
Stamp Foldings, Semi-meanders, and Open Meanders: Fast Generation
Algorithms

J. Sawada∗ R. Li

Abstract

By considering a permutation representation for stamp-foldings and semi-meanders we construct tree-
like data structures that will allow us to generate these objects in constant amortized time. Additionally, by
maintaining the wind-factor and applying an additional optimization, the algorithm for semi-meanders can be
modified to produce the fastest known algorithm to generate open meanders.

Keywords: Stamp folding, semi-meander, meander, CAT algorithm, permutation

1 Introduction

12 23 34 45 56 61 1 23 4 56 7

(b) (c)(a)

Figure 1: (a) An open meander of order 6. (b) A semi-meander of order 6. (c) A stamp folding of order 7.

An open meander can be described by a geographic analogy of a river starting from the north-west and meander-
ing back and forth across an infinite horizontal road. The river never intersects itself and it can flow freely to the
east. The order of an open meander is the number of times the river intersects or crosses the road. For example, an
open meander of order 6 is shown in Figure 1(a). A semi-meander is a slight generalization of an open meander
where one of the end points is allowed to be wound inside the river. An example of a semi-meander, that is not a
meander is shown in Figure 1(b). If we generalize a step further, and allow both ends of the river to be wound up
inside itself, then we obtain a stamp folding. An analogy is to consider a folding of a linear strip of n stamps into
a single pile, where the perforations between the stamps are assumed to be infinitely elastic. An example of a
stamp folding that is not a semi-meander is shown in Figure 1(c). Observe that each labeled crossing represents a
stamp. As shown in the Figure 1, each of these three objects can be represented by a permutation; however not all
permutations represent even the most general of these objects - the stamp foldings. For example, the permutation
1423, would require the strip of stamps (or river) to intersect itself.

∗School of Computer Science, University of Guelph, Canada. Research supported by NSERC. E-mail:
jsawada@uoguelph.ca

1



1 23 4 12 3414 2 3 1 2 43

Figure 2: An equivalence class of unlabeled stamp foldings: {1342, 4213, 2431, 3124}.

The focus of this paper is to develop efficient algorithms to exhaustively list stamp foldings, semi-meanders and
open meanders of order n. For a history on combinatorial generation algorithms consult Knuth’s recent addition
to his series The Art of Computer Programming [5]. Stamp foldings were first discussed in [7, 11], and algorithms
for generating stamp foldings were considered in Scott Lausch’s Master’s thesis [9]. An implementation of the
latter algorithm is used by the “Combinatorial Object Server” at http://www.theory.csc.uvic.ca/ in the permuta-
tion section. A FORTRAN algorithm to generate all semi-meanders is outlined in the appendix of [2], but no
analysis is provided. An explicit algorithm for generating meanders has been given by Di Francesco et al [2] with
complexity proportional to the Catalan numbers (cn ≈ 4n). Franz and Earnshaw’s [3] algorithm also appears to
have an asymptotic running time that is greater than the number of meanders being generated (no implementation
details or analysis is provided). The fastest known algorithm is given by Bobier and S. [1]. Although a rigorous
analysis is not provided, the implementation of the algorithm is very simple.

For each of these three objects we can consider equivalences under various actions. For semi-meanders, if one
end is uniquely determined to be allowed to wind inside the curve, we can consider equivalence under reversal to
obtain symmetric semi-meanders. For stamp foldings, if we consider the stamps to be unlabeled without regard
for the orientation of the stamps, then we obtain unlabeled stamp foldings. For example the permutation 1342 is
equivalent to 4213 by relabeling the stamps. If we consider the reversal of each folding we may also obtain two
different permutations; in this case we also obtain 2431 and 3124. The foldings from our example are illustrated
in Figure 2. Note that each equivalence class will consist of either 2 or 4 permutations. An example of a class that
contains only two permutations is {1234, 4321}. Similarly we can obtain symmetric meanders by considering
the same actions. Enumeration sequences for each of these 6 objects are given in Table 1 for n up to 25. Each
sequence is labeled with its corresponding sequence number in Sloane’s Encyclopedia of Integer Sequences [10].

The main results of this paper are as follows:

. A constant amortized time algorithm to generate stamp foldings,

. A constant amortized time algorithm to generate semi-meanders,

. The fastest known algorithm to generate open meanders.

Additionally, these algorithms can be modified to obtain:

. A O(n) amortized time algorithm to generate unlabeled stamp foldings,

. A constant amortized time algorithm to generate symmetric semi-meanders,

. A O(n) amortized time algorithm to generate symmetric open meanders.

For each algorithm, we use a permutation to represent each object as illustrated in Figure 1. An alternate permu-
tation representation has been considered in [4]. The key to each algorithm is a special tree-like data structure
whose nodes contain a pair of doubly linked lists. By focussing on a specific current node, we can determine all
the valid intervals to extend the order of a given object in constant time. Once the order is extended, the data
structure can also be updated in constant time. In Section 2 we begin by outlining this data structure for semi-

2



A000136 A001011 A000682 A000560 A005316 A077055
n Stamp Foldings Unlabled Stamps Semi-meanders Symmetric Semis Open Meanders Symmetric Meanders
1 1 1 1 1 1 1
2 2 1 2 1 1 1
3 6 2 4 2 2 1
4 16 5 10 5 3 2
5 50 14 24 12 8 3
6 144 38 66 33 14 8
7 462 120 174 87 42 13
8 1392 353 504 252 81 42
9 4536 1148 1406 703 262 72

10 14060 3527 4210 2105 538 273
11 46310 11622 12198 6099 1828 475
12 146376 36627 37378 18689 3926 1970
13 485914 121622 111278 55639 13820 3506
14 1557892 389560 346846 173423 30694 15368
15 5202690 1301140 1053874 526937 110954 27888
16 16861984 4215748 3328188 1664094 252939 126510
17 56579196 13976335 10274466 5137233 933458 233809
18 184940388 46235800 32786630 16393315 2172830 1086546
19 622945970 155741571 102511418 51255709 8152860 2039564
20 2050228360 512559185 329903058 164951529 19304190 9652364
21 6927964218 1732007938 1042277722 521138861 73424650 18360296
22 22930109884 5732533570 3377919260 1688959630 176343390 88172609
23 77692142980 19423092113 10765024432 5382512216 678390116 169610371
24 258360586368 64590165281 35095839848 17547919924 1649008456 824506191
25 877395996200 219349187968 112670468128 56335234064 6405031050 1601297937

Table 1: Enumeration sequences for a number of related objects up to n = 25.

meanders. Stamp foldings are slightly more complicated and are detailed in Section 2.2. Then in Section 3.2, by
maintaing the wind-factor for semi-meanders we obtain an efficient algorithm to generate open-meanders. This
algorithm is analyzed and compared experimentally with the previously fastest known algorithm to exhaustively
list open-meanders [1]. The paper concludes with a summary in Section 4.

2 Generating semi-meanders and stamp foldings

In this section we begin by describing an algorithm to exhaustively list all semi-meanders and symmetric semi-
meanders of order n, since they are the easiest to handle using the permutation representation. The key to making
the algorithm run in constant amortized time is the maintenance of a tree of special nodes. Then, by applying a
subtle tweak to this data structure, we outline a constant amortized time algorithm for stamp foldings.

2.1 Semi-meanders

The basic idea behind our algorithm is to extend a semi-meander of order t represented by a permutation P to
a semi-meander of order t+1 by considering all valid intervals to extend the semi-meander curve. For example,
Figure 4(a) illustrates a semi-meander of order 9 along with its corresponding permutation representation. The
valid intervals to extend the semi-meander through are (3,2), (1,9), (9,8) and (7,4) respectively. We consider the
permutation to be prefixed with a ‘0’ and suffixed with a ‘−’, so that every interval has a clearly defined start
and end value. From our example, this means that (0, 3) would be the leftmost interval and (4,−) would be the
rightmost interval.

Given a permutation representing a semi-meander of order t, our goal is to efficiently determine which of the

3



procedure Gen (t)
if (t > n) then Process(P )
else

LIST := list of valid intervals to extend the semi-meander
for each interval I ∈ LIST do

insert t into permutation P depending on I
Gen(t+1)
remove t from P

end

Figure 3: Algorithm Gen(t), to list semi-meanders of order n.

t + 1 intervals can be used for the next crossing. If these intervals are available in a list, then we can use the
simple algorithm Gen(t) in Figure 3 to generate all semi-meanders of order n. The permutation P is initialized
to have one crossing and the initial call is Gen(2). For this first recursive call, the LIST will consist of the two
intervals (0, 1) and (1,−). The permutation itself can be updated in constant time if it is represented as a doubly
linked list with pointers to each element. The function Process(P ) is a generic function that may perform some
action on the current semi-meander P .

In order to efficiently obtain and update such a list of intervals, it is useful to split the list into two doubly linked
lists L and R such that L (respectively R) contains all valid intervals to the left (right) of the current crossing.
For example, if the current permutation P is 321985674 as illustrated in Figure 4(a), then L = 〈(3, 2), (1, 9)〉
and R = 〈(9, 8), (7, 4)〉. The lists are doubly linked so that the addition or deletion of an interval can be done in
constant time. We call the data structure containing these two lists a node. If X is a node, then we let LX denote
its left list and let RX denote its right list.

If we consider what happens when we extend a semi-meander by crossing through an interval I , then it becomes
apparent that we need to know which intervals become valid in addition to the new intervals that have just been
created. For example, if we extend the semi-meander in Figure 4(a) by crossing the interval (7,4) then in addition
to the new intervals (7, 10) and (10, 4), the next crossing would also be able to cross interval (5,6) to the left but
nothing else to the right. This leads to building a tree of nodes where each interval points to a unique node in the
tree and where each interval appears in exactly one node. As an example, the tree of nodes correponding to the
semi-meander in Figure 4(a) is shown in part (b) where the current node labeled X is in bold.

To incorporate the tree of nodes data structure to the basic algorithm Gen(t):

• pass the current node X as a parameter to each recusive call,

• set LIST to the concatenation of LX and RX ,

• let Y represent the node pointed to by the current interval I = (i, j), and

• add a function Update(X, Y, I) to update the tree of nodes data structure and the permutation P .

The challenge that remains is how to efficiently implement the function Update(X, Y, I). Observe that as the
interval I is crossed by the semi-meander, it will be replaced with 2 new intervals in Y : I1 = (i, t) and I2 = (t, j).
It is not difficult to see that I1 should be added to the end of LY and that I2 will be inserted to the front of RY .
Once I is removed from X , the remaining intervals of X get split into 2 nodes X1 and X2 such that X1 contains
the intervals accessible by crossing I1 and X2 contains the intervals accessible by crossing I2. Once these nodes
are created, we set I1 to point to X1 and I2 to point to X2. Precisely how the node X is split into X1 and X2

depends on whether I belongs to LX or RX . If the intervals in the list containing I are i1, i2, . . . , ik, where ic
denotes the interval I being crossed, then the following table describes how to construct X1 and X2:

4



3,2 1,9

2X

1X

0,3

2,1

0,3

2,1

(a)

(c)(b)

3,2 9,8 7,4

4,−

6,7

5,6

1,9

8,5

X

Y

4,−

6,7

8,5

5,6 7,10 10,4

9,8

Y

23 1 9 8 5 6 7 4

Figure 4: (a) A semi-meander of order 9 and its permutation representation. (b) The node tree for the semi-
meander in (a). (c) The node tree obtained by extending the semi-meander in (a) to cross the interval (7,4).

I ∈ LX I ∈ RX

LX1 = i1, . . . , ic−1 LX1 = i1, . . . , ic−1

RX1 = RX RX1 = null
LX2 = null LX2 = LX

RX2 = ic+1, . . . , ik RX2 = ic+1, . . . , ik

Each of these assignments can be implemented in constant time by maintaining pointers to the start and end of
each interval list. To summarize, the function Update(X,Y, I) does the following:

• insert the new interval I1 = (i, t) to the end of LY ,

• insert the new interval I2 = (t, j) to the front of RY ,

• remove interval I from X ,

• split X into two new nodes X1 and X2

• set I1 to point to X1 and set I2 to point to X2.

5



As an example of the steps involved in an update, Figure 4(c) shows the result of how the node tree from Figure
4(b) gets updated when the interval (7,4) (from RX ) is crossed. Observe in the figure that the new intervals added
to Y point to nodes labeled X1 and X2.

By applying the tree of nodes data structure, the resulting algorithm GenSemi(t, X) is shown in Figure 5. The
procedure Restore() undoes the changes made in Update(X, Y, I). Both functions can be implemented to run
in constant time. To initialize the algorithm an initial node X is created with LX = 〈(0, 1)〉 and Rx = 〈(1,−)〉.
The initial intervals point to nodes with empty interval lists. The initial call is GenSemi(2, X).

To analyze this algorithm, observe that each recursive call is the result of a constant amount of work. Thus, the
total amount of work done by the algorithm is proportional to the number of recursive calls in the computation
tree. Since the number of semi-meanders generated is equal to the number of leaves in the computation tree, an
amortized analysis can be performed by considering the ratio of the total number of nodes in the computation tree
to the number of leaves. If this ratio is bounded by a constant then the algorithm will run in constant amortized
time, i.e., the total work done divided by the number of objects generated is bounded by a constant. Since there
are no dead ends in this algorithm, every recursive call will lead to an semi-meander being generated. Also, there
are always at least two possible ways to extend a semi-meander of order i to one of order i+1: i.e., each internal
node has at least 2 children. Thus, the number of leaves will be greater than the number of internal nodes which
implies that the ratio is constant.

THEOREM 1 Semi-meanders of order n can be generated in constant amortized time.

2.1.1 Symmetric semi-meanders

By considering reflective symmetry about the first crossing we obtain symmetric semi-meanders. To generate
symmetric semi-meanders using the algorithm in GenSemi(t, X), we force the second crossing to be to the left
(or equivalently to the right) of the first crossing. This can be implemented in constant time by skipping the
intervals in the right list when t = 2. Alternatively, the semi-meander can be initialized to have two crossings.

COROLLARY 1 Symmetric semi-meanders of order n can be generated in constant amortized time.

2.2 Stamp Foldings

Recall that a stamp folding is a generalization of a semi-meander where both ends are allowed to wind in-
side the curve (river, strip of stamps). To generate stamp foldings, we can apply the semi-meander algorithm
GenSemi(t, X) with a slight change to the data structures. In particular, for stamp foldings the two intervals
(0, x) and (y,−) will always belong to the same node X and will both point to the same node Y . This means we
no longer have a tree of nodes, which makes the algorithm slightly more complicated when one of the intervals
(0, x) or (y,−) is crossed. As an illustration, the node structures for a series of stamp foldings in Figure 6.

Since an interval I = (0, x) is special, consider what happens just before such an interval is crossed (a similar
analysis applies to (y,−)). Assume that the interval I points to the node Y . In the case of semi-meanders, all
valid intervals will be in the right list RY and the left list LY will be empty. However, for stamp-foldings, if Y
was created by crossing through an interval of the form (y,−) then all available intervals will be in the left list
LY and the right list RY will be empty. Since there are pointers to the front of each list, this can be checked in

6



procedure Update(X , Y , I)
insert new intervals I1 := (i, t) and I2 := (t, j) into Y
remove I = (i, j) from X
split X into X1 and X2

point I1 to X1

point I2 to X2

update P
end

procedure GenSemi (t, X)
if (t > n) then Process(P )
else

for each interval I = (i, j) ∈ LX , RX do
Y := node pointed to by I
Update(X , Y , I)
GenSemi(t+1, Y )
Restore()

end

Figure 5: Algorithm GenSemi(t, X), to list semi-meanders of order n.

constant time. Thus after we cross I , if the left list LY is non-empty then we set RY = LY and set LY to be
empty. The only remaining modification is to move the interval of the form (y,−) from X to the end of RY .
This can also be done in constant time since we maintain pointers to the end of each list.

In order to convert the algorithm GenSemi(t, X) into one that generates all stamp foldings, the following oper-
ations must be added to the function Update(X, Y, I):

• If crossing an interval I in node X of the form (0, x) then

. if LY is not empty assign RY = LY and set LY to be empty,

. move the interval (y,−) which is the last interval in RX to the end of RY and point it to node X1.

• If crossing an interval I in node X of the form (y,−) then

. if RY is not empty assign LY = RY and set RY to be empty,

. move the interval (0, x) which is the first interval in LX to the front of LY and point it to node X2.

The function Restore() must undo these operations.

The analysis for stamp foldings is the same as for semi-meanders since at each recursive call there are at least
two ways to extend the current permutation.

THEOREM 2 Stamp foldings of order n can be generated in constant amortized time.

2.2.1 Unlabeled stamp foldings

Recall from Section 1 that if we consider the stamps to be unlabeled and disregard the orientation of each stamp
folding, we obtain an unlabeled stamp folding. Each equivalence class has at most 4 permutations and we let
the lexicographically smallest permutation be the canonical representative. Unfortunately, to determine whether

7



23 4 5 678

1 23 4 5 6789

4,5

3,1

1,2

7,6

1 23 4 5 67

8,7

7,6

1,2

(c)

(b)

8,75,80,3 2,4 6,−

(a)

6,−4,59,3

2,4 5,8

0,9

0,3 4,52,4 6,−

7,65,73,1

3,1

1,2

1

Figure 6: (a) A stamp folding of order 7 and its corresponding data structure representation. (b) The changes
after extending the stamp folding in (a) by crossing (5,7) (c) The changes after extending the stamp folding in (b)
by crossing (0,3).

a given permutation is in canonical form is not a trivial matter like it was for symmetric semi-meanders. Thus
it remains an open problem to generate unlabeled stamp foldings in constant amortized time. By performing a
simple linear time check on each permutation against the 4 possible symmetries we obtain the following theorem.

THEOREM 3 Unlabeled stamp foldings of order n can be generated in O(n) amortized time.

3 The wind-factor and open meanders

The wind-factor [2] of a semi-meander is the smallest number of additional crossings required to extend the
semi-meander into an open meander. Thus, meanders are precisely the semi-meanders with wind-factor 0. For
example, the wind-factor of the semi-meander in Figure 4(a) is 1 and it also corresponds to the depth of the

8



current node in its tree of nodes. As another example, the wind-facor of the semi-meander in Figure 1(b) is 2.
We consider the wind-factor for two reasons. First it may be of interest to list all semi-meanders with a given
wind-factor. Second, it is important to maintain if we want to efficiently modify the semi-meander algorithm
to generate all open meanders. We begin this section by outlining how to modify the semi-meander algorithm
GenSemi(t, X) so it maintains the wind-factor. Then we discuss how it can be applied to efficiently generate
meanders.

3.1 Maintaining the wind-factor

In order to generate all semi-meanders with a given wind-factor w, we must maintain the current wind-factor at
each step of the algorithm GenSemi(t, X). In order to efficiently maintain this information, we need to know
the unique interval that can be crossed to reduce the wind-factor if w > 0 or to maintain the wind-factor if w = 0
. We call such an interval the unwinding interval and for a node X we denote its unwinding interval by UX . If
w > 0, then every node in the path up the tree from the current node will have an unwinding interval associated
with it. For example, in Figure 4(a-b), the unwinding interval for the current node labeled X is (1,9). The node
pointed to by this interval will have wind-factor w = 0 and if it becomes the current node, the unique interval
that maintains the wind-factor is (4,−).

If we add a pointer to the unwinding interval in the node data structure, then we can determine if a given interval
corresponds to the unwinding interval in constant time. To efficiently maintain the unwinding intervals it is
important to know which list it is in: the Left or the Right. For a given node X let SX ∈ {L,R} denote the
list that the unwinding interval belongs to. If we add the current wind-factor w as a parameter to each recursive
call, then we can maintain the wind-factor in constant time as follows: if the current interval corresponds to the
unwinding interval then we decrement the wind-factor if w > 0 and leave it unchanged if w = 0; otherwise we
increment the wind-factor.

The only challenge that remains is to update the unwinding intervals when a new crossing is added. To simplify
the discussion, let the function SetUnwind(X, I, s) set the unwinding interval UX = I and its corresponding list
SX = s. There are several cases to consider; however, by maintaining a boolean to remember if the unwinding
interval has been visited when iterating through the interval lists, each case can be performed in constant time
and added to the function Update(X, Y, I) as follows:

• If I = UX when w > 0: no update required.

• If I = UX when w = 0: call SetUnwind(Y, I2, R).

• If I 6= UX and I ∈ LX :

. If UX ∈ LX but appears after I call SetUnwind(Y, I2, R) and SetUnwind(X2, UX , R).

. Otherwise call SetUnwind(Y, I1, L) and SetUnwind(X1, UX , SX ).

• If I 6= UX and I ∈ RX :

. If UX ∈ RX and appears after I call SetUnwind(Y, I2, R) and SetUnwind(X2, UX , SX ).

. Otherwise call SetUnwind(Y, I1, L) and SetUnwind(X1, UX , L).

These correctness of these updates can easily be observed by considering a few sample semi-meanders like the
one in Figure 4(a). Applying these extra operations allows us to generate all semi-meanders of order n with
a given wind-factor w. As a summary, to maintain the wind-factor efficiently the node data structure is as
follows:

• LX : a doubly linked list of valid intervals to the left of the current crossing ordered from left to right,

9



procedure GenMeander (t, X,w)
if (t > n) then Process(P )
else

if (n− t ≤ w) then
Y := node pointed to by UX

Update(X, Y, UX )
GenMeander(t+1, Y , w − 1)
Restore()

else
for each interval I ∈ LX , RX do

Y := node pointed to by I
Update(X, Y, I)
if (I = UX ) then GenMeander(t+1, Y , max(0, w − 1))
else GenMeander(t+1, Y , w + 1)
Restore()

end

Figure 7: Algorithm GenMeadner(t, X,w), to list open meanders of order n.

• RX : a doubly linked list of valid intervals to the right of the current crossing ordered from left to right,

• UX : a pointer to the unwinding interval if it exists,

• SX ∈ {L,R}: a character indicating which list the unwinding interval is in if it exists.

3.2 Generating Open Meanders

To generate open meanders, we can simply apply the semi-meander algorithm that maintains the wind-factor and
then output only those semi-meanders with wind-factor 0. Such an algorithm would be far from efficient since it
effectively generates all semi-meanders. However by applying the following optimization we obtain a much more
efficient algorithm. The basic idea is to consider a semi-meander with wind-factor w and order n− w. For such
a semi-meander there there is no point in winding any further, since it will never produce an open meander of
order n. Thus, in this situation, we only produce a recursive call for the interval corresponding to the unwinding
interval. Specifically, the optimization is as follows:

OBSERVATION 1 If w is the wind-factor of a semi-meander of order t− 1 and n− t ≤ w, then the only way the
semi-meander can be extended into an open meander of order n is by unwinding.

Pseudocode that applies this optimization to generate open meanders is given by GenMeander(t, X,w) shown
in Figure 7. The initialization is the same as with semi-meanders with the wind-factor w initially set to 0. It is
assumed that the function Update(X, Y, I) updates the unwinding intervals as outlined in the previous subsection
and that the function Restore undoes this action.

The analysis for algorithm GenMeander(t, X,w) is a challenge because of the introduction of degree one nodes
in the computation tree when applying the optimization. Each such degree one node will correspond to a semi-
meander of order n − i with a wind-factor of i for some i > 0. Let Comp(n) denote the number of nodes in
the computation tree to generate open meanders of order n. We partition the computation tree into sets of nodes
based on the order of the node and the wind-factor. Let S(i, j) denote the number of semi-meanders or order i
with a wind-factor of j. Since the wind-factor of a node with order i will never exceed n−i (from the algorithm’s
optimization) we obtain the following expression for Comp(n):

10



Comp(n) =
n∑

i=1

min(i−1,n−i)∑
j=0

S(i, j).

As an illustration, we consider Comp(7):

Comp(7) = S(1, 0) +
S(2, 0) + S(2, 1) +
S(3, 0) + S(3, 1) + S(3, 2) +
S(4, 0) + S(4, 1) + S(4, 2) + S(4, 3) +
S(5, 0) + S(5, 1) + S(5, 2) +
S(6, 0) + S(6, 1) +
S(7, 0).

Note that S(i, 0) counts the number of open meanders of order i. To prove that the generation algorithm for open
meanders runs in constant amortized time we must show that there exists some constant c such that

Comp(n)
S(n, 0)

≤ c.

Empirically, for n up to 27 this ratio for the algorithm GenMeander(t, X,w) is given in the following table:

n Comp(n)
S(n,0) n Comp(n)

S(n,0)

4 3.00000 5 2.87500
6 3.14286 7 2.92857
8 3.13580 9 2.94275

10 3.13197 11 2.96007
12 3.13831 13 2.97923
14 3.14882 15 2.99745
16 3.16008 17 3.01381
18 3.17084 19 3.02824
20 3.18072 21 3.04092
22 3.18965 23 3.05207
24 3.19769 25 3.06194
26 3.20492 27 3.07070

Even though the ratio is growing, it does not rule out the possibility that it is bounded by a constant. What is
required is the ability to bound S(i, j) recursively.

LEMMA 1 For i > 1:

(a) S(i, 0) = S(i− 1, 0) + S(i− 1, 1),
(b) S(i, j) ≥ S(i− 1, j + 1) + S(i− 1, j − 1) for j > 0.

11



PROOF: For (a) consider the first i−1 crossings for any semi-meander of order i and wind-factor 0. Either the first
i−1 crossings will have wind factor 1 or 0. In either case, there is exactly one way to extend such semi-meanders
into ones with wind-factor 0. For part (b), observe that each semi-meander of order i−1 and wind factor j+1
can be extended uniquely into a semi-meander of order i and wind factor j (via the unwinding interval). For a
semi-meander of order i−1 and wind factor j−1, there may be many ways to extend it into one with wind factor
j by adding one more crossing, thus giving the simple bound. 2

The second bound for j > 0 can actually be improved to

S(i, j) ≥ S(i− 1, j + 1) +
bi/2c−1∑

k=0

S(i− 1− 2k, j − 1)

by considering unique extensions of semi-meanders of order i−1−2k with wind factor j−1 into semi-meanders
of order i and wind factor j. Unfortunately, even tighter bounds seem to be required to prove the conjecture that
the generation algorithm for open meanders runs in constant amortized time. Since we do not have a proof of
such a claim, we prove the very loose upper bound of a O(n) amortized time algorithm.

By considering the diagonals of Comp(n) moving from the bottom left to the top right, we can re-express
Comp(n) as follows:

Comp(n) =
n∑

i=1

d i
2
e−1∑

j=0

S(i− j, j).

Since S(i, j) > S(i− 1, j + 1) we get the bound:

Comp(n) ≤
n∑

i=1

i · S(i, 0)

≤ n ·
n∑

i=1

S(i, 0)

≤ cn · S(n, 0),

where c is a constant since open meanders grow exponentially.

THEOREM 4 Open meanders of order n can be generated in O(n) amortized time.

Using a 2.2 GHz Opteron processor, Table 2 compares the running time of our algorithm GenMeander(t, X,w)
for open meanders with the fastest previously known algorithm from [1]. Observe that for n = 29 that our new
algorithm finds all open meander in about 31.8 hours compared to 46.1 hours for the algorithm in [1].

3.2.1 Symmetric Open Meanders

Recall from Section 1 that if we consider the equivalence classes of open meanders under the operations of
relabeling and reversal, we obtain symmetric meanders. If we let the lexicographically smallest element be the
canonical representative of each equivalence class then the following tests can be performed on each generated
open meander to determine if it corresponds to its canonical representative:

12



n GenMeander(t, X,w) Algorithm from [1] n GenMeander(t, X,w) Algorithm from [1]
20 4 5 21 14 20
22 35 43 23 127 186
24 325 430 25 1214 1877
26 3139 4022 27 11700 16575
28 30480 38358 29 114414 165987

Table 2: Comparison of running time in seconds for two open meander generation algorithms.

• make sure that 1 appears before n in the permutation, and

• test that the permutation is lexicographically smaller than its relabeled reversal: each value i from the
original permutation is replaced with n− i + 1 and the result is considered in reverse.

These tests can easily be performed in O(n) time after each open meander has been generated. Thus from
Theorem 4 we obtain the following result.

COROLLARY 2 Symmetric open meanders of order n can be generated in O(n) amortized time.

4 Summary

In this paper we have constructed a new data structure representation for semi-meanders, meanders and stamp
foldings and applied the data structure to develop efficient algorithms to exhaustively list:

• semi-meanders and symmetric semi-meanders in O(1) amortized time,

• stamp foldings in O(1) amortized time,

• unlabeled stamp foldings in O(n) amortized time.

• open meanders in O(n) amortized time, and

• symmetric open meanders in O(n) amortized time,

The algorithms have been implemented in C and are available for download at:
http://www.socs.uoguelph.ca/˜sawada/programs.html.

It remains an open problem to determine whether or not the meander algorithm provided in this paper runs in
constant amortized time. This can be answered if the right recursive bounds can placed on semi-meanders with
a given wind-factor. Another open problem is to improve the running time for unlabeled stamp foldings. Finally,
does there exist a Gray code for any of these objects?

References

[1] B. Bobier, J. Sawada, A fast algorithm to generate open meandric sequences and meanders, Transactions on Algo-
rithms, Vol. 6 No. 2 (2010) 12 pages.

[2] P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, Nuc. Phys. B 482, (1996),
pp. 497-535.

13



[3] R. Franz and B. Earnshaw, A constructive enumeration of meanders, Annals of Combinatorics 6:(1) (2002), pp. 7-17.

[4] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. Tarjan, Sorting Jordan sequences in linear time using level-linked
search trees, Information and Control, 68 (1986), pp. 170-184.

[5] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Trees; History of Combinationatorial
Generation,, Fascicle 4, Addison-Wesley, February 2006, 150 pages.

[6] K.H. Ko and L. Smolisky, A combinatorial matrix in 3-manifold theory, Pacific J. Math. 149 (1991) pp. 3190336.

[7] J. E. Koehler, Folding a strip of stamps, Journal of Combinatorial Theory, 5 (1968), pp. 135-152.

[8] S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science 11:(2) (1993), pp.
117-144.

[9] S. Lausch, Generating Some Restricted Classes of Permutations, Master’s Thesis, University of Victoria, Canada,
1999.

[10] N. Sloane, The on-line encyclopedia of integer sequences: IDs A000136, A001011, A000682, A000560, A005316,
A077055. http://www.research.att.com/∼njas/sequences/index.html (2009).

[11] J. Touchard, Contributions à l’étude du problème des timbres postes, Canad. J. Math., 2 (1950), pp. 385-398.

14


