
Magic Labelings on Cycles and Wheels

Andrew Baker and Joe Sawada

University of Guelph, Guelph, Ontario, Canada, N1G 2W1
{abaker04, jsawada}@uoguelph.ca

Abstract. We present efficient algorithms to generate all edge-magic
and vertex-magic total labelings on cycles, and all vertex-magic total
labelings on wheels. Using these algorithms, we extend the enumeration
of the total labelings on these classes of graphs.

1 Introduction

Consider a wireless network in which every device must be able to connect to
a subset of the other devices in the network using a unique channel to prevent
collisions. One way to create such a channel assignment is to give numeric labels
to the devices and channels in such a way that the labels of two devices and the
communication line between them sum to a consistent value across every pair of
devices in the network. In this case, knowing the labels of the two communicating
devices gives the identification number of the communication line between them
[1].

This solution is an example of an edge-magic total labeling (EMTL). EMTLs
are one application of the “magic” concept of magic squares to graphs. Given
a simple undirected graph G = (V, E), let λ be a mapping from the numbers
1 through |V | + |E| to the elements (vertices and edges) of G such that each
element has a unique label. An edge-magic total labeling is a labeling λ in which
the weight of each edge is the same. The weight of an edge is obtained by the
sum of the label of the edge and the labels of its two endpoints and denoted by
w(e). If the weight is the same for every edge, it is termed the magic constant
of the labeling, and is given by h. For an example of an EMTL with h = 20, see
Fig 1(a).

A vertex-magic total labelling (VMTL) is a labeling λ in which the weight
w(v) of each vertex is the same. The weight of a vertex is obtained by adding
the sum of the labels of the incident edges to the label of the vertex itself. If the
weight is the same for every vertex in the graph, it is called the magic constant
and is given by k. For an example of an VMTL with k = 20, see Fig 1(b).

A totally magic labeling is a labeling λ which is simultaneously both a vertex-
magic total labeling and an edge-magic total labeling. The magic constants h and
k are not necessarily equal. The class of totally magic graphs (those which admit
a totally magic labeling) is much more restricted than the edge-magic or vertex-
magic graphs. Figure 2 gives an example of a totally magic labeling on the cycle
C3. The only known connected totally magic graphs are K1, K3, and P3. There

b)a) 1

7

11

2

8

10

4

6

9

5

3
12

1

7

11

2

8

10

4

6

9

5
3

12

Fig. 1. Two C6 graphs with corresponding edge-magic and vertex-magic total labelings.
a) gives an edge-magic total labeling, and b) gives a vertex-magic total labeling.

6

3
4

5

1

2

Fig. 2. The graph C3 with a totally magic labeling. In this case, h = 9 (the edge-magic
constant), and k = 12 (the vertex-magic constant).

are however an infinite number of disconnected totally magic graphs, as any
graph consisting of a union of 2n+1 (n ≥ 0, n ∈ Z) disjoint triangles is a totally
magic graph [1]. There are additional types of magic labelings described beyond
EMTLs, VMTLs and totally magic labelings. For a more complete treatment,
see Gallian’s dynamic survey [2].

Depending on which labels are assigned to vertices and which to edges, it is
possible to achieve labelings with different magic constants on the same graph.
A lower bound for a VMTL is obtained by applying the largest |V | labels to the
vertices, while an upper bound is found by applying the smallest |V | labels to the
vertices. Summing the weights of every vertex in a VMTL gives us

∑
v∈V w(v) =

|V |k. Every vertex label contributes to one weight (the weight of that vertex)
while every edge label contributes to two weights (the weights of its two end
points). Thus |V |k =

∑
v∈V λ(v) + 2

∑
e∈E λ(e). By applying either the |V |

smallest or largest labels to the vertices, we can obtain the inequality

13n2 + 11n + 2
2(n + 1)

≤ k ≤ 17n2 + 15n + 2
2(n + 1)

which gives basic limits on the magic constant of a graph without taking into
account the structure of the graph [3]. Once the structure of the graph is taken

into account, additional limits may be found. The set of integers which are
delimited by these upper and lower bounds is the feasible range. The values
which are the magic constant for some VMTL of a graph form the graph’s
spectrum. Therefore the spectrum is a subset of the feasible range.

In this paper we focus on finding all non-isomorphic VMTLs for cycles and
wheels. Section 2 presents previous results with respect to vertex-magic total
labelings on cycles and wheels. Sections 3 and 4 detail the enumeration algo-
rithms and results for cycles and wheels respectively. Open problems for further
research are presented in Section 5.

2 Background

Throughout this paper, we focus primarily on two classes of graph, the cycles
and the wheels. The cycle Cn is given by the vertex set v1, v2, . . . , vn ∈ V (G),
and edge set ei ∈ E(G) where for 1 ≤ i < n, ei = {vi, vi+1} and en = {v1, vn}.
Cycles are regular graphs (graphs in which every vertex has the same degree) as
every vertex has degree 2. The wheels Wn consist of a cycle Cn together with an
additional dominating vertex. A dominating vertex is a vertex which is adjacent
to every other vertex in the graph. Figure 3 shows a sample wheel graph (W6)
and illustrates the naming scheme we will use while discussing parts of a wheel.
Except for W3, the wheels are not regular graphs.

2.1 Cycles

Every vertex-magic total labeling on a cycle (and indeed any regular graph) has
a mirrored dual labeling. This property allows us, given an original labeling λ
on graph G, to obtain the dual labeling λ′ given by λ′(v) = |V |+ |E|+ 1− λ(v)
for all vertices v ∈ V (G) and λ′(e) = |V |+ |E|+1−λ(e) for all edges e ∈ E(G).
The resulting magic constant k′ is given by k′ = 6n + 3 − k for cycles [4].
Consequently, the distribution of VMTLs by magic constant is symmetrical over
the feasible range, and the presence of a VMTL achieving a magic constant in
the upper half of the feasible range may be inferred by the presence of the dual
labeling achieving the corresponding magic constant in the lower half of the
feasible range.

Cycles also have a one-to-one correspondence between their edge- and vertex-
magic total labelings. To obtain an EMTL λe from a vertex-magic total labeling
λv, set λe(vi) = λv(ei) and λe(ei) = λv(v(i+1) mod |V |) [4]. Figure 1 shows this
correspondence graphically. Due to this relationship with EMTLs (which were
developed earlier than VMTLs), previous work has been done to enumerate the
edge-magic (and therefore also the vertex-magic) total labelings on cycles. The
cycles C3 through C10 were completely enumerated by Godbold and Slater [5].
We confirm these calculations, and also count the number of VMTLs/EMTLs
on the cycles C11 through C18.

Godbold and Slater show that a VMTL exists for every feasible magic con-
stant for Cn when n > 4 [5]. Our enumeration breaks down the results for cycles
by magic constant.

Hub

Rim

Spoke

Vertex

Fig. 3. The wheel graph W6 demonstrating the naming convention we adopt for the
elements of a wheel.

2.2 Wheels

As the wheel Wn consists of a cycle Cn together with a dominating hub vertex,
Wn has n + 1 vertices and 2n edges. The vertices v1 through vn refer to the
vertices of the cycle, with the rim edges r1 through rn corresponding to the
cycle edges e1 through en. The spoke edges are those which connect the hub to
a cycle vertex, and are given by si = {hub, vi} for 1 ≤ i ≤ n. We demonstrate
this naming scheme graphically in Figure 3.

A general conjecture on VMTLs is that having vertices in a graph which differ
widely with regard to their degrees prevents that graph from having a vertex-
magic total labeling. This holds for wheels, which have a high-degree hub, as
shown by MacDougall, Miller and Wallis in [3].

MacDougall et al. give two different methods of computing a feasible range
for wheel graphs, and the true feasible range is given by the most restrictive
maximum and minimum values. In addition to the bounds on the feasible range
given earlier, the feasible range on wheels can been further bounded from below
by k ≥ (n+1)(n+2)

2 and above by k ≤ 7n + 6 once you take the structure of
the wheel into account. For the wheels Wn with n > 11, the minimum magic
constant is larger than the maximum magic constant, so no VMTL can exist.
MacDougall et al. also enumerate the VMTLs on wheels for W3 (which is also
the complete graph K4), W4, and W5 [3]. We extend these results, counting W6

through W10.

3 Cycle Algorithm

A näıve method to generate all vertex-magic total labelings for a graph is to
simply try all (|V | + |E|)! permutations of the mapping of the labels onto the
elements of the graph, and check to see if each result is a VMTL. Not only does
this rapidly become infeasible on its own, as the size of the cycle increases it will
also allow isomorphic copies of the same labeling to be generated independently.
As such, every successfully generated VMTL must be compared to every other
previously generated VMTL in order to remove duplicate copies.

4
63 x

5

Fig. 4. A partial labeling of a piece of a graph with determined label x.

Our general approach is to apply vertex and edge labels working iteratively
around the cycle. In the cycle VMTL generation algorithm, we remove cases
of rotational symmetry by assigning the smallest vertex label to v1, and then
handle the reflective symmetry by making sure that λ(e1) < λ(en). Since v1

must receive the smallest vertex label, it cannot be larger than n + 1 or there
will be insufficient labels to label the remaining vertices.

Since we are interested in calculating the number of VMTLs for each magic
constant, the algorithm we develop takes both n (the size of the cycle) and k
(the magic constant) as input.

We say that a label is a determined label if it contributes its value to the
weight of a vertex for which every other contributing label is known. Assuming
we know the magic constant we are trying to reach, there is only one possible
value for the determined label. There are three conditions on a determined label
λ(x) which allow us to terminate the recursion tree at this node and backtrack.
These conditions are:

1. λ(x) < 1,
2. λ(x) > |V |+ |E|, and
3. λ(x) has already been used in this labeling.

Figure 4 gives a partial labeling and illustrates a determined label. In this ex-
ample, if the desired magic constant is 20, then x must be 11. However, if the
desired magic constant is 15, then x would have to be 6. Since 6 has already
been used in this labeling, it would not be a valid partial labeling for k = 15. If
in a cycle we have magic constant k, then λ(e2) = k−λ(v2)−λ(e1). Then, once
we know λ(v3) and λ(e2), we are able to determine λ(e3).

Our algorithm aims to obtain determined labels as quickly as possible. If a
given label being applied in the algorithm is determined and the partial labeling
is infeasible, then the entire computation subtree rooted at that partial labeling
can immediately be excluded. Even in the worst-case scenario, where none of
the determined labels eliminates a partial labeling, the use of a determined
label reduces the branching factor at a position in the computation tree from
1 ≤ i ≤ |V |+ |E| to 1.

Before the algorithm itself is called, the global variables n and k are set with
the size of the cycle and desired magic constant respectively, and the available
list is initialized to every label being currently available. The actual algorithm
begins with an initialization phase (by a call to initializeCycle()) which sets
the labels of a vertex and two edges (v1, e1, and en). The initialize function
then calls extendCycle(2) which recursively labels the remaining vertices and
edges. Execution completes when there is only one vertex (vn) remaining without

function initializeCycle ()
for each available label i where i ≤ n + 1 do

λ(v1) := i
avail [i] := false
for each available label j do

λ(e1) := j
avail [j] := false
λ(en) := k − λ(v1)− λ(e1)
if λ(e1) < λ(en) ≤ 2n and avail [λ(en)] then

avail [λ(en)] := false
extendCycle (2)
avail [λ(en)] := true

avail [j] := true
avail [i] := true

Fig. 5. Pseudocode for the initialization function for cycles. Global variables n and k
are set to the desired values before the initializeCycle function is called.

a label. A linked list of unused labels is maintained at all times. This way, the
more complete the partial labeling becomes, the fewer potential labels must be
considered for each non-determined element.

The initialization function starts the labeling by attempting every possible
label for vertex v1 and edge e1. We require that λ(v1) be the minimal vertex
label in order to remove rotational symmetry. The maximum possible label for
v1 is n + 1 due to the fact that since v1 receives the minimum vertex label, we
must retain n−1 labels greater than λ(v1) for the other vertices. This determines
the label for edge en. In order to remove reflective symmetry, we require λ(en) >
λ(e1). The initialization function then calls the extend function with parameter
2. The pseudocode for the initialization function can be found in Figure 5.

The extend method takes a single parameter - the position (t) in the cycle
which is to be generated. A single loop applies, in turn, every unused label
greater than λ(v1) to vertex vt. Applying a label to vt determines the label for
et. The extend method then calls itself with parameter t + 1. The recursion
terminates when t = n. At this point there is only one unlabeled element, vn,
which is obviously determined. If the single remaining label is the required label,
then the VMTL is successfully completed and the Print() method is called.
Print() is a generic function which can be used to perform any operation on
the completed VMTL. In the case of enumeration, a count of the number of
VMTLs is incremented. Figure 6 gives the pseudo-code for the extend function.

In order to obtain results more quickly, the algorithm is parallelized to run
on multiple different processors. Each process is given an integer value as a
command-line argument which acts as a static value for the first element to be
assigned a label. Instead of iterating through all available values, the algorithm
simply uses the supplied label. As the runtime increases for larger graphs, the

function extendCycle (t)
if t = n then

λ(vn) := k − λ(en)− λ(en−1)
if λ(v1) < λ(vn) ≤ 2n and avail [λ(vn)] then

Print ()
else

for each available label i where i > λ(v1) do
λ(vt) := i
avail [i] := false
λ(et) := k − λ(vt)− λ(et−1)
if 0 < λ(et) ≤ 2n and avail [λ(et)] then

avail [λ(et)] := false
extendCycle (t + 1)
avail [λ(et)] := true

avail [i] := true

Fig. 6. Pseudocode for the extend function for cycles. Global variables n and k are set
to the desired values before the extendCycle function is called.

Table 1. The total number of non-isomorphic VMTLs for cycle graphs Cn (3 ≤ n ≤
18).

Cn

n Unique VMTLs n Unique VMTLs n Unique VMTLs n Unique VMTLs

3 4 7 118 11 36128 15 74931690

4 6 8 282 12 206848 16 613296028

5 6 9 1540 13 1439500 17 5263250382

6 20 10 7092 14 10066876 18 47965088850

problem is distributed to more processors by supplying two seed values which
determine the first two elements to receive labels.

3.1 Results

Table 1 gives the total number of EMTLs/VMTLs on the cycles C3 through C18,
of which C11 through C18 had not previously been enumerated. Table 2 give the
number of unique labelings broken down by magic constant.

4 Wheel Algorithm

Wheel graphs have a clear relationship to the cycles so the algorithm for generat-
ing all unique VMTLs on wheel Wn bears a similarity to the algorithm for cycle
Cn. However, the extra vertex and additional n edges complicate the process.

Table 2. The number of unique VMTLs for cycle graphs C3 through C10 broken down
by magic constant (k). (Note that the duals have not been included.)

C3 C4 C5 C6

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

9 1 12 1 14 1 17 3

10 1 13 2 15 0 18 1

16 2 19 6

C7 C8 C9 C10

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

19 9 22 10 24 31 27 125

20 10 23 19 25 43 28 236

21 11 24 57 26 125 29 698

22 29 25 55 27 264 30 1138

28 307 31 1349

C11 C12 C13 C14

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

29 308 32 1602 34 3809 37 32077

30 711 33 4111 35 10967 38 91866

31 1781 34 10834 36 33951 39 299525

32 3371 35 19183 37 79234 40 576701

33 4945 36 30877 38 139499 41 977354

34 6948 37 36817 39 202253 42 1427929

40 250037 43 1627986

C15 C16 C17 C18

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

39 63995 42 884789 44 1152784 47 26677502

40 284590 43 2706053 45 8660408 48 104169715

41 889063 44 8685625 46 30280605 49 351608789

42 2332807 45 20266824 47 86881643 50 859974262

43 4402572 46 37574150 48 187828262 51 1815449072

44 7339913 47 59829497 49 336981439 52 3082588134

45 10395599 48 83018416 50 511013242 53 4648495519

46 11757306 49 93682660 51 683131331 54 6154283390

52 785695477 55 6939298042

As with the cycle algorithm, our wheel VMTL generation algorithm applies
vertex and edge labels working iteratively around the edge of the cycle portion
of the wheel. We remove rotational symmetry by assigning the smallest spoke
label to s1. As with cycles, reflective symmetry is removed by ensuring that
λ(r1) < λ(rn). We use the s1 instead of the v1 to remove rotational symmetry
for the wheel in order to trim the computation tree of partial labelings which will
result in a hub with excessive weight more efficiently. Since s1 must receive the
smallest spoke label, it cannot be larger than 2n + 2 or there will be insufficient
labels to label the remaining spokes.

Determined labels continue to be an asset to remove subtrees of the compu-
tation tree. In this case, we require three labels in order to determine a fourth.
For example, λ(r2) = k − λ(s2)− λ(v2)− λ(r1).

As in the case of the cycles, before the algorithm itself is called, the global
variables n and k are set with the size of the wheel and desired magic constant
respectively, and the available list is initialized to every label being currently
available. The actual algorithm begins with an initialization phase (by a call to
initializeWheel()) which labels s1, e1, en, and v1 in such a way as to prevent
isomorphic labelings from being generated. The initialize function then calls
extendWheel(2) which recursively labels a spoke, exterior vertex, and rim
and calls itself until only sn, vn, and the hub remain, which are then labeled by
a call to finalizeWheel(). Also like the cycle algorithm, a linked list consisting
of the unused labels is maintained in order to improve efficiency as the partial
labeling becomes more complete.

The initialization function starts the labeling by attempting every possible
label for spoke edge s1 and rim edge r1. Every possible label greater than λ(r1)
is applied to rn, thus removing reflective symmetry. This determines the label
for vertex v1. The initialization function then calls the extend function with
parameter 2. The pseudocode for the initialization function is given in Figure 7.

The extend function takes a single parameter t which gives the position of
the wheel currently being expanded and applies every possible label greater than
λ(s1) to st. The extend function then applies every possible label to vt which
determines the label for rt. The finalize function is called when t = n.

In order to prune the computation tree more effectively, we keep a close watch
on the weight of the hub vertex through the variable hubWeight. Due to its high
degree, its weight can easily exceed the desired magic constant. Every time a
label is applied to a spoke, the partial hub weight variable is updated. Once
in each iteration of the extend method, we check to ensure that the minimum
weight the hub can achieve is less than or equal to the desired magic constant.
The minimal weight is given by the partial weight plus the smallest unused label
(applied to the hub) and the n− t smallest unused labels which are greater than
λ(s1). If the minimal hub weight is larger than the desired magic constant, the
partial labeling fails and the next set of labels is considered. The pseudocode for
the extend function can be found in Figure 8.

The finalize function tries every available label for sn which is greater than
λ(s1). This determines the labels for both vn and the hub. If these last labels

function initializeWheel ()
for each available label i do

λ(s1) := i
hubWeight := λ(s1)
avail [i] := false
for each available label j do

λ(r1) := j
avail [j] := false
for each available label p where p > λ(r1) do

λ(rn) := p
avail [p] := false
λ(v1) := k − λ(s1)− λ(r1)− λ(rn)
if 0 < λ(v1) ≤ 3n + 1 and avail[λ(v1)] then

avail [λ(v1)] := false
extendWheel (2)
avail [λ(v1)] := true

avail [p] := true
avail [j] := true

avail [i] := true

Fig. 7. Pseudocode for the initialization function for wheels. Global variables n and k
are set to the desired values before the initializeWheel function is called.

can be successfully applied, then the Print() method is called which increments
the number of labelings. Figure 9 gives the pseudocode for the finalize function.

4.1 Results

Table 3 gives the total number of VMTLs on the wheels W3 through W10, of
which W6 through W10 had not previously been enumerated. Results on W11

are currently pending completion. Table 4 gives the number of unique labelings
broken down by magic constant. Of particular note is the fact that W9 does
not have a VMTL for k = 58 even though it is in the feasible range as given
by MacDougall, Miller, and Wallis in [3]. Goemans gave a counting argument
showing why no VMTL on W9 can have k = 58 after we posed the problem of
the missing labeling [6].

5 Conclusion and Open Problems

As there are EMTLs/VMTLs for all cycles Cn with n ≥ 3, the number of unique
labelings on larger cycles remain an open problem. It is desirable, however, to
determine a formula which gives the number of EMTLs/VMTLs on a cycle of
size n without having to actually count them.

In addition to the wheels, MacDougall, Miller and Wallis present other re-
lated classes of graphs which have similar size restrictions [3]. Figure 10 gives

function extendWheel (t)
if t = n then

finalizeWheel()
else

for each available label i where i > λ(s1) do
λ(st) := i
avail [i] := false
hubWeight := hubWeight + λ(st)
potentialHub := the minimum available label
potentialSpokes := the sum of the n− t smallest available labels > λ(s1)
if (hubWeight + potentialHub + potentialSpokes < k) then

for each available label j do
λ(rt) := j
avail [j] := false
λ(vt) := k − λ(st)− λ(rt)− λ(rt−1)
if 0 < λ(vt) ≤ 3n + 1 and avail [λ(vt)] then

avail [λ(vt)] := false
extendWheel (t + 1)
avail [λ(vt)] := true

avail [j] := true
avail [i] := true

Fig. 8. Pseudocode for the extend function for wheels. Global variables n and k are
set to the desired values before the extendWheel function is called.

sample graphs for three of these related classes: fans, t-fold wheels, and friendship
graphs.

Acknowledgements

This work was made possible by the facilities of the Shared Hierarchical Aca-
demic Research Computing Network (SHARCNET:www.sharcnet.ca).

References

1. Wallis, W.D.: Magic Graphs. Birkhäuser, New York, NY, USA (2001)
2. Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal of

Combinatorics 15 (2008) #DS6
3. MacDougall, J.A., Miller, M., Wallis, W.D.: Vertex-magic total labelings of wheels

and related graphs. Utilitas Mathematica 62 (2002) 175–183
4. MacDougall, J.A., Miller, M., Slamin, Wallis, W.D.: Vertex-magic total labelings

of graphs. Utilitas Mathematica 61 (2002) 3–21
5. Godbold, R.D., Slater, P.J.: All cycles are edge-magic. Bulletin of the ICA 22

(1998) 93–97
6. Goemans, M. personal communication (2008)

function finalizeWheel ()
for each available label i where i > λ(s1) do

λ(sn) := i
avail [i] := false
λ(vn) := k − λ(sn)− λ(rn)− λ(rn−1)
if 0 < λ(vn) ≤ 3n + 1 and avail[λ(vn)] then

avail [λ(vn)] := false
λ(hub) := k −∑n

i=1 λ(si)
if 0 < λ(hub) ≤ 3n + 1 and avail[λ(hub)] then

Print ()
avail [λ(vn)] := true

avail [i] := true

Fig. 9. Pseudocode for the finalize function for wheels. Global variables n and k are
set to the desired values before the finalizeWheel function is called.

Table 3. The total number of non-isomorphic VMTLs for wheel graphs Wn (3 ≤ n ≤
8).

Wn

n Unique VMTLs n Unique VMTLs n Unique VMTLs

3 14 6 859404 9 17804388662

4 2080 7 22063500 10 418858095690

5 31892 8 637402504 11 pending

b)

c)

a)

Fig. 10. Examples of graphs in three classes related to the wheels: a) t-fold wheel, b)
friendship graph, c) fan.

Table 4. The number of unique VMTLs for wheel graphs W3 through W5 broken down
by magic constant (k).

W3 W4 W5

k Unique VMTLs k Unique VMTLs k Unique VMTLs

19 0 26 89 32 239

20 2 27 149 33 1242

21 5 28 522 34 2694

22 0 29 376 35 5180

23 5 30 573 36 7873

24 2 31 211 37 7173

25 0 32 131 38 4124

33 29 39 2511

40 776

41 80

W6 W7 W8

k Unique VMTLs k Unique VMTLs k Unique VMTLs

39 5978 45 24998 52 795294

40 36945 46 204170 53 7352502

41 76335 47 880257 54 28521585

42 158805 48 2198247 55 64090384

43 173887 49 3637665 56 106131735

44 187409 50 4760707 57 132239986

45 116447 51 4425875 58 133415487

46 77827 52 3384967 59 92798616

47 21793 53 1818749 60 53134373

48 3978 54 646233 61 17008206

55 81632 62 1914336

W9 W10 W11

k Unique VMTLs k Unique VMTLs k Unique VMTLs

58 0 66 1739667155 78 pending

59 34364364 67 4780216858 79 pending

60 236314351 68 18515045434 80 pending

61 833847423 69 39874554946 81 pending

62 1846542901 70 75518840087 82 162942689359

63 2996328931 71 84888911188 83 8201853531

64 3821193834 72 90187289669

65 3553033163 73 60230503071

66 2649033979 74 33425583234

67 1364327018 75 9122758622

68 435740211 76 574725426

69 33662487

