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Abstract

With respect to a class C of graphs, a graph G € C is said to be k-critical if every proper
subgraph of G belonging to C is k—1 colorable. We construct an infinite set of k-critical Ps-
free graphs for every k > 5. We also prove that there are exactly eight 5-critical { P5, C5 }-free
graphs.

1 Introduction

Let P, denote the chordless path on ¢ vertices. The CHROMATIC NUMBER problem for Ps-free
graphs is known to be NP-hard [6]. However for fixed k, the k-colorability question for Ps-free
graphs can be answered in polynomial time [4, 5]. More generally, the k-colorability question
for P,-free graphs has been well studied [1, 4, 5, 8, 7, 9, 10]. The polynomial time algorithms
for answering the k-colorability question for Ps-free graphs will return a valid k-coloring if one
exists, but otherwise do not provide a no-certificate — or a minimal obstruction that makes the graph
non k-colorable. This motivates the following research question: Is there a forbidden subgraph
characterization of k-colorable Ps-free graphs for fixed k? When k = 3, the answer is “yes” and
the 6 forbidden subgraphs are shown in Figure 1 [2]. This result is extended in [8] where they
outline six additional forbidden induced subgraphs for 3-colorable Ps-free graphs. The six extra
graphs are obtained by adding edges to the graphs in Figure 1, so that the graphs remain 4-colorable
and Ps-free. In this paper, we investigate this question for k£ > 3.

Suppose a graph G has chromatic number & (i.e., G is k-colorable, but not (k—1)-colorable).
Then G is said to be k-vertex-critical if removing any vertex from G results in a graph that is
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Figure 1: A Ps-free graph is 3-colorable if it does not contain any of the above graphs as a subgraph.

(k—1)-colorable. Observe that each of the six Ps-free graphs in Figure 1 are 4-vertex-critical.
However, so are the additional 6 Ps-free graphs listed in [8]. Thus, for our question, the definition
of “k-vertex-critical” is not strict enough. Traditionally, a graph G is said to be “k-critical” if
every proper subgraph of GG is (k—1)-colorable. This definition, however, is still insufficient for
our purpose since the removal of the edge e from the 5-th graph listed in Figure 1 results in a graph
that is not 3-colorable. The resulting graph, however, is no longer Ps-free. Therefore, we introduce
a new definition with respect to a specific class of graphs.

Definition 1.1 With respect to a class C of graphs, a graph G € C is k-critical if every proper
subgraph of G belonging to C is k—1 colorable.

For the remainder of the paper, “k-critical” means “k-critical with respect to the considered class
C”. Using Definition 1.1, the set of all 4-critical Ps-free graphs are precisely those listed in Fig-
ure 1. Note that this definition implies that all k-critical graphs are also k-vertex-critical. We now
restate our original research question: Are there a finite number of k-critical Ps-free graphs for
fixed k? While considering this question, the following results are obtained (where C; denotes the
chordless cycle on ¢ vertices):

1. We prove that given a class C of graphs: if an infinite number are k-vertex-critical then an
infinite number are k-critical.

2. We construct an infinite set of k-vertex-critical Ps-free graphs, for each £ > 5.
3. We construct an infinite set of 5-critical Ps-free graphs.

4. We prove that there are exactly eight 5-critical { P5, Cs }-free graphs.

Together, the first two results answer our modified research question. The final result was motivated
by the observation that the graphs in our infinite set of 5-vertex-critical Ps-free graphs all contained
a C5 (for sufficiently large graphs). We note that it is NP-hard to k-color a { Ps, Cs }-free graph
when £ is part of the input [6].

In Section 2 we prove the first 3 results. In Section 3 we present an algorithm that is used
to prove our final result. We conclude the paper in Section 4 with a number of interesting open
problems.

2 Ps-free graphs

We will prove that the following construction produces an infinite set of 5-vertex-critical Ps-free
graphs. N (v) denotes the neighbourhood of vertex v.
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Figure 2: (a) Illustrating the regular construction of Gg. (b) Illustrating the neighbourhood of v,
and some v € V5. Observe both neighbourhoods include V), the black vertices.

Regular construction: Let G, denote the graph with 4p + 1 vertices {vg, v1, ..., V4 }
where the neighbourhood of each vertex is given by:

N(v;) = {vi—1,vi41} U {vitajr2, Vigajrs |0 < j < p—1}
with indices taken modulo 4p + 1.

Figure 2(a) illustrates the regular neighbourhood structure for Gg. The vertices for a given G, can
be partitioned into 4 sets Vj, V1, Vs, V3 where each V; = {v; | t = i mod 4}. Observe that v, is not
adjacent to v; for any vy, v; € V; except for the case when {v,, v;} = {vo,v4,}. This implies the
following remark.

Remark 2.1 Given G, forp > 2, Vi, Vs, and Vs are stable sets and the only edge in V} is between
Vo and Vyp.

Lemma 2.2 G, is 2K,-free, for p > 2.

Proof. Consider the vertices {vg, vy, . .., v} for a given Gy, where k& > 2, and recall its partition
into Vy, V1, Va, Vs. Since Gy, is regular, WLOG consider an edge (v, v;) and suppose that it belongs
to a 2K, with edge (x, y). Observe that N (vg) = {vy,v4,} U Vo U V3. By symmetry, we need only
consider two cases for v;: either v; = v; or v; € V5 (V3 becomes V5 in the reflection centered at
vp). In both cases V; C N(v;), as illustrated in Figure 2(b) for G¢. Thus, since = and y are both
not adjacent to either vy or v;, they must belong to V;. From Remark 2.1, V; is a stable set, which
contradicts the edge (x, y). Thus, vy does not belong to a 2/,. O

Since every P;5 contains a 2K, we obtain the following corollary.
Corollary 2.3 G, is Ps-free, forp > 2.

The following theorem proves that there an infinite number of 5-vertex-critical Ps-free graphs.

Theorem 2.4 G, is 5-vertex-critical, for all p > 2.

3



75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Proof. Suppose G, is 4-colorable. Observe that the vertices {v;, Vi1, Vit2, Vi3 } form a K, for any
1 (modulo 4p +1). WLOG, assign colors 0, 1, 2, 3 to vy, v1, v2, v3 respectively. It is easy to see that
each vertex, v; fori € {4,5,...,4p—1}, must have color 7 taken modulo 4. However, the vertex
vy, 1s adjacent to a vertex of each of the four colors, a contradiction. Thus G, is not 4-colorable.
From Remark 2.1, the vertices of G, can be partitioned into 3 stable sets V;, V5, V5 along with
Vo which consists of a single edge (vg, vs,). Thus, G, can be 5-colored by assigning colors 1, 2,
3 to the stable sets V5, V5, V3 respectively, and then coloring Vj — {vy,} with color 0 and coloring
vgp with 5. Clearly, by removing vy, from G,, the resulting graph is 4-colorable. Thus G, is
5-vertex-critical. |

Given a graph G, let G V u denote the graph obtained from G by adding a new vertex u and
adding all edges between u and the vertices of G. We say that G V u is obtained from G by adding
a universal vertex. Let H, ;, be defined recursively as follows for p > 2 and k£ > 5:

G, itk =5
Hp,k = .
Hyooo Vau ik > 5.

It is easy to verify that if G is k-vertex-critical, then G V w is (k + 1)-vertex-critical. Thus the
following corollary follows from the previous Theorem.

Corollary 2.5 H, ; is k-vertex-critical, for all p > 2 and k > 5.

Since G, is 2K,-free, observe that each graph H,, ;. is also 2K,-free (and hence Ps-free) because
adding a universal vertex will never introduce a new 2K,. Thus, for a fixed £k > 5, the set of
all H, 5, where p > 2, is an infinite set of k-vertex-critical Ps-free graphs. Recall, however, our
original question was to determine whether or not there was a finite number of k-critical P5-graphs,
for fixed £ > 5. We introduce one more lemma before resolving this question.

Lemma 2.6 Let C be a class of graphs. If G € C is k-vertex-critical, then there exists a subgraph
of G on the same set of vertices that is k-critical (w.r.t. C).

Proof. Suppose the Lemma is false. Choose a graph GG with the fewest number of edges that is a
counter example. Since G is not k-critical, by definition there is a non-empty subset of edges F
such that G — E' is not (k — 1)-colorable and belongs to C. But clearly G — F is also k-vertex-
critical, and thus also a counter example to the Lemma. But this contradicts our original choice of
G. O

Together, Lemma 2.6 and Corollary 2.5 establish the existence of an infinite set of k-critical
Ps-free graphs for fixed & > 5. However, we do not have a precise construction of such a set.
Through an exhaustive computer search, focusing on k£ = 5, we found:

> 5 unique 5-critical Ps-free graphs that are proper subgraphs of Gs,

> 3 unique S-critical P5-free graphs that are proper subgraphs of Gy,

> 1 unique 5-critical P5-free graphs that is a proper subgraph of G5, and

> for 6 < p < 25, G, is a S-critical Ps-free graph.
Figure 3 illustrates three 5-critical Ps-free graphs that are subgraphs of Gs, G4, and G5 respectively.
A formal description of these nine subgraphs are given in the Appendix.
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Figure 3: Three 5-critical P5-free graphs on 13, 17, and 21 vertices. They are subgraphs of Gs, Gy,
and G5 respectively.

We now formally prove that G, is a 5-critical Ps-free graph for all p > 6. Part of the proof
relies on a computer aided test on two graphs with 23 vertices. In particular, given a set of forced
edges Er and one of our graphs GG, we need to verify that G' does not have a Ps-free subgraph
that contains E'». The function CHECK-P5 given in Algorithm 1 can be used for this verification.
It is a simple recursive approach that considers whether or not a given edge e could belong to a
possible Ps-free subgraph. If it is part of the subgraph, then it is added to the list of forced edges
E'r. Otherwise it is removed from the graph. If the input graph to the function is FPs-free, it returns
True. If there is a P;5 that consists of only forced edges in Er, the function returns False. Observe
that if neither of these conditions hold, then there exists an edge in the input graph, F/(G), that is
notin Ep.

Algorithm 1 Test if G contains a Ps-free subgraph containing Er
1: function CHECK-P5((G, Er) returns Boolean
2: if G is P;-free then return True
3: if G has an induced P; with all 4 edges in £'r then return False
4: Choose e € E(G) \ Er
5: return CHECK-P5(G, Er Ue) or CHECK-P5(G \ e, Er)

Theorem 2.7 G, is a 5-critical Ps-free graph, for all p > 6.

Proof. Suppose G, is not a S-critical Ps-free graph. Then there exists a non-empty subset of
edges E’ such that G, \ E’ is Ps-free and not 4-colorable. Recall that G, has n = 4p+1 vertices. We
refer to an edge (v;, v;14) as a distance d edge, where indices are considered modulo n . Consider
4 cases for E’ based on various distances:

Case 1: Suppose E’ contains an edge of distance 1. WLOG let (v4,, v9) be such an edge. This
implies that the vertices of G, \ E’ can be partitioned into 4 stable sets from Remark 2.1. Such a
graph is 4-colorable, which is a contradiction. Thus, £’ cannot contain an edge of distance 1.

Case 2: Suppose E’ contains an edge of distance 2. WLOG let (v, v3) be such an edge.
Consider the subgraph H of G, induced by vy, v, vs, . . . , Vo2 With this edge removed. Observe that

5
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H is the same for each G, where p > 6. Setting Er to be all the edges of distance 1 in H, we run
the algorithm CHECK-P5(/, Er) given in Algorithm 1. It returns False, which proves that every
subgraph of H including E'r contains a P5. Thus, for any set of edges E’ that includes (vq, v3) and
no distance 1 edges, G, \ E’ contains a Ps, a contradiction. Thus, E’ cannot contain an edge of
distance 2.

Case 3: We apply the same steps as Case 2 replacing the edge (v, v3) with (v, v4) to prove
that £’ cannot contain an edge of distance 3.

Case 4: Suppose E’ contains no edge of distance < 3. Since E’ is non-empty WLOG let
(vo, v¢) be an edge of minimal distance in E’. Since t > 3, it must be that t mod 4 is either 2 or
3. If £ mod 4 = 2 then the path vy, vy, v4, vy, V43 1S an induced Ps5 consisting of edges of distance
less than ¢. If t mod 4 = 3 then the path v, v3, v4, V4, V411 is an induced Ps5 consisting of edges of
distance less than ¢. In both cases G, \ £’ contains a P;, a contradiction.

Since the above four cases cover all eventualities, the Theorem is proved. O

It is interesting to note that for £ > 6, G contains a C5. In particular, one such induced cycle
is given by the sequence vy, V19, Vak—4, Us, Vak—9, Vp. In the next section we show that there are a
finite number of 5-critical { Ps, C5 }-free graphs.

3 {P;, Cs}-free graphs

In this section we describe an algorithm that verifies there are exactly eight 5-critical { Ps, C5 }-free
graphs. We opt for a programmatic approach since a case-based proof similar to that given in [2]
is far too tedious for these more complex graphs.

To begin, we consider a generic algorithm to exhaustively generate all k-critical graphs with
respect to a class C that can be described by some forbidden subgraph characterization. Such
an algorithm, EXTEND_ALL, is outlined in Algorithm 2. The algorithm takes as input a set of
graphs X,, € C on n vertices, that are (k—1)-colorable. For each graph G in X,, an isolated
vertex is added and every edge combination involving the new vertex is considered. For each new
graph in C: if it is (k—1)-colorable, it is added to the set X, ;; otherwise, if adding the new
vertex increases the chromatic number to £ while also being k-critical, then it is added to Y, ..
The (k—1)-colorable graphs become the input for the next run of the algorithm. Before making
the recursive call, isomorphisms are removed from X,,; and Y, using ‘nauty’!. The initial
call is EXTEND_ALL(X;) where X; contains a single graph with one vertex, and Y] is initialized
appropriately.

The algorithm terminates only if an input X, is empty. In this case, the algorithm proves that
YUY, U---UY, are precisely the k-critical graphs with respect to the class C.

For our purposes, we want to use the algorithm for £ = 5 where C is the set of {Ps, C;}-free
graphs. The check if G € C can be done simply by testing if any set of 5 vertices is a P; or (5.
The chromatic number of G can be determined by a simple recursive backtracking approach. As
an optimization, if the chromatic number of G is k, any subsequent edge set (considered on line 6)
that contains £’ can be skipped since the resulting graph will not be k-critical (w.r.t. C ). To test
if a graph G is k-critical, we first test if it is k-vertex-critical by considering the chromatic number

"Version 2.4 (r2) from http://cs.anu.edu.au/~bdm/nauty/
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Algorithm 2 Extend all graphs in X,, € C

1: procedure EXTEND_ALL(X,,)

2 Xn+1 —0

3 Yn+1 ~0

4: for each G € X, do

5: V(G) +~ V(G)u{n+1}

6: for each non-empty E’ C {(vg, vn41), (V1,Vn41),- - (Un, Unt1)} do
7 E(G)+ E(G)UFE'

8 if G € C then

9: if x(G) = k then
10: if G is k-critical then Y, 11 «+ Y,,, 1 UG
11: else X411+ X1 UG
12: E(G) + E(G)\E'
13: REMOVE_ISOMORPHISMS (X, 41)
14: REMOVE_ISOMORPHISMS (Y, 11)
15: EXTEND_ALL(X,,41)

of G — v for each vertex v € G. If it is, then we consider all subsets of edges £ such that G — E”
is { P5, C5}-free. If all such G — E” are also (k — 1)-colorable, then G is k-critical.

To optimize our search we apply the Strong Perfect Graph Theorem [3]. Since K is a 5-
critical { P5, Cs }-free graph, this theorem implies that any other such graph must contain a Cj, or
its complement C}, as an induced subgraph for some odd k& > 5. However:

e C5 = (5 is forbidden,
e cach (', contains a forbidden P, for odd k > 5,
e cach C, contains a K, for odd k& > 11,

e () contains a proper subgraph that is 5-vertex-critical (the graph on nine vertices in Figure
4).

Thus, every other 5-critical { P5, Cs }-free graph must contain a C;. Hence, as a starting point for
our search, we set X7 to contain the single graph C7 as the first input of the program.

Unfortunately, this algorithm will never terminate. For example, let the vertex set of C; be
{c1,¢a,...,cr}. The program can extend the graph by adding a vertex, u;, with N(uy) = N(¢y).
This new graph, G, is { Ps, Cs }-free and 4-colorable. The graph G’ can be extended further by
adding a vertex, ug, with N(uz) = N(c1). Again, this new graph, G”, is {Ps, C5}-free and 4-
colorable. Adding such vertices can continue forever, and so X,, will never be empty. Thus, we
consider some additional properties of k-vertex-critical graphs.

Lemma 3.1 Let G be a graph with chromatic number k. If G contains two disjoint m-cliques
A=A{a1,a9,...,an} and B = {by,bs,..., by} such that N(a;) C N(b;) forall 1 <i < m, then
G is not k-vertex-critical.

Proof. Suppose G is k-vertex-critical. Then, G—A must be (k—1)-colorable. Apply such a
(k—1)-coloring to the corresponding vertices of GG and assign a; the color of b;. The result is a
valid (k—1)-coloring, a contradiction. O



191

192

193

194

195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

n=10

Figure 4: The eight 5-critical { P, C5} -free graphs.

We note that the case m = 1 is a well known folklore in graph coloring. We apply Lemma 3.1
to the exhaustive search as follows. First, we consider an application of m = 1: if there exists two
vertices u and v in the current graph such that N(u) C N(v), then in order for any extension of
the graph to ever be k-vertex-critical, there must be some vertex w added that is adjacent to u but
not v. WLOG, we can make this the new vertex added to the graph. If no such vertices exist, then
we consider an application of the lemma when m = 2: if there exists two disjoint edges (u, u')
and (v, v') in the current graph such that N(u) C N(v) and N(u') C N(v'), then in order for any
extension of the graph to ever be k-vertex-critical, there must be some vertex w added that is either
adjacent to u but not v or adjacent to «’ but not v'. WLOG, we can make this the new vertex added
to the graph.

By applying these applications of Lemma 3.1, it is sufficient to force the exhaustive search to
terminate (in about 2 minutes) when X,; = () giving us the following result:

Theorem 3.2 There are eight 5-critical { Ps, Cs}-free graphs.

The eight { P5, Cs }-free graphs are listed in Figure 4. Their formal descriptions are given in the
Appendix. The three largest graphs found with n = 13,17, 21 are isomorphic to Gs, G4, and G5
respectively.

This theorem implies that one can answer whether or not a { Ps, C }-free graph G is 4-colorable
by testing whether or not GG contains one of the 8 5-critical graphs as a subgraph. If the graph is
not 4-colorable, this approach yields a polynomial time algorithm for providing a no-certificate of
a minimal obstruction causing the graph to be non 4-colorable.

4 Open Problems

There are a number of interesting open problems related to this work:
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. Is there a generic infinite construction of k-critical Ps-free graphs when k > 5?

. Other than the infinite set of 5-critical P;s-free graphs described in this paper, are there a

finite number of other graphs that are 5-critical?

. Is the 3-colorability question polynomial time solvable for P;-free graphs, for any fixed ¢?

Is the 4-colorability question polynomial time solvable for Ps-free graphs?

. Is the STABLE SET problem for { P5, Cs }-free graphs NP-hard? An overview of this problem

for { P5, X }-free graphs for a variety of small graphs X is given in [11].

Appendix

Edge listings for the 9 proper subgraphs of G3, G, and G5 that are 5-critical P5-free graphs.

n =13
n =13
n =13
n =13
n =13
n =17
n =17
n =17
n =21

: (1,2),(1,4),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(3,4),(3,6),(3,13),(4,5),(4,6).(4,7),(4,10),(4,11),

(5,6),(5,7),(5,12),(6,7),(6,8),(6,9),(6,12),(6,13),(7,8),(7,9),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11),(10,12),
(10,13),(11,12),(11,13),(12,13)

1 (1,2),(1,4),(1,7),(1,8),(1,12),(1,13),(2,3),(2,4),(2,8),(2,9),(2,12),(3,4),(3.5),(3,6),(3,9),(3,13),(4,5),(4,6),(4,7),(4,10),

(4,11),(5,6),(5,7),(5,8),(5,12),(6,7),(6,8),(6,12),(7,8),(7,9),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),
(10,12),(10,13),(11,12),(11,13),(12,13)

1 (1,2),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,12),(2,13),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(6,7),(6,8),(6,12),

(7,8),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(12,13)

1 (1,2),(1,7),(1,12),(1,13),(2,3).(2,4),(2,8),(2,12),(2,13),(3.4).(3.5),(3,6),(4,5),(4,6),(5,6),(5,7).(5.8).(5,12),(6,7),

(6,8),(6,12),(7,8),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(12,13)

: (1,2),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(6,7),(6,8),(6,9),

(6,12),(6,13),(7.8),(7,9),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)

1 (1,2),(1,3),(1,7),(1,11),(1,15),(1,16),(1,17),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,16),(2,17),(3,4),(3.5),(3,6),(3,10),

(3,13),(3,14),(3,17),(4,5),(4,6),(4,7),(4,11),(4,15),(5,6),(5,7),(5,11),(5,15),(6,7),(6,8),(6,9),(6,12),(6,16),(7,8),(7,9),
(7,10),(7,13),(7,14),(7,17),(8,9),(8,10),(8,11),(8,15),(9,10),(9,11),(9,15),(10,11),(10,12),(10,16),(11,12),(11,13),
(11,14),(11,17),(12,13),(12,14),(12,15),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16),(15,17),(16,17)

1 (1,2),(1,15),(1,16),(1,17),(2,3),(2,4),(2,5),(2,8),(2,12),(2,13),(2,16),(2,17),(3,4),(3.5).(3,14),(4,5),(4,14),(5,6),(5,7),

(5,8),(5.12),(5,15),(6,7),(6.8),(6,13),(7.8),(7,13),(8,9),(8,10),(8,11),(8,14),(8,15),(9,10),(9,11),(9,12),(10,1 1),(10,12),
(11,12),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),(15,16),(15,17),(16,17)

1 (1,2),(1,15),(1,16),(1,17),(2,3),(2,4),(2,8),(2,9),(2,12),(2,13),(2,16),(2,17),(3,4),(3,9).(3,14),(4,5),(4.6),(4,7),(4,10),

(4,11),(4,14),(4,15),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8),(8,9),(8,10),(8,11),(8,14),(8,15),(9,10),(9,11),(9,15),(10,11),
(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),(15,16),(15,17),(16,17)

1 (1,2),(1,19),(1,20),(1,21),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(2,16),(2,17),(2,20),(2,21),(3,4),(3,5),(3,9),(3,13),

(3,17),(3,18),(4,5),(4,6),(4,7),(4,10),(4,11),(4,14),(4,15),(4,18),(4,19),(5,6),(5,7),(5,8),(5,12),(5,16),(5,19),(6,7),
(6,8),(6,9),(6,13),(6,17),(7,8),(7,9),(7,13),(7,17),(8,9),(8,10),(8,11),(8,14),(8,15),(8,18),(8,19),(9,10),(9,11),(9,12),
(9,16),(9,19),(10,11),(10,12),(10,13),(10,17),(11,12),(11,13),(11,17),(12,13),(12,14),(12,15),(12,18),(12,19),
(13,14),(13,15),(13,16),(13,19),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19),
(18,19),(19,20),(19,21),(20,21)

Edge listings for the eight 5-critical { Ps, C5 }-free graphs.

n =>5:

n=8:

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)

(1,3),(1,4),(1,5),(1,6),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,8),(6,8),(7,8)
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259
260
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262
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266
267
268
269
270
271
272
273

274

275

276

277
278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

n=9: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3.5).(3,6).(3.7).(3,8),(3,9),(4,6),(4,7),(4,8),(5,7).(5,9).(6.8).(7,9)

n = 10: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),
(4,9),(4,10),(5,7),(5,10),(6,10),(7,9),(7,10),(8.,9),(8,10)

n =11: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4).(2,5),(2,6).(2,7),(2,8),(2,9),(2,11),(3,5).(3,6).(3,7),(3.8),(3,11),(4,6),
(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,9),(6,10),(7,9),(7,10),(8,10),(8,11),(9,10),(9,11),(10,11)

n =13: (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,12),(2,4),(2,5),(2,6).(2,7),(2,8),(2,9),(2,10),(2,11),(3.5).(3,6),(3,7),(3.8),(3,9),
(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(5,7),(5,8),(5,9),(5,12),(5,13),(6,9),(6,11),(6,12),(6,13),(7,10),(7,11),
(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,12),(10,13),(11,13),(12,13)

n =17 (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,13),(1,14),(1,15),(2,4),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(2,13),(2,14),(2,15),
(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,13),(3,14),(3,17),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(4,14),(4,17),(5,7),(5.8),(5,9),
(5,12),(5,13),(5,16),(5,17),(6,9),(6,11),(6,12),(6,15),(6,16),(6,17),(7,10),(7,11),(7,12),(7,14),(7,15),(7,16),(8,11),(8,12),
(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,14),(9,15),(9,16),(10,12),(10,15),(10,16),(10,17),(11,12),(11,13),(11,16),
(11,17),(12,13),(12,14),(12,15),(13,15),(13,16),(13,17),(14,16),(14,17),(15,17),(16,17)

n = 21: (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,14),(1,15),(1,19),(1,20),(1,21),(2,4),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(2,14),
(2,15),(2,16),(2,20),(2,21),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(3,18),(3,21),(4,6),(4,7),(4,8),(4,9),
(4,10),(4,15),(4,16),(4,17),(4,18),(4,21),(5,7).(5,8),(5,9).(5,12),(5,13),(5,16),(5,17),(5.,18),(5,19),(6,9),(6,11),(6,12),
(6,13),(6,14),(6,18),(6,19),(6,20),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,19),(7,20),(8,11),(8,12),(8,13),(8,14),
(8,18),(8,19),(8.,20),(9,10),(9,11),(9,12),(9,14),(9,15),(9,19),(9,20),(9,21),(10,12),(10,13),(10,16),(10,17),(10,18),
(10,19),(11,13),(11,15),(11,16),(11,17),(11,18),(11,21),(12,14),(12,15),(12,16),(12,17),(12,20),(12,21),(13,14),
(13,15),(13,16),(13,17),(13,20),(13,21),(14,16),(14,17),(14,18),(14,19),(15,17),(15,18),(15,19),(16,18),(16,19),
(16,20),(17,19),(17,20),(17,21),(18,20),(18,21),(19,21),(20,21)
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