Gray Codes for Reflectable Languages

YUE Lr* JOE SAwADAT

March 18, 2008

Abstract

We classify a type of language called a reflectable language. We then develop a
generic algorithm that can be used to list all strings of length n for any reflectable
language in Gray code order. The algorithm generalizes Gray code algorithms devel-
oped independently for k-ary strings, restricted growth strings, and k-ary trees, as each
of these objects can be represented by a reflectable language. Finally, we apply the
algorithm to open meanderic systems which can also be represented by a reflectable
language.

1 Introduction

The term Gray code originally referred to a specific ordering of length n binary strings,
patented by Frank Gray [4], where consecutive bitstrings differ by a single bit. The following
is an example of this listing for n = 3 where the bit that differs with the previous element is
underlined:

000, 001, 011, 010, 110, 111, 101, 100.

Today, the term Gray code refers more generally to an exhaustive listing of any combina-
torial object where each successive object differs by some constant amount. In 1997, Savage
[9] surveyed many of these Gray code algorithms and since then many more have been de-
veloped for various combinatorial objects. For a significant number of these algorithms, a
common strategy of reflecting subtrees is applied - a technique that is similar in spirit to the
original binary reflected Gray code [4].

To illustrate this notion of reflecting subtrees we consider the set S5 of all length 3 strings
over the alphabet {a, b, c} with no bb substring. A straight forward recursive algorithm can
be used to generate such strings in lexicographic order by following a computation tree like
the one in Figure 1. In the computation tree, each leaf represents a unique string that is

*Computing and Information Science, University of Guelph, Canada. email: yli0O4@uoguelph.ca
fComputing and Information Science, University of Guelph, Canada. Research supported by NSERC.
email: jsawada@uoguelph.ca

a c
a b C a b C
b ¢ a ¢ a b b ¢ a ¢ a b

a

b
C
c a b c a b c a

a c
Figure 1: Computation tree to generate S3 in lexicographic order.
a b c
a b c c a a b c
abc c¢ca ab c ¢cb a abc ¢cb a a c c b a

Figure 2: Computation tree to generate S5 in Gray code order.

obtained by tracing the path from the root to the leaf. Observe that the resulting listing is
not a Gray code since in some cases successive strings may differ in all positions. However,
by reflecting (reversing) the order of the children at particular nodes, as illustrated in Figure
2, we can obtain an ordering of S5 that is a Gray code.

Some objects for which this strategy has been applied to include: binary [4] and k-ary
strings [5, 13], restricted growth functions [3, 7] and tails [8], and binary [11] and k-ary trees
[12; 14]. In this paper we generalize what various representations for these objects have
in common by introducing the notion of reflectable languages. We then provide a generic
algorithm that can generate all length n words for any reflectable language in Gray code
order. As a new application, we apply the algorithm to open meandric systems.

2 Reflectable Languages

Definition 2.1. A language L over the alphabet Y is said to be reflectable if for everyi > 1
there exists two characters x; and y; in 3 such that if wiws - --w;_q is a prefix of a word in
L then both wiws - - - w;_1x; and wy - - - w;_1y; are also prefizes of words in L.

Recall the language S35 defined in the previous section as the set of all length 3 strings
over {a,b,c} with no bb substring. It is reflectable by considering xz; = a and y; = c.
As another example, consider the language L = {a, aa, ac, aaa, aab, aac, aca, ach, acd} over
¥ ={a,b,c,d}. Observe that this language is also reflectable by considering x5 = a,ys = ¢
and x3 = a,y3 = b.

On the other hand, the language L' = {a,aa, ac, aaa, aab, aac, abe, aca,ach} is not re-
flectable since abc € L', but no matter what we use for x3 and y3 the strings abxz and abys
can not both be in L'.

It turns out that many common combinatorial objects can be represented by reflectable
languages. In the following subsections we give examples of such reflectable languages by
demonstrating their z; and y; values.

2.1 Binary strings, k-ary strings, and variants

Letting ¥ = {0,1,2,...,k—1}, the set of all k-ary strings for k£ > 2 trivially form a reflectable
language by considering x; = 0 and y; = 1.

A generalization of k-ary strings is to consider elements of the product space S = 57 x
Sg X ++- x S, where each S; = {0,1,...,r;, — 1} fori = 1,2,...,n. If each r; > 2, then such
a space will again correspond to a reflectable language by considering z; = 0 and y; = 1.

Strings with a forbidden substring « are a variation on k-ary strings that have been
studied in [10]. If the forbidden substring « is composed from a subset of k& — 2 characters
in the alphabet, then the language of strings with forbidden substring « is reflectable. This
follows from the definition by assigning any two characters from the alphabet that do not
appear in a to z; and y; respectively. As an example, recall that S3 corresponds to a
reflectable language.

2.2 Restricted growth strings

Restricted growth strings are strings of non-negative integers w; - - - w,, satisfying w; = 0 and
w; < 1+ mazx{wy,ws, ..., w;_1}. There is a well known bijection between restricted growth
strings and set partitions [9]. By letting x; = 0 and y; = 1 for each 4, observe that restricted
growth strings of length n are reflectable.

A slight generalization of restricted growth strings are restricted growth tails [8],
which are strings of non-negative integers w; ---w, satisfying w; < k and w; < 1+
maz{wy,ws, ..., w;_1,k — 1}. Observe that this generalization also corresponds to a re-
flectable language by letting x; = 0 and y; = 1.

1110000100010001000 024210 121411
12381216

(a) (b) ()

Figure 3: (a) Zaks representation n = 6, k = 3. (b) Right distance sequence n = 6, k = 3.
(c) Weight sequence for a binary tree with n = 6.

2.3 Binary and k-ary trees

A k-ary tree is a tree where each internal node has k ordered subtrees. A common bit-
sequence representation for k-ary trees is obtained by visiting a tree in pre-order where a 1 is
assigned to each internal node and a 0 is assigned to each leaf. This representation is often
attributed to Zaks [15]. Using this pre-order traversal, a unique bit-sequence of length kn+ 1
is obtained for each k-ary tree with n internal nodes. Since there are so many zeros in the bit
sequence representation, it is often useful to use an alternate representation where only the
positions of the ones are recorded. For example, a tree and its bit sequence representation
is given in Figure 3(a). Using this representation a sequence ajas - - - a,, will correspond to
a k-ary tree if a; = 1 and for each ¢ > 0 we have a;,_1 < a; < k(i — 1) + 1 [12]. Observe
that such a set such strings corresponds to a reflectable language where z; = k(i — 1) and

Another representation is presented in [14] where the nodes in a k-ary tree are defined
recursively as follows: the root node is assigned 0, then for each child ¢ = 1,...,k from
left to right we assign the value k — ¢ plus the value of its parent. A pre-order traversal
yields what is called the right-distance sequence for a k-ary tree. An example is illustrated
in Figure 3(b). Using this representation, any sequence corresponding to a tree with n > 1
nodes can be extended to a tree with n + 1 nodes by appending any value between 0 and
k —1 [14]. Thus, the set of all right distance sequences is a reflectable language where z; = 0
and y; = 1.

In the special case of binary trees (k = 2), we can assign a weight to each vertex corre-
sponding to the number of leaves in its left subtree. The sequence that results by recording
these weights via an in-order traversal is the weight sequence introduced by Pallo [6]. An
example is illustrated in Figure 3(c). Pallo also shows a sequence wyws. .. w, will corre-
spond uniquely to the weight sequence for a binary tree with n nodes if for each i we have
1 <w; <1, and for each ¢ —w; +1 < j <@ we have ¢« —w; < j —w;. Notice that this set of
weight sequences corresponds to a reflectable language where z; = 1 and y; = i.

procedure GrayCode ()
if (¢t > n) then Process(w)
else
T o= W //w¢ WILL BE EITHER Z; OR ¥,
GrayCode(t+1)

for each z € ¥—{xy,y;} such that wy ---w;—12 is a prefix of some word in L,
Wy =2
GrayCode(t+1)

if (r = x;) then w; ==y,
else w; := x;
GrayCode(t+1)

end

Figure 4: Algorithm, GrayCode(t), to list all words of length n from a reflectable language L
in Gray code order.

2.4 Open meandric systems

We demonstrate that open meandric systems can be represented by a reflectable language
in Section 4.

3 A Simple Gray Code Algorithm

In this section, we present a simple recursive algorithm to list L,, (words of length n for some
reflectable language L) in Gray code order. This algorithm generalizes independently devel-
oped algorithms for: binary strings [4], k-ary strings and cross products [5, 13|, restricted
growth strings [3, 7], restricted growth tails [8], and binary [11] and k-ary trees [12, 14]. These
individual algorithms are still of interest, however, since they often include extra efficiency
considerations that are specific to each object. For instance, adding data structures to make
the algorithm run in constant amortized time or demonstrating a loop-free implementation.

The basic idea behind the generic recursive algorithm is to apply the simple idea of
reflecting particular subtrees that was discussed earlier. To do this, we use the special
characters z; and y; as the first and last children of each node at level + — 1. The order
of the other characters (children) does not matter. This way, at the start of each recursive
call we can be sure that that the previous word generated had either the character z; or
y; at position 7. Pseudocode is shown in Figure 4. The word being generated is stored in
w = wiws - - - w,. The current position is given by the parameter ¢ and the variables x; and
y; are specific to the reflectable language under consideration as described in Definition 2.1.
To run the algorithm ws - - - w,, is initialized to xsx3- - - z,, then for each z € ¥ that starts a
word in L, we assign w; := z and call GrayCode(2).

To illustrate the algorithm, again recall the language S5 which consists of all length 3
strings over the alphabet {a, b, c} with no bb substring. By applying x; = a and y; = ¢, the
computation tree that results from applying algorithm GrayCode(t) is given in Figure 2.

Theorem 3.1. For any reflectable language L and given integer n, the algorithm GrayCode(t)
will produce a list of all words L, in Gray code order.

Proor: First, it should be clear that every word in L, is generated exactly once by the
algorithm. Thus, we need only show that successive words in the resulting listing differ
in exactly one position. Consider any two such successive words o = a;---a, and g =
bi---b,. Suppose that their first common ancestor in the computation tree is at level i.
Then ay---a; = by ---b; and a;11 # bir1. Now since the first recursive call in GrayCode(t)
does not change the value for current position ¢ and since the last recursive call never leads
to a dead end, we must have a;yo---a, = bj1o---b,. Thus, every pair of successive words
generated will differ in exactly one position, i.e., the listing is a Gray code. U

3.1 Analyzing the generic Gray code algorithm

To analyze the generic Gray code algorithm GrayCode(t), we perform an amortized analysis
comparing the running time to the number of objects generated. For this analysis, the best
we can hope for is an algorithm that runs in constant amortized time. One assumption made
in this analysis is that the time taken by the function Process(w) is constant, since for many
applications this may be the case.

Now, focusing on the algorithm itself, observe that every non-leaf node in the computation
tree has at least two children since recursive calls must be made for both z; and y;. Also,
observe from the prefix test in the for loop that there will be no dead-ends, which means
that every leaf will be at level n of the computation tree and will correspond to a word in
L,. Thus, if the time taken at each internal node of computation is proportional to the
number of children (recursive calls made), then the overall running time will be proportional
to the number of nodes in the computation tree. Since the branching factor of each internal
node is at least 2, the number of leaves (words generated) will be greater than the number
of internal nodes in which case the algorithm will run in constant amortized time.

Theorem 3.2. The algorithm GrayCode(t) runs in constant amortized time if the following
two conditions hold:

1. checking whether or not wy ---wy_1z is a prefic of some word in L, takes O(1) time
and

2. each internal node in the computation tree has Q(|3|) children.

In several of the examples of reflectable languages seen so for, the alphabet symbols that
are possible at certain positions in each word may vary. Thus, in an analysis it may be more
appropriate to consider an alphabet ¥; for each level 1 < < n of the computation tree. The
size of these alphabets could then be applied to Theorem 3.2 rather than the more general
alphabet X.

N
=/
od cu d u c od cu u
(@ (b)

o

A
S

Figure 5: (a) An open meander of order 6. (b) An open meandric system of order 6 with 3
curves.

4 A New Application: Open Meandric Systems

An open meander can be thought of as an infinite meandering river which passes beneath
a series of bridges of an infinite straight road going from west to east. For example, Figure
5(a) illustrates an open meander with 6 bridges. Using a curve to represent the river and
a line to represent the road, we can generalize the notion of an open meander by allowing
multiple non-intersecting curves to cross the line. Such a configuration is called an open
meandric system (OMS). The order of an OMS is defined to be the number of times the
curves cross the line. An example of an open meandric system of order 6 with 3 curves is
shown in Figure 5(b) .

Enumeration sequences for open meandric systems were studied by Bacher [1] and a fast
algorithm for generating open meandric systems appears in [2]. The latter paper uses the
alphabet ¥ = {u,d,o,c} to represent the four different types of crossings: u=up, d=down,
o=open, c=close. Using this representation, each OMS of order n can be represented uniquely
by a word of length n over X as illustrated in Figure 5. Observe that any OMS of order n
can always be extended into an OMS of order n + 1 by appending either an o, d, or u. Only
when adding a ¢ to an existing OMS is it possible that that a previously open curve can
become closed [2]. Thus, the language of all OMSs is reflectable by setting z;=d and y;=u.

The algorithm in [2] to generate all OMSs runs in constant amortized time due to the
introduction of data structures that can test when it is possible to append a ¢ to an existing
OMS in constant time. Therefore, it is possible to directly apply our generic Gray code
algorithm to convert their lexicographic algorithm into a Gray code algorithm. By applying
the same data structures the resulting Gray code algorithm will achieve the same asymptotic
running time as the original algorithm. The result also follows from Theorem 3.2.

Corollary 4.1. A Gray code for open meandric systems of order n can be generated in
constant amortized time.

As an illustration of the resulting Gray code algorithm, we show a partial computation
tree for n = 4 in Figure 6 . The dead ends are shown by the dotted edges. For example, the
words oc, uoc and oudc are all invalid OMSs because they include a closed curve.

7

T T

/\ /\ /\ %
AAAAA T AN AAAAAAA A

docuucoddocuucod docu ucoddocuucoddocuucoddocuucoddocuucoddocu
docu ucod doéu ucod docu

Figure 6: The partial tree for OMS of order 4 that results from applying the generic Gray
code algorithm with x;=d and y;=u

References

[1] R. Bacher. Meander algebras. Prepublication de [’Institut Fourier, 478, 1999.

[2] B. Bobier and J. Sawada. A fast algorithm to generate open meandric systems.
Manuscript hitps://www.cis.uoguelph. ca/pubs/meander.pdf, 2007.

[3] G. Ehrlich. Loopless algoirthms for generating permutations, combinations, and other
combinatorial configurations. Journal of the ACM, 20:500-513, 1973.

[4] F. Gray. Pulse code communication. U.S. Patent, 2632058, 1953.

[5] G. Manku and J. Sawada. A loopless Gray code for minimal signed-binary represen-
tations. In Proc. 15th Annual European Symposium on Algorithms (ESA 2005) LNCS,
pages 438-447, Oct 2005.

[6] J. M. Pallo. Enumerating, ranking and unranking binary trees. The Computer Journal,
29(2):171-175, 1986.

[7] F. Ruskey. Combinatorial Generation. Manuscript, 2001.

[8] F. Ruskey and C. Savage. Gray codes for set partitions and restricted growth tails.
Australasian Journal of Combinatorics, 10:85-96, 1994.

[9] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605-629, 1997.

[10] M. Squire. Gray codes for a-free strings. Electronic Journal of Combinatorics, 3(1),
1996.
. Vajnovszki. On the loopless generation of binary tree sequences. Information Pro-

11] V. Vaj ki. On the loopl i f bi I jon P

cessing Letters, 68:113-117, 1998.

[12] D. Roelants van Baronaigien. A loopless Gray-code algorithm for listing k-ary trees.
Journal of Algorithms, 35:100-107, 2000.

[13] S. Williamson. Combinatorial for Computer Science. Computer Science Press, 1985.

[14] R. Wu, J. Chang, and Y. Wang. Ranking, unranking and loopless Gray-codes generation
of t-ary trees. Manuscript, 2007.

[15] S. Zaks. Generation and ranking or k-ary trees. Information Processing Letters,
14(1):44-48, 1982.

