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THE NUMBER OF IRREDUCIBLE POLYNOMIALS AND LYNDON
WORDS WITH GIVEN TRACE*

F. RUSKEY', C. R. MIERS!, AND J. SAWADAT

Abstract. The trace of a degree n polynomial f(x) over GF(q) is the coefficient of 1. Carlitz
[Proc. Amer. Math. Soc., 3 (1952), pp. 693-700] obtained an expression I4(n,t) for the number
of monic irreducible polynomials over GF(q) of degree n and trace t. Using a different approach,
we derive a simple explicit expression for I4(n,t). If t > 0, Io(n,t) = (O w(d)g™/4)/(gn), where
the sum is over all divisors d of n which are relatively prime to gq. This same approach is used to
count Lg(n,t), the number of g-ary Lyndon words whose characters sum to ¢t mod ¢. This number is
given by Lg(n,t) = (E ged(d, q)u(d)g™4)/(gn), where the sum is over all divisors d of n for which
ged(d, q)|t. Both results rely on a new form of Mobius inversion.
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1. Introduction. The trace of a degree n polynomial f(z) over GF(q) is the co-
efficient of x"~1. Tt is well known that the number of degree n irreducible polynomials
over GF(q) is given by

(11) 1) =~ S (),
d|n

where p(d) is the Mobius function. Less well known is the formula

1
_ n/d
(1.2) Ir(n,1) = o dg‘ u(d)2™e,
d odd

which is the number of degree n irreducible polynomials over GF(2) with trace 1 (this
can be inferred from results in Jungnickel [3, section 2.7]). One purpose of this paper
is to refine (1.1) and (1.2) by enumerating the irreducible degree n polynomials over
GF(q) with a given trace. Carlitz [1] also solved this problem, arriving via a different
technique at an expression that is different but equivalent to the one given below.
Our version of the result is stated in Theorem 1.1.

THEOREM 1.1. Let q be a power of prime p. The number of irreducible polyno-
mials of degree n > 0 over GF(q) with a given nonzero trace t is

1
(1.3) Iq(n,t) = e E p(d)g™/?.
dln
ptd
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Note that the expression on the right-hand side of (1.3) is independent of ¢ and that
I,(n,0) can be obtained by subtracting

14(n,0) = I4(n) — (¢ = 1)Iy(n, 1).

A Lyndon word is the lexicographically smallest rotation of an aperiodic string.
If Ly(n) denotes the number of g-ary Lyndon words of length n, then it is well known
that Ly(n) = I;(n). The trace of a Lyndon word is the sum of its characters mod
g. Let Ly(n,t) denote the number of Lyndon words of trace ¢t. The second purpose
of this paper is to obtain an explicit formula for Lq(n,t). This result is stated in
Theorem 1.2.

THEOREM 1.2. For all integersn >0, ¢ > 1, and t € {0,1,...,q — 1},

Lynt) = 3 geddguld)q".

d|n
ged(d,q)|t

Note that I;(n,t) = Lq¢(n, s) whenever t # 0 and ged(n, s) = 1. In order to prove
Theorems 1.1 and 1.2 we need a new form of M&bius inversion. This is presented in
the next section.

2. A generalized Mobius inversion formula. The defining property of the
Mobius functions is

(2.1) S ud) = =11,
d|n

where [P] for proposition P represents the “Iversonian convention”: [P] has value 1
if P is true and value 0 if P is false (see [4, p. 24]).
DEFINITION 2.1. Let R be a set, N={1,2,3,...}, and let {X(d,t)}1er,den be a
family of subsets of R. We say that {X(d,t)}ter den is recombinant if
(1) X(1,t) ={t} forallt € R and
(ii) {¢' € X(d',e) :e € X(d,t)} ={e € X(dd',t)} for alld,d € N;t € R.
THEOREM 2.2. Let {X(d,t)}ter.den be a recombinant family of subsets of R.
Let A:N xR — C and B : N xR — C be functions, where C is a commutative ring

with identity. Then
-2 > 5(Ge)

din eeX(d,t)
for allm € N and t € R if and only if
n
=2 2 A(Ge)
e€X(d,t)

forallme N andt e R.
Proof. Consider the sum, call it S, on the right-hand side of the first equation

Y 53

din e€X(d,t)

- Z Z Z Z pud)A (dd” ,>

dln eeX(d,t) d'|(n/d) e’€X(d’e)

XS XS A(e)

din dd’|n eeX(d,t) e’eX(d e
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Now substitute f = dd’ and use recombination to get

cppv-an() 5, 5 4G

dln fln e€eX(d,t) e’eX(de)

2r) 3, 1G9

fln dlf e€X (f.t)
n /

-2 ¥ a(fe)Zu(d)

fln e€X(f,t) dlf
DIDIRICOIEE

fln e€X(f,t)
= A(n,t).

Verification in the other direction is similar and is omitted. 0

LEMMA 2.3. Let d € N and e,t be members of an additive monoid R. The sets
{e:de =t} form a recombinant family.

Proof. Here de means e+e+ - --+e (d terms). Suppose that de =t and d'e’ = e.
Clearly, dd'e’ = t. Conversely, if dd'e’ = t, then d’'¢’ is equal to some element of R,
call it e. Then d'¢’ = e and de = t. O

COROLLARY 2.4. For a fized prime power q, the sets Xq(d,t) = {e € GF(q) :
de =t} form a recombinant family of subsets of GF(q).

COROLLARY 2.5. For a fized integer q, the sets Xq(d,t) = {e € Z, : de = t(q)}
form a recombinant family of subsets of Z4, where Zq are the integers mod q.

3. Irreducible polynomials with given trace. In this section, the irreducible
polynomials with a given trace are counted. We begin by introducing some notation
that will be used in the remainder of the paper. We use Jungnickel [3] as a reference
for terminology and basic results from finite field theory.

The trace of an element 5 € GF(¢™) over GF(q) is denoted T'r(3) and is given
by

1—1

Tr(B) =+ B7+ 87 + -+ 47

If 8 € GF(¢™) and d is the smallest positive integer for which 6qd =1, then f(z)
is the minimal polynomial of 3, denoted Min(3), where

1

f@)=(@=B)z—pY-(x—p7"").

The value of d must be a divisor of n.

Let Irry(n,t) denote the set of all monic irreducible polynomials over GF(q) of
degree n and trace t. By a-Irry(n,t) we denote the multiset consisting of a copies of
Irr,(n,t). Classic results of finite field theory imply the following equality of multisets:

(3.1) U i@} = Jd-Tr(@) = J 5Ty (5).
d|n d|n

BEGF(qm)

where Irr,(d) is the set of monic irreducible polynomials of degree d over GF(q).
From (3.1) it is easy to derive (1.1) via a standard application of Mébius inversion.
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Now we restrict the equality (3.1) to trace t field elements to obtain

(3.2) U {Min(g U {f € Irr, (%) : Tr(fY) = t}
BEGF(q™)
Tr(g)=t

(3.3) Ug {fe Irr, (Z) : d-Tr(f) :t}

(3.4) U U {fEIrrq (%) s Tr(f) :e}
(3.5) pU {fEIrrq(d )}

Note that the equation de = ¢ is asking whether the d-fold sum of e € GF(q)
is equal to t € GF(q). We use the notation GF(q",t) for the set of elements in
GF(q") with trace t, for t = 0,1,...,qg — 1, where ¢ = p™ and p is prime. Consider
the map p that sends a to a + «, where v € GF(¢"™) has trace 1. We claim that
p(GF(¢™,t)) = GF(q",t + 1), and so the number of elements is the same for each
trace value. Thus

|GF(q",t)| =q¢"".

Taking cardinalities in (3.5) gives

- i ()

d|n de=t

From Theorem 2.2 and Corollary 2.4, we obtain

LY S e

d|n de=t

The equation de = t where d is an integer and e, t € GF'(¢q) has a unique solution
eift #0 and p{d. If t = 0, then there is one solution e = 0 if p 1 d and there are ¢
solutions if p | d. Thus, if ¢ # 0, then

Zu )g" 4,

dln
ptd

thereby proving Theorem 1.1. Otherwise, if t = 0, then

1y(n,0) = T, 1)+ S p(d)a.

dln
pld

4. Lyndon words with given trace. If a = ajas---a, is a word, then we
define its trace mod ¢, T'rq(a), to be > a; mod ¢q. Let Ly(n,t) denote the number
of g-ary Lyndon words of length n and trace ¢ mod ¢g. Note that any g-ary string of
length n can be expressed as the concatenation of d copies of the rotation of some
Lyndon word of length n/d for some d | n. Note further that there are precisely ¢"~*
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words of length n with trace ¢ because any word of length n — 1 can have a final nth
character appended in only one way to have trace t. It therefore follows that

_ n n

(41) qn 1 = Z Z ELq (E,e> .

d|n de=t(q)
This can be solved using Theorem 2.2 and Corollary 2.5 to yield

H=Yud Y g
d|n de=t(q)

Hence

1
(4.2) Lo(n,t)=— > ged(q, d)pu(d)g™/?.

qn d|n
ged(q,d)[t

Equation (4.2) is true because de = t(q) has a solution if and only if ged(d, q) | t.
If a solution exists, then it has precisely ged(d, ¢) solutions (e.g., [2, Corollary 33.22,
p. 821]). This proves Theorem 1.2.

We could also consider the more general question of computing L, ,(n,t), the
number of g-ary Lyndon words with trace mod r, and derive similar but more compli-
cated formulae. If M,(n,t) is the number of g-ary length n strings whose characters
sum to ¢, then clearly My(1,t) = [0 <t < ¢] and for n > 1

q

My (n,t) = ZMq(n —1,t—1).

=0

If T, »(n,t) denotes the number of g-ary length n strings with trace mod r equal to ¢,

then
Tyr(n,t) Z My(n,s)
s=t(r)

Using the same approach as before
n
L) = LS00 1 (Be).
d\n de=t(r)

The equation for L, ,(n,t) seems to produce no particularly nice formulae, except
in the case seen previously where ¢ = r or if ¢ = 2. When ¢ = 2, Ms(n,t) = (") and

t
n
Tor(n,t)= Y (S>
s=t(r)

However, in this case there is already a well-known formula for the number of Lyndon
words with k£ 1’s, namely,

non=t 5 wo(3)

d|ged(n,k)

from which we obtain Lo, (n,t) = > ;) P2(n, ).
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5. Final remarks. Our generalized Mdobius inversion theorem can be extended
to a Mo6bius inversion theorem on posets. Background material on Mobius inversion
on posets may be found in Stanley [5]. We state here the modified definition of
recombinant and the inversion theorem but omit the proof.

DEFINITION 5.1. Let P be a poset, let R be a set, and let { X (y,,t)}2.yep y<az,teR
be a family of subsets of R. The family {X (y,x,t)}s yep y=z,ter i recombinant if

(i) X(z,z,t) ={t} for allt € R and
(ii) {¢/ € X(z,y,e) : e € X(y,x,1)} = {e € X(z,2,t)} forall z 2y 2z €
P,teR.

We note that if P is the divisor lattice and R is an additive monoid, then the
collection {X (z,y,t)}z yep o<y ter Where X(z,y,t) = {e € R: (y/z)e =t} is recom-
binant, as per Lemma 2.3.

THEOREM 5.2. Let P be a poset, let R be a set, and let {X (y,x,t)}z yeP y=<zter
be a recombinant family. Let A: P xR — C, and B: P xR — C, be functions where
C is a commutative Ting with identity. Then

Az, t)=>_ > Bye)

y=x e€cX(y,z,t)

forallx € P and t € R if and only if

B(z,t) =Y ply.x) D Alye)

y=z e€X(y,z,t)

for allz € P and t € R. (Here u(y,x) is the Mdbius function of the poset P.)

Tables of the numbers I, (n, t) and L,(n, t) for small values of ¢ and n may be found
on Frank Ruskey’s combinatorial object server (COS) at www.theory.csc.uvic.ca/
~cos/inf/{lyndon.html,irreducible.html}. They also appear in Neil Sloane’s on-line
encyclopedia of integer sequences (at http://www.research.att.com/~njas/sequences/)
as Iz(n,0) = La(n,0) = A051841, I3(n,1) = La(n,1) = A000048, I3(n,0) = L3(n,0) =
A046209, I3(n,1) = Ls(n, 1) = A046211, Ly(n,0) = A054664, I;(n,1) = Ly(n,1) =
A054660, Ls(n,0) = A054661, Is(n,1) = Ls(n,1) = A054662, Lg(n,0) = A054665,
Le(n, 1) = A054666, Lg(n, 2) = A054667, Lg(n,3) = A054700.
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