
Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

RANDOM GENERATION OF UNIVERSAL CYCLES AND DE BRUIJN
SEQUENCES

JOE SAWADA AND DANIEL GABRIĆ

Abstract. We present practical algorithms for generating universal cycles uni-
formly at random. In particular, we consider universal cycles for shorthand
permutations, subsets and multiset permutations, weak orders, and orientable
sequences. Additionally, we consider de Bruijn sequences, weight-range de
Bruin sequences, and de Bruijn sequences, with forbidden 0z substring. The
algorithms apply a random walk of an underlying Eulerian shift graph to obtain
a random arborescence (spanning in-tree). For each object, in order to seed the
algorithm, a random edge is selected in the shift graph. Given the random ar-
borescence and the shift graph, a corresponding random universal cycle can be
generated in constant time per symbol. We provide experimental results on the
average cover time required to compute a random arborescence for each object.

AMS Subject Classification. — Give AMS classification codes —.

1. INTRODUCTION

Let Σk(n) denote the set of all strings of length n over the alphabet {0, 1, . . . , k−1}.
Let S denote a subset of Σk(n). The shift graph of S, denoted G(S), is the directed graph
where each vertex corresponds to a length-(n−1) prefix or suffix of a string in S, and there
is a directed edge from vertex u to vertex v if u = u1u2 · · ·un−1 and v = u2u2 · · ·un.
Each edge corresponds to a string u1u2 · · ·un in S and we label such an edge by un. For
example, see Figure 1.

A universal cycle for S, is a cyclic string of length |S| that contains each string in S as
a substring exactly once (including the wraparound); they exist when G(S) is Eulerian.
In this paper, we are concerned with interesting subsets S whose underlying shift graph
is Eulerian, i.e., S admits a universal cycle. In particular, we consider:

(1) (shorthand) permutations, subsets, and permutations of a multiset,

Keywords and phrases: random generation, universal cycle, de Bruijn sequence, weak order, subsets, per-
mutations, orientable sequence

© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

G({001, 000, 011, 111, 110, 101}) G({001, 010, 101, 011, 110, 100})

00 01

1110

00 01

1110

1

1

1

1

1

1

1

0

0

0

0

0

FIGURE 1. Two shift graphs. The one on the right is Eulerian.

(2) weak orders,
(3) k-ary strings of length n (which yield de Bruijn sequences),
(4) k-ary strings of length n that do not contain 0z (cyclically),
(5) k-ary strings of length n with weight in the range [a, b], and
(6) k-ary strings of length n that produce asymptotically optimal orientable sequences,

where the weight of a string is the sum of its symbols, and [a, b] denotes the set of integers
{a, a+1, . . . , b}.

The primary objective of this paper is to describe time-efficient algorithms to generate
universal cycles for these objects uniformly at random, while using exponential space to
store their underlying shift graph. We describe a generic algorithm that generates a ran-
dom Euler cycle in any directed Eulerian graph by first generating a random arborescence
(spanning in-tree). For each set S, we must be able to generate a random string in S in or-
der to seed the algorithm by selecting a root for the arborescence. The generic algorithm
is presented in Section 2. Then, in Section 3 we consider each of the aforementioned
sets S and provide (i) a discussion of how to generate a random element from S and (ii)
experimental evidence for the average cover time to compute a random arborescence in
G(S).

Despite the vast literature on universal cycle constructions, and in particular, de Bruijn
sequences, we have found no discussion or resource regarding the generation of these
sequences uniformly at random. This paper attempts to fill this void, even though it is
well-known that a random arborescence in an Eulerian graph can be used to generate a
random Euler cycle [14]. A recent result in [15] describes how to construct random de
Bruijn sequences, although not uniformly at random.

2. ALGORITHM

A de Bruijn sequence of order n is in one-to-one correspondence with an Euler cy-
cle in the de Bruijn graph G(Σk(n)). Each Euler cycle corresponds to a unique rooted
spanning in-tree (arborescence). By generating all such arborescences and considering
all permutations for the remaining outgoing edges from each vertex, we can generate all
Euler cycles in G(Σk(n)), and hence all de Bruijn sequences; see, for instance, Chapter

TITLE WILL BE SET BY THE PUBLISHER 3

7 in [16]. Furthermore, a de Bruijn sequence can be generated uniformly at random by
generating a random arborescence and randomly ordering the remaining outgoing edges
from each vertex. Similarly, we can generate universal cycles for S uniformly at random
given the corresponding (Eulerian) shift graph G(S) as follows:

Algorithm R
Generate a universal cycle for set S uniformly at random given the underlying
(Eulerian) shift graph G(S):

(1) Generate a random edge (r, v) in G(S), i.e., a string in S, to obtain a random
root vertex r

(2) Generate a random arborescence T directed to root r
(3) Make each edge of T (the bridges) the last edge on the adjacency list of the

corresponding outgoing vertex (the root does not have such a bridge), then
randomly assign the order of the remaining outgoing edges

(4) Starting from r, traverse the edges in G(S) (for |S| steps) by visiting the
first unused edge in the current vertex’s adjacency list

Since G(S) is not necessarily regular, if we want T to be generated uniformly at ran-
dom, then it is important to initialize the algorithm by selecting a random edge rather
than a vertex. For Eulerian graphs, an arborescence can be generated uniformly at ran-
dom by performing a random backwards walk until every vertex is visited. The first time
a vertex is visited, the edge is recorded as a tree edge in the random arborescence [14].
The running time of this step depends on the cover time of the random walk, which is the
number of steps it takes to visit every vertex. Thus, Algorithm R has exponential time
delay due to steps (2) and (3) and requires exponential space to store G(S). The final step
(4) generates a random universal cycle for S in constant time per symbol.

Example 1 Consider the set S consisting of all binary strings of length n = 6
with weight in the range [1,2]. The shift graph G(S) shown in Figure 2 illustrates
a spanning in-tree (arborescence) rooted at 00010. Based on this spanning in-tree,
the ordering of the adjacency lists for the vertices following Algorithm R, where the
adjacency list of the root 00010 is randomly selected as 0,1, is as follows:

00000 → 1
00001 → 1,0
00010 → 0,1
00100 → 1,0

01000 → 1,0
10000 → 1,0
00011 → 0
00101 → 0

00110 → 0
01001 → 0
01010 → 0
01100 → 0

10001 → 0
10010 → 0
10100 → 0
11000 → 0.

The final step of Algorithm R produces the following random universal cycle for S:

010001010000110000010.

4 TITLE WILL BE SET BY THE PUBLISHER

00000

00001

00100 01000

10001

00101 01010

01001 10100

10010

10000

00011

00110

01100 11000

00010

0

0

0

0

0

0

0

0

0

0
0

0

0

0

1

1

1

1

1
1

0

FIGURE 2. The shift graph G(S) for the set S consisting of all binary
strings of length n = 6 with weight in the range [1, 2]. Steps (1) and
(2) of Algorithm R are illustrated where 000101 is selected as a random
edge, and the bold (blue) edges highlight a spanning in-tree rooted at
00010.

Observe this is also a universal cycle for the 2-subsets from a ground set of size
n = 7; for each length 6 substring add a 0 or 1 so the resulting length 7 string has
exactly two 1s [17].

Arbitrary graphs have an O(n3) [8] and Ω(n log n) [7] expected cover time, and these
bounds are tight, as witnessed by the lollipop graph with n nodes and the complete graph
with n nodes respectively. One class of graphs that are relevant to this paper are de Bruijn
graphs, which are themselves regular graphs. A graph is regular if every node has the
same degree and if the graph is directed, then the in-degrees and out-degrees of every
node are equal. Regular graphs have an O(n2) expected cover time [9], as witnessed
by the cycle graph with n nodes. However, the expected cover time for random regular
graphs is Θ(n log n) with high probability [5]. To the best of the authors’ knowledge, the
expected cover time of de Bruijn graphs remains unknown.

3. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section we apply Algorithm R to generate universal cycles uniformly at random
for shorthand permutations, subsets and multiset permutations, k-ary strings (de Bruijn
sequences), generalizations of de Bruijn sequences including those with no 0z substring
and those with bounded weight, and orientable sequences.

For each object, we discuss how to generate a random edge in the underlying shift
graph to seed the algorithm, and present experimental evidence for the cover time required
to compute the random arborescence. Implementations of our algorithms are available at

TITLE WILL BE SET BY THE PUBLISHER 5

http://debruijnsequence.org/db/random. In our implementations to com-
pute the random arborescences, we did not pre-compute the shift-graphs, but instead used
a mapping of each vertex to an integer (using a ranking algorithm or similar) to store
whether a vertex had been visited. We applied a similar strategy to generate the random
universal cycle in step (4) of Algorithm R.

3.1. PERMUTATIONS, SUBSETS, AND MULTISET PERMUTATIONS

Universal cycles do not exist, in general, for permutations and subsets. For permuta-
tions, however, observe that the final symbol is redundant. If p1p2 · · · pn is a permutation,
we say that p1p2 · · · pn−1 is a shorthand permutation of order n, where the last symbol
is implied. Let SP(n) be the set of all shorthand permutations of order n. Similarly, if
b1b2 · · · bn is a binary string with k ones (representing a k-subset of an n-set), we say that
b1b2 · · · bn−1 is a shorthand k-subset of order n, where the last bit is implied. Let S(n, k)
be the set of all shorthand k-subsets of order n. Multiset permutations (strings with fixed
content) generalize both permutations and subsets. If m1m2 · · ·mn is a permutation of
the multiset {s1, s2, . . . , sn}, then we say m1m2 · · ·mn−1 is a shorthand multiset per-
mutation. When each si = i, a multiset permutation is simply a permutation, and when
the multiset contains k ones and (n−k) zeros, it represents a binary string with weight k
representing a k-subset of an n-set.

For shorthand permutations, the underlying shift graph has n! edges. Each vertex has
in-degree = out-degree = 2 and thus there are n!/2 vertices. For shorthand k-subsets,
where k ≥ 2, the underlying shift graph has

(
n
k

)
edges and each vertex is a binary string

of length n−2 with weight k − 2, k − 1, or k; there are
(
n−2
k−2

)
+
(
n−2
k−1

)
+
(
n−2
k

)
vertices.

A random multiset permutation m1m2 · · ·mn can be generated in O(n) time by apply-
ing the Fisher-Yates shuffle, as illustrated in Algorithm 1. Thus, m1m2 · · ·mn−1 is a ran-
dom shorthand multiset permutation that can be used to seed Algorithm R for shorthand
permutations, shorthand subsets, and more generally, shorthand multiset permutations.

Algorithm 1 Random generation of a permutation m1m2 · · ·mn of the multiset
{s1, s2, . . . , sn} applying the Fisher-Yates shuffle
m1m2 · · ·mn ← s1s2 · · · sn
for i from n down to 2 do

j ← random integer in [1, i]
SWAP(mi,mj)

Table 1 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(SP(n)) and G(S(n, n/2)) by running Algorithm R for 10,000 iterations.

Universal cycles for shorthand permutations can be constructed in O(1)-amortized
time per symbol using O(n) space [13, 18]. An O(n)-time successor rule is presented
in [12], and an O(1)-amortized time per symbol algorithm applying concatenation trees
is presented in [19] that uses O(n2) space. Universal cycles for shorthand subsets can
be constructed in O(1)-amortized time per symbol using O(n) space [17]. Universal
cycles for shorthand multiset permutations (strings with fixed content) can be constructed
in O(1)-amortized time per symbol using O(n) space [20].

http://debruijnsequence.org/db/random

6 TITLE WILL BE SET BY THE PUBLISHER

Ratio: cover time / n!
n Min Max Avg
3 0.3 0.3 0.3
4 0.5 3.7 1.1
5 0.8 5.3 2.0
6 1.7 6.8 3.0
7 2.7 6.5 3.9
8 3.9 8.0 4.9
9 5.0 7.7 5.9

10 6.4 8.1 7.0

Ratio: cover time /
(n
k

)
n Min Max Avg

10 1.8 18.9 5.0
12 3.2 18.0 6.3
14 4.6 16.4 7.6
16 5.9 18.8 8.8
18 7.2 20.3 10.1
20 8.5 21.8 11.4
22 9.7 21.8 12.7
24 11.2 22.6 14.1
26 12.4 24.0 15.4

TABLE 1. The minimum, maximum, and average ratios of the
cover time to total edges in the shift graphs G(SP(n)) (left) and
G(S(n, n/2)) (right) by running Algorithm R for 10,000 iterations.

Ratio: cover time / Wn

n Min Max Avg
3 0.5 9.3 1.8
4 1.1 12.7 3.7
5 2.5 12.9 5.4
6 4.1 16.7 7.2
7 6.4 21.3 9.3
8 8.7 18.5 11.5
9 12.0 15.4 13.8

TABLE 2. The minimum, maximum, and average ratios of the cover
time to total edges in G(W(n)) by running Algorithm R for 10,000
iterations.

3.2. WEAK ORDERS

A weak order is the number of ways n competitors can finish in a race if ties are
allowed. Let W(n) denote the set of weak orders with n competitors, and let Wn denote
|W(n)|. For example,

W(3) = {111, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321},

and W3 = 13. The number of weak orders where there is a k-way tie for first is given by(
n
k

)
Wn−k for k < n; there is 1 weak order when k = n. Thus, Wn =

∑n
k=1

(
n
k

)
Wn−k.

This recurrence together with the Fisher-Yates shuffle can be applied to generate a weak
order w1w2 · · ·wn uniformly at random, as illustrated in Algorithm 2.

Table 2 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(W(n)) by running Algorithm R for 10,000 iterations.

TITLE WILL BE SET BY THE PUBLISHER 7

Algorithm 2 Random generation of a weak order w1w2 · · ·wn.
w1w2 · · ·wn ← 0n

t← n
v ← 1
▷ Randomly place the element(s) v based on the recurrence
while t ≥ 1 do

r ← random integer in [1,Wt]
for j from 1 to t do

pj ←
(
t
j

)
Wt−j

if r ≤ pj then break
r ← r − pj

▷ Randomly place j occurrences of i into the t empty spots
b1 · · · bt ← a random binary string with length t and weight j ▷ Apply Fisher-Yates shuffle
i← 1
for k from 1 to n do

if wk = 0 and bi = 1 then wk ← v; i← i+ 1

v ← v + j
t← t− j

Universal cycles for weak orders can be constructed via a successor rule that gener-
ates the sequence in O(n) per symbol using O(n) space [22]. By applying concatenation
trees, they can be generated in O(1)-amortized time using O(n2) space [19]. See the enu-
meration sequence A000670 for Wn in the Online Encyclopedia of Integer Sequences [1].

3.3. DE BRUIJN SEQUENCES

For de Bruijn sequences, the underlying de Bruijn graph G(Σk(n)) has kn−1 vertices
and kn edges. A random k-ary string (edge) can be computed in O(n) time by generating
a random symbol in [0, k−1] n times. Table 3 and Table 4 show the minimum, maximum,
and average ratios of the cover time to total edges in G(Σk(n)), for k = 2, 3, 4 by running
Algorithm R for 10,000 iterations.

If an application does not require a sequence generated uniformly at random, an al-
gorithm which applies a Burrows-Wheeler transform can be applied; it outputs each de
Bruijn sequence with positive probability [15]. The algorithm requires exponential space
and has an exponent time delay with respect to the order n, but produces the sequence in
α(n)-amortized time per symbol for k = 2, where α(n) is the inverse Ackerman function.
The first estimate on the mean discrepancy of de Bruijn sequences is obtained using this
algorithm [15].

3.4. WEIGHT-RANGE DE BRUIJN SEQUENCES

Let WRk(n, [ℓ, u]) denote the subset of strings in Σk(n) with weight in the range
[ℓ, u]. Let WRk(n, [ℓ, u]) denote |WRk(n, [ℓ, u])|. It is straightforward to observe that
WRk(n, [ℓ, u]) = 0 if u < 0 or ℓ > n(k− 1); otherwise, if n = 1 then WRk(n, [ℓ, u]) =

8 TITLE WILL BE SET BY THE PUBLISHER

Ratio: cover time / 2n

n Min Max Avg
4 0.4 8.4 1.3
5 0.5 7.1 1.7
6 0.6 8.3 2.1
7 0.9 8.7 2.4
8 1.1 8.6 2.7
9 1.4 9.0 3.1

10 1.9 9.0 3.4
11 2.2 9.9 3.8
12 2.5 10.7 4.1
13 2.9 9.0 4.5
14 3.4 10.2 4.8
15 3.8 10.1 5.1

Ratio: cover time / 2n

n Min Max Avg
16 4.1 10.4 5.5
17 4.5 9.8 5.9
18 4.9 9.1 6.2
19 5.3 9.8 6.5
20 5.8 9.8 6.9
21 6.1 9.4 7.3
22 6.6 10.4 7.8
23 7.0 9.2 8.0
24 7.7 11.6 9.1
25 7.6 10.5 8.5
26 8.1 10.7 8.9

TABLE 3. The minimum, maximum, and average ratios of the cover
time to total edges in the shift graph G(Σ2(n)) by running Algorithm
R for 10,000 iterations.

Ratio: cover time / 3n

n Min Max Avg
3 0.3 3.9 0.9
4 0.5 4.5 1.3
5 0.7 4.6 1.7
6 1.0 5.6 2.0
7 1.5 5.1 2.4
8 1.8 5.6 2.8
9 2.2 6.3 3.1

10 2.6 6.0 3.5
11 3.0 6.1 3.9
12 3.4 6.3 4.3
13 4.0 6.4 4.6
14 4.3 6.3 4.9
15 4.6 6.6 5.3
16 5.0 6.7 5.7

Ratio: cover time / 4n

n Min Max Avg
4 0.5 4.5 1.3
5 0.7 4.6 1.7
6 1.0 5.6 2.0
7 1.5 5.1 2.4
8 1.8 5.6 2.8
9 2.2 6.3 3.1

10 2.6 6.0 3.5
11 3.0 6.1 3.9
12 3.6 4.7 4.0
13 3.9 5.0 4.3

TABLE 4. The minimum, maximum, and average ratios of the cover
time to total edges in the shift graph G(Σk(n)) for k = 3 and k = 4 by
running Algorithm R for 10,000 iterations.

min(u, k−1)−max(ℓ, 0) + 1, and if n > 1:

WRk(n, [ℓ, u]) =

k−1∑
j=0

WRk(n− 1, [ℓ−j, u−j]).

TITLE WILL BE SET BY THE PUBLISHER 9

A weight-range de Bruijn sequence is a universal cycle for the set WRk(n, [ℓ, u]). The
shift graph G(WRk(n, [ℓ, u])) is generally not regular. A random edge s1s2 · · · sn can
be generated using values for WRk(n, [ℓ, u]) as outlined in Algorithm 3. The algorithm
essentially unranks a string in WRk(n, [ℓ, u]) as it appears in lexicographic order.

Table 5 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(WR2(n, [5, 10])) by running Algorithm R for 10,000 iterations.

Algorithm 3 Random generation of a string s1s2 · · · sn in WRk(n, [ℓ, u])

r ← random integer in [1,WRk(n, [ℓ, u])]
for j from 1 to n− 1 do

for i from 0 to k − 1 do ni ←WRk(n− j, [ℓ− i, u− i])

i← 0
while r > ni do r ← r − ni; i← i+ 1

sj ← i
ℓ← ℓ− i; u← u− i

if ℓ < 0 then ℓ← 0

sn ← ℓ+ r − 1

Ratio: cover time / WR2(n, [5, 10])

n Min Max Avg
10 2.3 19.4 5.1
11 2.5 15.9 5.5
12 3.2 13.0 6.0
13 3.9 15.6 6.5
14 4.2 15.8 7.2
15 5.2 14.7 7.9
16 6.0 16.0 8.6
17 6.7 15.2 9.3
18 7.4 17.0 10.2
19 8.1 17.5 10.8
20 9.1 17.2 11.5

TABLE 5. The minimum, maximum, and average ratios of the cover
time to total edges in the shift graph G(WR2(n, [5, 10])) by running
Algorithm R for 10,000 iterations.

Weight-range de Bruijn sequences can be constructed via an O(n) time per symbol
successor rule when the minimum weight is 0, or the maximum weight is (k − 1)n

[GSWW20]. In the binary case, they can be constructed for any weight range in O(1)-
amortized time [SWW13]. When k = 2 and ℓ+1 = u, weight-range de Bruijn sequences
correspond to the universal cycles for (shorthand) subsets discussed in Section 3.1.

10 TITLE WILL BE SET BY THE PUBLISHER

3.5. DE BRUIJN SEQUENCES WITH FORBIDDEN 0z

A necklace class is an equivalence class of strings under rotation; we call the lexico-
graphically smallest string in the class a necklace. The necklace class containing α is de-
noted [α]. For example, if α = 0001 then [α] = {0001, 0010, 0100, 1000}. Let Nk(n, z)
denote the set of all necklaces in Σk(n) with no 0z substring for z > 1. All such neck-
laces end with 1 when z ≤ n. Let Zk(n, z) =

⋃
α∈Nk(n,z)

[α]. It is known that Zk(n, z)

admits a maximal length universal cycle that does not contain the substring 0z [4]. We
call a maximum length universal cycle that does not contain 0z as a substring, a de Bruijn
sequence with forbidden 0z .

The shift graph G(Zk(n, z)) is not necessarily regular. A random edge can be gen-
erated by applying the following recurrences. Let Fk(n, z) denote the number of k-ary
strings of length n with no 0z substring. It satisfies the following recurrence for z < n:

Fk(n, z) = (k−1)

z∑
j=1

Fk(n− j, z),

where Fk(n, z) = kn for z > n and Fk(n, n) = kn − 1.
Let Zk(n, z) denote the number of k-ary strings of length n with no 0z substring,

including the wraparound. It satisfies the following recurrence for z < n obtained by
partitioning the strings into those beginning with a non-zero, and those with j zeros in the
wraparound, in which case there are k−1 possibilities for each of the first non-zero and
last non-zero:

Zk(n, z) = (k−1)Fk(n− 1, z) + (k−1)2
z−1∑
j=1

j · Fk(n− j − 2, z),

where Zk(n, z) = kn for z > n and Zk(n, n) = kn − 1.
Given these recurrences, we can compute a random string in Fk(n, z) following a

similar unranking strategy using lexicographic order as done with WRk(n, [ℓ, u]) in the
previous subsection. We omit the details in this case. Table 6 shows the minimum, maxi-
mum, and average ratios of the cover time to total edges in G(F2(n, 2)) and G(F2(n, 3))
by running Algorithm R for 10,000 iterations.

The lexicographically smallest de Bruijn sequences with forbidden 0z can be generated
via a simple greedy algorithm [21]; it can also be generated efficiently by concatenating
the aperiodic prefixes of necklaces with no 0z substring as they appear in lexicographic
order [10, 21]. An exponential number of such sequences can be efficiently generated by
applying cycle-joining as described in [4].

3.6. ORIENTABLE SEQUENCES

Recall the definitions of a necklace class and necklace from the previous subsection.
A bracelet class is an equivalence class of strings under rotation and reversal; we call the

TITLE WILL BE SET BY THE PUBLISHER 11

Ratio: cover time / F2(n, 2)

n Min Max Avg
8 1.0 20.9 3.6
9 1.2 15.9 3.9

10 1.7 21.2 4.6
11 2.0 13.5 4.8
12 2.4 17.6 5.7
13 2.9 15.7 5.7
14 3.3 19.0 6.4
15 3.8 18.1 6.9
16 4.3 21.9 7.4
17 4.3 15.9 7.8
18 5.2 21.9 8.4
19 5.9 18.7 8.8
20 6.4 17.2 9.3
21 6.9 21.2 9.7
22 7.6 20.1 10.2
23 8.0 18.7 10.7
24 8.3 24.8 11.2

Ratio: cover time / F2(n, 3)

n Min Max Avg
8 1.4 21.5 4.3
9 1.8 13.3 4.6

10 2.5 18.7 5.3
11 3.1 14.8 5.8
12 3.8 17.5 6.5
13 4.1 16.5 7.0
14 4.5 17.0 7.7
15 5.5 16.7 8.2
16 6.1 20.0 8.9
17 6.7 19.8 9.5
18 7.4 17.7 10.1
19 8.2 16.3 10.6
20 8.8 16.9 11.3
21 9.6 15.8 11.8
22 10.2 17.7 12.5
23 10.8 18.0 13.1
24 11.0 22.8 13.9

TABLE 6. The minimum, maximum, and average ratios of the
cover time to total edges in the shift graphs G(F2(n, 2)) (left) and
G(F2(n, 3)) (right) by running Algorithm R for 10,000 iterations.

lexicographically smallest string in the class a bracelet. A bracelet is said to be asym-
metric if it is not in the same necklace class as its reversal. For example, 001011 is an
asymmetric bracelet, but 001001 is not. Let ABk(n) denote the set of all k-ary asym-
metric bracelets of length n, and let OSk(n) =

⋃
α∈ABk(n)

[α]. Let OSk(n) denote
|OSk(n)|.

For example, AB2(7) = {0001011, 0010111}, and

OS2(7) = {0001011, 0010110, 0101100, 1011000, 0110001, 1100010, 1000101} ∪
{0010111, 0101110, 1011100, 0111001, 1110010, 1100101, 1001011},

where OS2(7) = 14.
An orientable sequence is cyclic sequence such that each length-n substring occurs

at most once in either direction. For example, a maximum-length orientable sequence
for n = 5 and k = 2 is 001101. A universal cycle for OSk(n) is known to be an
orientable sequence with asymptotically optimal length [2, 3]. A formula for OSk(n), is
given in [6, 11]. Generating a random string from OSk(n) does not appear to be a trivial
matter. However, by randomly generating k-ary strings with rejection, on average only
two random strings need to be generated to obtain a string in OSk(n) as n gets large.
Thus, the expected time to generate a random edge in G(OSk(n)) is Θ(n).

12 TITLE WILL BE SET BY THE PUBLISHER

Ratio: cover time / OS2(n)

n Min Max Avg
6 0.8 0.8 0.8
7 0.9 8.5 1.5
8 0.9 18.8 3.2
9 1.3 13.2 4.3

10 2.1 14.7 5.0
11 2.7 18.4 5.7
12 3.6 16.3 6.5
13 4.2 17.0 7.2
14 5.1 17.6 7.9
15 5.3 18.0 8.5
16 6.2 18.9 9.2
17 7.0 18.4 9.9
18 7.8 18.6 10.6
19 8.6 17.7 11.2
20 9.5 17.7 11.8

TABLE 7. The minimum, maximum, and average ratios of the cover
time to total edges in the shift graph G(OS2(n)) by running Algorithm
R for 10,000 iterations.

Table 7 illustrates the minimum, maximum, and average ratios of the cover time to
total edges in G(OS2(n)) by running Algorithm R for 10,000 iterations.

Orientable sequences with asymptotically optimal length can be constructed in O(n)-
time per symbol using O(n) space [11]; in the binary case, they can be constructed in
O(1)-amortized time per bit using O(n2) space.

REFERENCES

[1] OEIS Foundation Inc. (2025), Entry A000670 in The On-Line Encyclopedia of Integer Sequences,
https://oeis.org/A000670.

[2] ALHAKIM, A., MITCHELL, C. J., SZMIDT, J., AND WILD, P. R. Orientable sequences over non-binary
alphabets. In Cryptography and Communications (to appear) (2024).

[3] BURNS, J., AND MITCHELL, C. Position sensing coding schemes. In Cryptography and Coding III
(M.J.Ganley, ed.) (1993), Oxford University Press, pp. 31–66.

[4] CHEE, Y. M., ETZION, T., NGUYEN, T. L., TA, D. H., TRAN, V. D., AND VU, V. K. Maximum length
RLL sequences in de Bruijn graph, arXiv preprint arXiv:2403.01454, 2024.

[5] COOPER, C., AND FRIEZE, A. The cover time of random regular graphs. SIAM Journal on Discrete
Mathematics 18, 4 (2005), 728–740.

[6] DAI, Z.-D., MARTIN, K., ROBSHAW, B., AND WILD, P. Orientable sequences. In Cryptography and
Coding III (M.J.Ganley, ed.) (1993), Oxford University Press, pp. 97–115.

[7] FEIGE, U. A tight lower bound on the cover time for random walks on graphs. Random Structures &
Algorithms 6, 4 (1995), 433–438.

[8] FEIGE, U. A tight upper bound on the cover time for random walks on graphs. Random Structures &
Algorithms 6, 1 (1995), 51–54.

TITLE WILL BE SET BY THE PUBLISHER 13

[9] FEIGE, U. Collecting coupons on trees, and the cover time of random walks. computational complexity 6,
4 (1996), 341–356.

[10] GABRIĆ, D., AND SAWADA, J. Constructing de Bruijn sequences by concatenating smaller universal
cycles. Theoret. Comput. Sci. 743 (2018), 12–22.

[11] GABRIĆ, D., AND SAWADA, J. Constructing k-ary orientable sequences with asymptotically optimal
length. Designs, Codes and Cryptography (Feb 2025).

[12] GABRIĆ, D., SAWADA, J., WILLIAMS, A., AND WONG, D. A successor rule framework for constructing
k -ary de Bruijn sequences and universal cycles. IEEE Transactions on Information Theory 66, 1 (2020),
679–687.

[13] HOLROYD, A. E., RUSKEY, F., AND WILLIAMS, A. Shorthand universal cycles for permutations. Algo-
rithmica 64, 2 (2012), 215–245.

[14] KANDEL, D., MATIAS, Y., UNGER, R., AND WINKLER, P. Shuffling biological sequences. Discrete
Applied Mathematics 71, 1 (1996), 171–185.

[15] LIPTÁK, Z., AND PARMIGIANI, L. A BWT-based algorithm for random de Bruijn sequence construction.
In LATIN 2024, LNCS 14578 (2024), pp. 130–145.

[16] RUSKEY, F. Combinatorial generation. Working Version (1j-CSC 425/520) (2003).
[17] RUSKEY, F., SAWADA, J., AND WILLIAMS, A. De Bruijn sequences for fixed-weight binary strings.

SIAM J. Discrete Math. 26, 2 (2012), 605–617.
[18] RUSKEY, F., AND WILLIAMS, A. An explicit universal cycle for the (n-1)-permutations of an n-set. ACM

Trans. Algorithms 6, 3 (July 2010), 1–12.
[19] SAWADA, J., SEARS, J., TRAUTRIM, A., AND WILLIAMS, A. Concatenation trees: A framework for

efficient universal cycle and de Bruijn sequence constructions. arXiv preprint arXiv:2308.12405 (2024).
[20] SAWADA, J., AND WILLIAMS, A. A universal cycle for strings with fixed-content. Manuscript (2021).
[21] SAWADA, J., WILLIAMS, A., AND WONG, D. Generalizing the classic greedy and necklace constructions

of de Bruijn sequences and universal cycles. Electron. J. Combin. 23, 1 (2016), Paper 1.24, 20.
[22] SAWADA, J., AND WONG, D. Efficient universal cycle constructions for weak orders. Discrete Mathemat-

ics 343, 10 (2020), 112022.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

	1. Introduction
	2. Algorithm
	3. Applications and experimental results
	3.1. Permutations, subsets, and multiset permutations
	3.2. Weak orders
	3.3. de Bruijn sequences
	3.4. Weight-range de Bruijn sequences
	3.5. de Bruijn sequences with forbidden 0z
	3.6. Orientable sequences

	References

