b1 0 bi − 1
(d) Bell strings 1 max(a1, a2, . . . , ai−1) 1
(e) RGS of order d 1 max(a1, a2, . . . , ai−1) d [19]
(f) e-restricted growth functions 1 max(a1, a2, . . . , ai−1) ei [19]
(g) restricted growth tails k max(a1, a2, . . . , ai−1, k) 1 [29]
(h) Catalan strings 1 ai−1 1
(i) k-Catalan strings 1 ai−1 k − 1
(j) ascent sequences 1 |{j | 2 ≤ j < i, aj−1 < aj}| 1 [3, 20]
(k) subexcedent sequences 1 i 0 [11, 20]
(l) st-restricted strings 1 st(a1a2 · · · ai−1) 1 [20, 30]

Table 1: Types of (s, f, c)-restricted growth strings. Note that names differ across
the literature (e.g., [1] uses (e) max-increment, (i) increment-i, (k)K-increment).

1.3 Goals and Results

We are interested in creating Gray codes for restricted growth strings. That
is, we want to list these sets so that consecutive strings differ in a small con-
stant amount. Furthermore, we want to generate these lists efficiently. In this
context, constant amortized time (CAT) and loopless algorithms generate suc-
cessive strings in amortized and worst-case O(1)-time, respectively.

An initial roadblock is that Bell strings do not have a ±1 Gray code when
n ≡ 4, 6, 7, 9 (mod 12) [10, 28]. In other words, it is not possible to order the
strings in an arbitrary B(n) so that consecutive strings differ in only one digit
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and only by ±1. However, Ehrlich [10] constructed a Gray code forB(n) in which
a single digit changes by ±1 when considered cyclically3 and provided a loopless
implementation. On the other hand, Ruskey [28] created a CAT algorithm that
allows ±1 and ±2 non-cyclically4. Li and Sawada provided a Gray code for B(n)
as part of their reflectable languages framework [18], and their special values
x = 0 and y = 1 arise naturally in our results.

Our goal is to present an approach to generating restricted growth string
Gray codes with the following benefits:

(a) The approach is very easy to describe.
(b) The approach generalizes previous results.
(c) The approach works for all (s, f, c)-restricted growth strings.
(d) The approach leads to loopless generation algorithms.

We reach our goals using an approach that can be summarized in one sentence:
start a list with 0n then repeatedly extend it to a new string by greed-
ily changing the rightmost digit to the maximum possible value. We
refer to this approach as the max-right algorithm, and we note that “possible”
depends on which type of string is being generated. As we will see, successive
strings in the resulting max-right orders differ in a single digit by −1 or −2
(cyclically). In particular, the change from 0 to the maximum possible value is
−1 taken cyclically, and 1 to the maximum value is −2 taken cyclically. More-
over, we provide loopless implementations and applications for B(n) and Ck(n).
We also obtain the binary reflected Gray code for n-bit binary strings using
s = 2, f = 0, and c = 1.

1.4 Outline

Section 2 discusses k-Catalan strings and proves that they are an example of
(s, f, c)-restricted growth strings. Section 3 discusses Gray codes and combina-
torial generation. Section 4 provides our Gray codes for (s, f, c)-restricted growth
strings. Section 5 provides new loopless algorithms for mixed-radix, k-Catalan,
and Bell strings. An online version of the paper includes appendices with addi-
tional figures and Python code.

2 k-Catalan Strings

In this section we provide a natural generalization of Catalan strings. Our gen-
eralization replaces the +1 in (2) with +(k−1) (for any fixed k ≥ 2) as follows:

a1 = 0 and 0 ≤ ai ≤ ai−1 + (k − 1) for 2 ≤ i ≤ n. (4)

3 Ehrlich uses a flexible notion of cyclic ±1: ai = 0↔ ai = m and ai = 0↔ ai = m+1
are allowed when m = max(a1a2 · · · ai−1). We would consider the former case as ±2.

4 This order was also mentioned in a paper by Ruskey and Savage [29], however, the
two descriptions are not equivalent.
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We refer to the resulting strings as k-Catalan strings and let Ck(n) be the set
of length n. For example, when n = 3 and k = 3 we have the following set.

C3(3) = {000, 001, 002, 010, 011, 012, 013, 020, 021, 022, 023, 024}. (5)

We prove that these sets are counted by the k-Catalan numbers Ck,n. Other ob-
jects counted by Ck,n are found in Oeis sequences A000108, A001764, A002293,
A002294, A002295 for 2 ≤ k ≤ 6. For example, the |C3(3)| = 12 strings in (5)
are in bijection with the ternary trees with 3 internal nodes (Oeis A001764).

Standard Catalan stringsC(n) are obtained from (4) with k = 2, and Catalan
numbers are also called 2-Catalan numbers (i.e., Cn = C2,n). We prove thatCk(n)
are an example of (s, f, c)-restricted growth strings (and st-restricted strings).

Theorem 1 ([1]5). |Ck(n)| = Ck,n for all n ≥ 0 and k ≥ 2.

Proof. We prove that the members of Ck(n) are in bijective correspondence with
the k-ary trees with n internal nodes, which are known to be counted by Ck,n.
The proof is by induction on n for a fixed k and is illustrated by Figure 1.

There is a single k-ary tree with one internal node and Ck(1) = {0}, so the
result is true for n = 1. Suppose the result holds for n = t. Now we extend
the bijection to strings and trees with n = t + 1. By (4) each string in Ck(t)
that ends with digit d is the prefix of d + (k − 1) distinct strings in Ck(t+ 1).
Next consider a k-ary tree with t internal nodes and label them by a preorder
traversal. Consider the location of the node x that is last in preorder; it is a leaf
with label t. To grow this tree without changing the preorder traversal we can
add a new leaf as a child of x or as a last child of any node on the path from the
root to x that doesn’t already have a kth child. Thus, if x had been added in the
dth rightmost location, then the new node can added in d+(k−1) locations. So
we can extend the bijection with the new node’s position as a 0-based value. ⊓⊔

Theorem 2. The set of k-Catalan strings Ck(n) are an example of (s, f, c)-
restricted growth strings (as well as st-restricted strings).

Proof. We claim this is true from s = 1, f(a1a2 · · · ai−1) = ai−1, and ci = k − 1
for all 2 ≤ i ≤ n. This follows from (3) as these choices force 0 ≤ a1 = s− 1 = 0
(i.e., a1 = 0) and the following bound for 2 ≤ i ≤ n that matches (4),

0 ≤ ai ≤ f(a1a2 · · · ai−1) + ci = ai−1 + (k − 1). (6)

Similarly, Ck(n) are st-restricted strings [20] using statistic ai−1 + (k − 1). ⊓⊔

5 This result was proven independently by the authors, however, a later literature
review found that it was previously observed by Arndt [1] (Ch. 15.5). Arndt refers
to k-Catalan strings as i-increment RGS and gives a bijection with k-ary Dyck words.
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1

234

3735

6

2

3

8

8

8

0th

1st

2nd3rd4th
88

(a) The 3-ary tree with n = 7 nodes whose
3-ary Catalan string is 0231352. The loca-
tion of node 7 is encoded as the last digit
2, so there are 2+ k = 5 locations where a
new leaf can be added and be last in pre-
order. Correspondingly, the digit d follow-
ing 2 in a 3-ary Catalan string is one of the
5 values satisfying 0 ≤ d ≤ 4 = 2+(k−1).

1

234

3735

6

2

3 8

9
0th

2nd3rd 1st
999

(b) The 3-ary tree with n = 8 nodes whose
3-ary Catalan string is 02313521. It is (a)
with a leaf in the 1st position. So there
are 1 + k = 4 locations where a new leaf
could be added and be last in preorder.
Correspondingly, the digit d following 1 in
a 3-ary Catalan string is one of the 4 values
satisfying 0 ≤ d ≤ 3 = 1 + (k − 1).

Figure 1: The bijection between k-ary trees and k-Catalan words from Theorem
1. The ith digit encodes how far from the right the node i in preorder is located.

3 Gray Codes and Combinatorial Generation

The term Gray code refers to an exhaustive list of some combinatorial object
(parameterized by size) in which successive objects differ in some (small) way.
They are named after the famous order of n-bit binary strings with Hamming
distance one (i.e., a single bit’s value is complemented or flipped) in Frank Gray’s
1954 patent titled Pulse Code Communication [12]. The order is referred to as the
binary reflected Gray code (brgc) and it appears below for n = 3, with overlines
denoting the bit that changes to create the next string.

brgc(3) = 000, 001, 011, 010, 110, 111, 101, 100 (7)

plain(3) = 1
←−
23,
←−
132, 3

←−
12,
−→
321, 2

−→
31, 213 (8)

Plain changes predates the binary reflected Gray code by hundred years and
is illustrated for n = 3 in (8). In this order, consecutive permutations of [n] =
{1, 2, . . . , n} differ by a swap (i.e., adjacent entries are transposed) with the
arrows in (8) showing a larger value “jumping over” a smaller value. The order
was performed by bell-ringers in the 1600s [38], and is known as the Steinhaus-
Johnson-Trotter algorithm due to multiple rediscoveries in the mid-20th century.

Traditionally, Gray codes have been discovered and described recursively.
For example, note that brgc(3) is obtained from two copies of brgc(2) =
00, 01, 11, 10 by prefixing 0 to the strings in the first copy, and 1 to the strings in
the second copy which is first reflected to 10, 11, 01, 00. Similarly, plain(3) is ob-
tained from plain(2) = 12, 21 by sweeping 3 from right-to-left through 12 then
left-to-right through 21. The first approach uses global recursion since brgc(n)
is created from full copies of brgc(n−1), while the second uses local recursion
since plain(n) expands individual objects in plain(n−1).
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Countless Gray codes have been constructed over the years. Academic sur-
veys have been written by Savage [31] and more recently Mütze [26], with Ruskey
[28] and Knuth [17] devoting extensive textbook coverage to the subject. In fact,
one of the issues facing this research area is the sheer breadth of results and the
recursive ‘tricks’ that have been used to obtain them. For an interactive intro-
duction to the area, we recommend the combinatorial object server combos.org.

3.1 Greedy Gray Code Algorithm

This decade has seen the introduction of the greedy Gray code algorithm [40]. The
algorithm eschews recursive schemes to focus on a simple idea: build an order one
object at a time by prioritizing the possible changes. For example, brgc(n) can
be constructed starting from 0n (where exponentiation denotes concatenation)
by greedily flipping the rightmost possible bit. Similarly, plain changes starts
at 12 · · ·n and then greedily swaps the largest possible value6. To clarify these
descriptions, consider the partial orders below.

brgc(3) = 000, 001, 011, 010, . . .? (9)

plain(3) = 1
←−
23,
←−
132, 312, . . .? (10)

Which binary string should follow 010 in (9)? Flipping the rightmost bit gives
010 = 011 which is already in (9). Similarly, flipping the middle bit would repeat
010 = 000. But flipping the leftmost bit gives a new string 010 = 110, so it is
next in the order. In (10) we cannot swap 3 to the right as it would recreate
−→
312 = 132, nor can it swap left as it is in the leftmost position. Thus, our highest

priority change is to swap the next largest value 2 to the left to create 3
←−
12 = 321.

These two greedy descriptions are not efficient in the sense of combinatorial
generation, which is focused on efficiently generating exhaustive lists of combina-
torial objects. More specifically, both algorithms require an exponential amount
of space to determine if a specific change creates a new string or not. However,
it is often possible to find an alternate description of a greedily defined order,
such as the recursive descriptions of brgc(n) and plain(n) discussed earlier.

The greedy Gray code algorithm has also led to new results. In particular,
the greedy description of plain change order was the impetus for the permutation
language series [13, 14, 22, 7, 6], as well as new Gray codes for signed permutations
[27] and Catalan objects [9]. Similarly, our new results generalize the binary
reflected Gray code and other greedy generalizations of the ‘original’ Gray code
include [24] and [23]. Greedy Gray code results also exist for de Bruijn sequences
[21] and universal cycles [34, 8], colored permutations [5], ballot sequences [39],
and spanning trees [4, 2]. Greedy Gray codes can often be translated into efficient
history-free algorithms (c.f., [32, 33]) but they typically do not produce sublist
Gray codes (e.g., see [30, 35]). The simplicity of the greedy approach belies the
complexity of the general underlying problem [25].

6 The latter description has the potential to be ambiguous—should a value be swapped
to the left or right?—but in practice there is always a unique choice.
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3.2 Four Greedy Definitions of the Binary Reflected Gray Code

Here we provide four different greedy algorithms for generating the binary re-
flected Gray code starting from 0n. The first approach was previously discussed,
and it should be clear that the other three approaches produce identical results.

1. Greedily complement the rightmost bit.
2. Greedily increment or decrement the rightmost bit.
3. Greedily increment the rightmost bit cyclically modulo 2.
4. Greedily set the rightmost bit to the maximum possible value.

Figure 2a illustrates the four interpretations for brgc(4). In the figure, we use the
symbols for complement, ±1 for increment / decrement, ⊕ for cyclic increment,
and max for maximum possible value. While the four algorithms give the same
order for binary strings, we will see that the last three produce different orders
for other sets of strings; we henceforth ignore the first algorithm as complements
cannot be applied to non-binary digits. Eventually, we will see that max approach
has a particular advantage for restricted growth strings, as observed in [19, 18].

3.3 Three Greedy Gray Codes for Mixed-Radix Strings

Let b1, b2, · · · , bn be a list of positive integers called bases. A mixed-radix string
with these bases is any a1a2 · · · an with 1 ≤ ai ≤ bi − 1 for all i. In other words,
each bi provides the number of values that the ith digit can hold. Figure 2
illustrates how three of the greedy approaches mentioned in Section 3.2 generate
Gray codes for the strings with bases 1, 2, 3, 4. In each case, the reader’s attention
should be drawn to the different patterns created in the rightmost digit.

– When using increments and decrements (Figure 2b) the rightmost digit ping-
pongs back-and-forth: 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, . . . reflectively.

– When using cyclic increments (Figure 2c) the rightmost digit’s starting value
climbs on each block 0, 1, 2, 3, 3, 0, 1, 2, 2, 3, 0, 1, 1, 2, 3, 0 0, 1, 2, 3, 3, 0, 1, 2.

– When using maximization (Figure 2d) the rightmost digit alternately starts
with 0 and ends with 1 or vice versa 0, 3, 2, 1, 1, 3, 2, 0, 0, 3, 2, 1, 1, 3, 2, 0, . . ..

The third pattern is quite useful in the context of restricted growth strings.
This is because lower values are less likely to exceed their digit’s upper bound,
so having 0 and 1 as the first and last values (or vice versa) allows the greedy
algorithm to uncover safer forms of recursion.

4 Main Result

Bell strings do not have ±1 Gray codes (see Section 1.3), so greedily incrementing
or decrementing the rightmost digit will not generate them. Similarly, greedily
performing a cyclic increment of the rightmost possible digit does not work for
n ≥ 7 regardless of the start string. So of the greedy strategies discussed in
Section 3.2, only maximizing the rightmost possible digit has the potential to
generate all (s, f, c)-restricted growth strings. Now we prove that this is the case.



Maximize the Rightmost Digit: Gray Codes for Restricted Growth Strings 9

brgc(4) b4b3b2b1 ± ⊕ max

0000 1 +1 ⊕1 max1

0001 2 +2 ⊕2 max2

0011 1 +1 ⊕1 max1

0010 3 −3 ⊕3 max3

0110 1 +1 ⊕1 max1

0111 2 −2 ⊕2 max2

0101 1 −1 ⊕1 max1

0100 4 −4 ⊕4 max4

1100 1 +1 ⊕1 max1

1101 2 +2 ⊕2 max2

1111 1 −1 ⊕1 max1

1110 3 −3 ⊕3 max3

1010 1 +1 ⊕1 max1

1011 2 −2 ⊕2 max2

1001 1 −1 ⊕1 max1

1000

(a) Greedily generating the binary reflected Gray code brgc(4) via complements ( ),
increments/decrements (±), cyclic increments (⊕), or digit maximizing (max). The
complement operation specifies the bit index to change and is specific to binary strings.

sgc(4,±) a3a2a1 ±
0000 +4

0001 +4

0002 +4

0003 +3

0013 −4

0012 −4

0011 −4

0010 +3

0020 +4

0021 +4

0022 +4

0023 +2

0123 −4

0122 −4

0121 −4

0120 −3

0110 +4

0111 +4

0112 +4

0113 −3

0103 −4

0102 −4

0101 −4

0100

(b) Increment/decrement.

sgc(4,⊕) a3a2a1 ⊕
0000 ⊕4

0001 ⊕4

0002 ⊕4

0003 ⊕3

0013 ⊕4

0010 ⊕4

0011 ⊕4

0012 ⊕3

0022 ⊕4

0023 ⊕4

0020 ⊕4

0021 ⊕2

0121 ⊕4

0122 ⊕4

0123 ⊕4

0120 ⊕3

0100 ⊕4

0101 ⊕4

0102 ⊕4

0103 ⊕3

0113 ⊕4

0110 ⊕4

0111 ⊕4

0112

(c) Cyclic increments.

sgc(4,max) a3a2a1 max

0000 max4

0003 max4

0002 max4

0001 max3

0011 max4

0013 max4

0012 max4

0010 max3

0020 max4

0023 max4

0022 max4

0021 max2

0121 max4

0123 max4

0122 max4

0120 max3

0110 max4

0113 max4

0112 max4

0111 max3

0101 max4

0103 max4

0102 max4

0100

(d) Maximize digit.

Figure 2: (a) Four greedy interpretations of brgc(4). Each one greedily applies an
operation (or operations) to the rightmost possible digit. Three of these greedy
approaches also generate mixed-radix strings as seen for bases 1, 2, 3, 4 in (b)–(d).
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Theorem 3. The greedy max-right algorithm starting from 0n generates all
(s, f, c)-restricted growth strings of length n, and successive strings differ by −1
or −2 in one digit where the subtractions are taken cyclically relative to (3).

Proof. Recall from (3) that a1a2 · · · an is an (s, f, c)-restricted growth string if

0 ≤ a1 ≤ s− 1 and 0 ≤ ai ≤ f(a1a2 · · · ai−1) + ci for 2 ≤ i ≤ n

with s ≥ 1, f ≥ 0, and c ≥ 1. We prove the theorem by induction on n ≥ 1.
For the base case of n = 1, notice that the conditions reduce to 0 ≤ a1 ≤ s−1.

Therefore, the greedy max-right algorithm produces the list 0, s−1, s−2, . . . , 1.
Assume that the result holds for all valid choices and n = k. Now consider

a specific choice of s, f , and c with n = k + 1. Let f ′ and c′ be the restrictions
of f and c to n = k, respectively. By induction, the greedy max-right algorithm
creates a Gray code for the (s, f ′, c′) strings of length k. Let this Gray code be
x1, x2, . . . , xp where p is the number of such strings. Now consider the greedy
max-right algorithm for the (s, f, c) strings of length k + 1. We claim that the
algorithm will generate the strings in the following order,

g0(x1), g1(x2), g0(x1), g1(x2), . . . , g0(xp) if p is odd (11)

g0(x1), g1(x2), g0(x1), g1(x2), . . . , g1(xp) if p is even

where the g0 and g1 functions expand each xi string of length k into a sublist of
strings of length k + 1 in a manner described below. Towards these definitions,
let xi = a1a2 · · · ak. Therefore, m = f(xi) + ck+1 is the maximum value such
that xi ·m is a (s, f, c) string. We also know that m ≥ 1 due to the conditions
that f ≥ 0 and c ≥ 1. The two expansions of xi are now defined as follows.

g0(xi) = xi · 0, xi ·m, xi · (m−1), . . . , xi · 2, xi · 1 (12)

g1(xi) = xi · 1, xi ·m, xi · (m−1), . . . , xi · 2, xi · 0

In both cases, the expansion sets the last digit to the maximum value m and
then repeatedly decrements it. The difference between the two expansions is that
the last digit starts at 0 and ends at 1 in the g0 expansion, and vice versa in the
g1 expansion. To complete the proof we need to argue the following points:

– The greedy max-right algorithm does indeed generate the list in (11).
– The list in (11) includes all (s, f, c) strings of length k + 1.
– Successive strings in (11) differ in a single digit by −1 or −2 (cyclically).

To prove the first point, note that the greedy max-right algorithm prefers to
change the rightmost digit to the maximum possible value that results in a new
string. Therefore, if xi · 0 is the first string to be created with prefix xi, then
the algorithm will proceed by generating the list g0(xi). Similarly, if xi · 1 is
the first string to be created with prefix xi, then the algorithm will proceed
by generating the list g1(xi). In both cases, all of the strings with prefix xi

are generated in succession. Therefore, when the expansion of xi is completed,
the algorithm will then set the rightmost possible digit in xi to the maximum
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possible value. By induction, this means that the prefix xi will be replaced by
xi+1 by the next change. Finally, note that the sublist g0(xi) ends with xi · 1,
so the aforementioned change will result in xi+1 · 1, which is the first string of
g1(xi+1). Similarly, the sublist g1(xi) ends with xi · 0, so the aforementioned
change will result in xi+1 · 0, which is the first string of g0(xi+1). Hence, the
expanded sublists alternate as per (11).

The second point follows from the fact that a digit’s valid values are between
0 and m inclusively. The third point follows from (12) and induction. ⊓⊔

5 Loopless Algorithms

In this section we provide loopless algorithms for generating multi-radix strings,
k-Catalan strings, and Bell strings according to our max-right Gray codes. This
improves upon the excellent CAT implementations that follow from [20]. Here we
generate the strings in reverse (i.e., right-to-left) to simplify the indexing. When
the next string is ready we yield it and continue running. For each string, except
the first, we also yield the index of the digit that was changed to create it.

5.1 Loopless Mixed-Radix Algorithms

The MixedRadix function in Algorithm 1 provides the well-known loopless
algorithm for generating a mixed-radix Gray code using increment/decrement
(i.e., ±1) changes (see Knuth’s description in [17]). The modified function
MixedRadixMax in Algorithm 1 instead implements our mixed-radix Gray
code using max changes. In this implementation, si keeps track of the starting
value of the corresponding i-th digit: 0 or 1 (as per Section 4).

5.2 Loopless k-Catalan Strings

Our loopless implementation of our max-right k-Catalan Gray code is based on
MixedRadixMax. One major differences is that the bases for each digit are
not provided as inputs. Instead, they are computed as we generate the Gray
code: the base of any position is the previous position’s value plus k − 1.

Theorem 4. CatalanStrings(n) in Algorithm 2 looplessly generates the max-
right Gray code for k-Catalan strings of length n.

5.3 Loopless Bell Strings

In our loopless implementation of the max-right Gray code for Bell strings7,
the concept of bases is not directly used, since computing the base of any digit
(which is the maximum of previous digits plus 1) is a worst-case Θ(n) operation.
Instead, we store the first positions of digits equal to successively larger values

7 Lines 14–15 of BellStrings(n) are missing in a published version of this document.
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0 00 000 0000 00000
01 001 0001 00001

011 0011 00011
012 0012 00012
010 0010 00010

0110 00110
0112 00112
0111 00111
0121 00121
0123 00123
0122 00122
0120 00120
0100 00100
0102 00102
0101 00101

01101
01102
01100
01120
01123
01122
01121
01111
01112
01110
01210
01213
01212
01211
01231
01234
01233
01232
01230
01220
01223
01222
01221
01201
01203
01202
01200
01000
01002
01001
01021
01023
01022
01020
01010
01012
01011

(a) Bell strings B(n) for n ≤ 5.

0 00 000 0000 00000
01 001 0001 00001

011 0011 00011
012 0012 00012
010 0010 00010

0110 00110
0112 00112
0111 00111
0121 00121
0123 00123
0122 00122
0120 00120
0100 00100
0101 00101

01101
01100
01120
01123
01122
01121
01111
01112
01110
01210
01212
01211
01231
01234
01233
01232
01230
01220
01223
01222
01221
01201
01200
01000
01001
01011
01012
01010

(b) Catalan strings C(n) for n ≤ 5.

Figure 3: Gray codes obtained from our max-right algorithm: start from 0n then
greedily maximize the rightmost possible digit.
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Algorithm 1 Loopless algorithms for generating Gray codes for mixed-radix
strings with bases b. The functions modify our target a and yield it every time
it is modified. Focus pointers are stored in f . In MixedRadix, ai is modified
by +1 or -1 depending on the direction given by d. In MixedRadixMax (see
Section 3.3) any position has 0 and 1 as the first and last value (or vice versa) in
a loop. ai is raised to maximum (bj − 1) when ai = si (except in some special
cases), and is decreased otherwise (normally it decreases by 1, but decreases by
2 if it is 2 and the start value is 1, in this case it needs to become 0). The overall
algorithms are loopless as each iteration runs in worst-case O(1)-time.

MixedRadix(b)
1: a1 a2 · · · an ← 0 0 · · · 0
2: f1 f2 · · · fn+1 ← 1 2 · · · n+1
3: d1 d2 · · · dn ← 1 1 · · · 1
4: yield a
5: while f1 ≤ n
6: j ← f1
7: f1 ← 1
8: aj ← aj + dj
9: yield j,a
10: if aj ∈ {bj − 1, 0} then
11: dj ← −dj
12: fj ← fj+1

13: fj+1 ← j + 1

MixedRadixMax(b)
1: a1 a2 · · · an ← 0 0 · · · 0
2: f1 f2 · · · fn+1 ← 1 2 · · · n+1
3: s1 s2 · · · sn ← 0 0 · · · 0
4: yield a
5: while f1 ≤ n
6: j ← f1
7: f1 ← 1
8: if aj = sj then
9: if bj = 2 and sj = 1 then aj ← 0
10: else aj ← bj − 1

11: else if aj = 2 and sj = 1 then aj ← 0
12: else aj −= 1

13: yield j,a
14: if aj = 1− sj then
15: sj ← aj

16: fj ← fj+1

17: fj+1 ← j + 1

≥ 2 (i.e., 2, 3, 4, . . .) in a stack S. If the stack is non-empty, then its size allows us
to determine a digit’s maximum value. If the stack is empty, then the maximum
is typically 2, since the earlier digits are comprised of 0s and 1s by (12). One
exception is that these digits are all 0s precisely when the digit is being changed
for the first time. To track this special case, we store whether or not a digit has
ever been changed in a Boolean list v. Collectively, this additional information
allows us to determine the maximum value for a digit in worst-case O(1)-time.

Theorem 5. BellStrings(n) in Algorithm 2 looplessly generates the max-right
Gray code for Bell strings of length n.

6 Final Remarks

We provided Gray codes for restricted growth strings parameterized by (s, f, c).
The orders change one digit by −1 or −2 (cyclically) and are generated from
0n by a simple greedy rule. Our greedy max-right algorithms are not efficient,
but the orders can be efficiently generated by other means. We showed this with
loopless algorithms for mixed-radix strings, k-Catalan strings, and Bell strings.
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Algorithm 2 Loopless algorithms for generating k-Catalan Gray codes and
Bell Gray codes. The functions modify our target a and yield it every time
it is modified. Focus pointers are stored in f . CatalanStrings largely repli-
cates MixedRadixMax, except that the “bases” are calculated on the fly. In
BellStrings, if the current digit is not visited, the maximum is set to 0 because
all earlier digits are 0. If it is visited and the stack storing positions of large num-
bers is empty, the maximum is set to 1. If the stack is not empty, the maximum
is set to the corresponding digit at the position determined by the top of stack.
After calculating the maximum, it will be pushed onto the stack. When a digit
is decreased, if it corresponds to the top of stack, the stack is popped.

CatalanStrings(n,k)
1: a1 a2 · · · an ← 0 0 · · · 0
2: f1 f2 · · · fn+1 ← 1 2 · · · n+1
3: s1 s2 · · · sn ← 0 0 · · · 0
4: yield a
5: while f1 < n
6: j ← f1
7: f1 ← 1
8: if aj = sj then
9: if aj , aj+1=1, 0 and k=2 then aj←0
10: else aj ← aj+1 + k − 1

11: else if aj = 2 and sj = 1 then aj ← 0
12: else aj −= 1

13: yield j,a
14: if aj = 1− sj then
15: sj ← aj

16: fj ← fj+1

17: fj+1 ← j + 1

BellStrings(n)
1: a1 a2 · · · an ← 0 0 · · · 0
2: f1 f2 · · · fn+1 ← 1 2 · · · n+1
3: s1 s2 · · · sn ← 0 0 · · · 0
4: S ← empty
5: v1 · · · vn ← True · · · True
6: yield a
7: while f1 < n
8: j ← f1
9: f1 ← 1
10: if aj = sj then
11: if vj then m← 0; vj ← False
12: else if S is empty thenm← 1
13: else pos← top(S); m← apos

14: aj ← m+ 1
15: if m ̸= 0 then S ← j

16: else if aj = 2 and sj = 1 then
17: aj ← 0
18: if top(S) = j then pop(S)

19: else
20: aj −= 1
21: if top(S) = j then pop(S)

22: yield j,a
23: if aj = 1− sj then
24: sj ← aj

25: fj ← fj+1

26: fj+1 ← j + 1
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A Ternary String Gray Codes

Figure 4 illustrates the three greedy approaches to generating ternary strings.
(The first approach discussed in Section 3.2 does not generalize to ternary strings
since there is no natural notion of complementation in this context.)

tgc(3,±) a3a2a1 ±
000 +3

001 +3

002 +2

012 −3

011 −3

010 +2

020 +3

021 +3

022 +1

122 −3

121 −3

120 −2

110 +3

111 +3

112 −2

102 −3

101 −3

100 +1

200 +3

201 +3

202 +2

212 −3

211 −3

210 +2

220 +3

221 +3

222

(a) Increment/decrement.

tgc(3,⊕) a3a2a1 ⊕
000 ⊕3

001 ⊕3

002 ⊕2

012 ⊕3

010 ⊕3

011 ⊕2

021 ⊕3

022 ⊕3

020 ⊕1

120 ⊕3

121 ⊕3

122 ⊕2

102 ⊕3

100 ⊕3

101 ⊕2

111 ⊕3

112 ⊕3

110 ⊕1

210 ⊕3

211 ⊕3

212 ⊕2

222 ⊕3

220 ⊕3

221 ⊕2

201 ⊕3

202 ⊕3

200

(b) Cyclic increment.

tgc(3,max) a3a2a1 max

000 max3

002 max3

001 max2

021 max3

022 max3

020 max2

010 max3

012 max3

011 max1

211 max3

212 max3

210 max2

220 max3

222 max3

221 max2

201 max3

202 max3

200 max1

100 max3

102 max3

101 max2

121 max3

122 max3

120 max2

110 max3

112 max3

111

(c) Maximize digit.

Figure 4: Three greedy Gray codes for ternary strings. Each one greedily applies
an operation (or operations) to the rightmost possible digit.
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B Python Code

Python implementations of the loopless algorithms in Section 5 are provided.

def mixedRadixGrayCodeMax(bases):

n = len(bases)

word = [0] * n

start = [0] * n

yield word, None

focus = list(range(n+1))

while focus[0] < n:

index = focus[0]

focus[0] = 0

if word[index] == start[index]:

if bases[index] == 2 and start[index] == 1:

word[index] = 0 # special case of start == max

else:

word[index] = bases[index]-1 # set to max

elif word[index] == 2 and start[index] == 1:

word[index] -= 2

else:

word[index] -= 1

yield word, index

if word[index] == 1-start[index]:

start[index] = word[index]

focus[index] = focus[index+1]

focus[index+1] = index+1

bases = [2,3,4]

total = 0

for word, change in mixedRadixGrayCodeMax(bases):

total += 1

print(*word, sep="", end=" ")

print(change)

print("\ntotal: %d / %d" % (total, prod(bases)))
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def looplessKCatalanStrings(n,k):

word = [0] * n

yield word

focus = list(range(n+1))

start = [0] * n

while focus[0] < n-1:

index = focus[0]

focus[0] = 0

if word[index] == start[index]:

# set to max

# but handle special case where it is both the start and the max already

if word[index] == 1 and word[index+1] == 0 and k == 2:

word[index] = 0

else:

word[index] = word[index+1]+k-1

elif word[index] == 2 and start[index] == 1:

# skip over 1

word[index] -= 2

else:

word[index] -= 1

yield word

if word[index] + start[index] == 1: # last value (i.e., 0+1 or 1+0)

focus[index] = focus[index+1]

focus[index+1] = index+1

start[index] = word[index]

n = 5

k = 3

total = 0

for word in looplessCatalanStrings(n,k):

total += 1

print(*word, sep="")

print("\ntotal: %d" % total)
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def looplessBellStrings(n):

word = [0] * n

yield word

focus = list(range(n+1))

start = [0] * n

maxima = [] # indices that create maxima values ...,3,2

first = [True] * n # first if the digit hasn't been changed yet

while focus[0] < n-1:

index = focus[0]

focus[0] = 0

if word[index] == start[index]:

# set to max

if first[index]: # only time when digits to the right are all 0

m = 0

first[index] = False

assert len(maxima) == 0

elif len(maxima) == 0: # no 2s and not first so max is 1

m = 1

else:

m = word[maxima[0]]

word[index] = m+1

if m+1 != 1:

maxima = [index] + maxima

elif word[index] == 2 and start[index] == 1:

# skip over 1

word[index] -= 2

if maxima[0] == index:

maxima = maxima[1:]

else:

word[index] -= 1

if maxima[0] == index:

maxima = maxima[1:]

yield word

if word[index] + start[index] == 1: # last value (i.e., 0+1 or 1+0)

focus[index] = focus[index+1]

focus[index+1] = index+1

start[index] = word[index]

n = 7

total = 0

for word in looplessBellStrings(n):

total += 1

print(*word, sep="")

print("\ntotal: %d" % total)
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C Preorder Preserving Gray Code for k-ary Trees

Our Gray code for k-Catalan strings appears to give a preorder preserving Gray coded
for k-ary trees. This is illustrated in Figure 5 and will be investigated in future work.
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0101 0100 0120 0122 0123 0121 0111

Figure 5: A preorder preserving order of binary trees with n = 4 nodes corre-
sponding to the list in Figure 3b. The order is read in boustrophedon order (i.e.,
left-to-right on the top row and right-to-left on the bottom row).


