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Chı́nh T. Hoàng∗ Brian Moore† Daniel Recoskie‡

Joe Sawada§ Martin Vatshelle¶

2

January 2, 20133

Abstract4

With respect to a class C of graphs, a graph G ∈ C is said to be k-critical if every proper5

subgraph of G belonging to C is k−1 colorable. We construct an infinite set of k-critical P5-6

free graphs for every k ≥ 5. We also prove that there are exactly eight 5-critical {P5, C5}-free7

graphs.8

1 Introduction9

Let Pt denote the chordless path on t vertices. The CHROMATIC NUMBER problem for P5-free10

graphs is known to be NP-hard [6]. However for fixed k, the k-colorability question for P5-free11

graphs can be answered in polynomial time [4, 5]. More generally, the k-colorability question12

for Pt-free graphs has been well studied [1, 4, 5, 8, 7, 9, 10]. The polynomial time algorithms13

for answering the k-colorability question for P5-free graphs will return a valid k-coloring if one14

exists, but otherwise do not provide a no-certificate – or a minimal obstruction that makes the graph15

non k-colorable. This motivates the following research question: Is there a forbidden subgraph16

characterization of k-colorable P5-free graphs for fixed k? When k = 3, the answer is “yes” and17

the 6 forbidden subgraphs are shown in Figure 1 [2]. This result is extended in [8] where they18

outline six additional forbidden induced subgraphs for 3-colorable P5-free graphs. The six extra19

graphs are obtained by adding edges to the graphs in Figure 1, so that the graphs remain 4-colorable20

and P5-free. In this paper, we investigate this question for k > 3.21

Suppose a graph G has chromatic number k (i.e., G is k-colorable, but not (k−1)-colorable).22

Then G is said to be k-vertex-critical if removing any vertex from G results in a graph that is23
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Figure 1: A P5-free graph is 3-colorable if it does not contain any of the above graphs as a subgraph.

(k−1)-colorable. Observe that each of the six P5-free graphs in Figure 1 are 4-vertex-critical.24

However, so are the additional 6 P5-free graphs listed in [8]. Thus, for our question, the definition25

of “k-vertex-critical” is not strict enough. Traditionally, a graph G is said to be “k-critical” if26

every proper subgraph of G is (k−1)-colorable. This definition, however, is still insufficient for27

our purpose since the removal of the edge e from the 5-th graph listed in Figure 1 results in a graph28

that is not 3-colorable. The resulting graph, however, is no longer P5-free. Therefore, we introduce29

a new definition with respect to a specific class of graphs.30

Definition 1.1 With respect to a class C of graphs, a graph G ∈ C is k-critical if every proper31

subgraph of G belonging to C is k−1 colorable.32

For the remainder of the paper, “k-critical” means “k-critical with respect to the considered class33

C”. Using Definition 1.1, the set of all 4-critical P5-free graphs are precisely those listed in Fig-34

ure 1. Note that this definition implies that all k-critical graphs are also k-vertex-critical. We now35

restate our original research question: Are there a finite number of k-critical P5-free graphs for36

fixed k? While considering this question, the following results are obtained (where Ct denotes the37

chordless cycle on t vertices):38

1. We prove that given a class C of graphs: if an infinite number are k-vertex-critical then an39

infinite number are k-critical.40

2. We construct an infinite set of k-vertex-critical P5-free graphs, for each k ≥ 5.41

3. We construct an infinite set of 5-critical P5-free graphs.42

4. We prove that there are exactly eight 5-critical {P5, C5}-free graphs.43

Together, the first two results answer our modified research question. The final result was motivated44

by the observation that the graphs in our infinite set of 5-vertex-critical P5-free graphs all contained45

a C5 (for sufficiently large graphs). We note that it is NP-hard to k-color a {P5, C5}-free graph46

when k is part of the input [6].47

In Section 2 we prove the first 3 results. In Section 3 we present an algorithm that is used48

to prove our final result. We conclude the paper in Section 4 with a number of interesting open49

problems.50

2 P5-free graphs51

We will prove that the following construction produces an infinite set of 5-vertex-critical P5-free52

graphs. N(v) denotes the neighbourhood of vertex v.53
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Figure 2: (a) Illustrating the regular construction of G6. (b) Illustrating the neighbourhood of v1
and some v ∈ V2. Observe both neighbourhoods include V0, the black vertices.

Regular construction: Let Gp denote the graph with 4p+ 1 vertices {v0, v1, . . . , v4p}54

where the neighbourhood of each vertex is given by:55

N(vi) = {vi−1, vi+1} ∪ {vi+4j+2, vi+4j+3 | 0 ≤ j ≤ p−1}

with indices taken modulo 4p+ 1.56

Figure 2(a) illustrates the regular neighbourhood structure for G6. The vertices for a given Gp can57

be partitioned into 4 sets V0, V1, V2, V3 where each Vi = {vt | t ≡ i mod 4}. Observe that vs is not58

adjacent to vt for any vs, vt ∈ Vi except for the case when {vs, vt} = {v0, v4p}. This implies the59

following remark.60

Remark 2.1 Given Gp for p ≥ 2, V1, V2, and V3 are stable sets and the only edge in V0 is between61

v0 and v4p.62

Lemma 2.2 Gp is 2K2-free, for p ≥ 2.63

Proof. Consider the vertices {v0, v1, . . . , v4k} for a given Gk, where k ≥ 2, and recall its partition64

into V0, V1, V2, V3. Since Gk is regular, WLOG consider an edge (v0, vj) and suppose that it belongs65

to a 2K2 with edge (x, y). Observe that N(v0) = {v1, v4k} ∪ V2 ∪ V3. By symmetry, we need only66

consider two cases for vj: either vj = v1 or vj ∈ V2 (V3 becomes V2 in the reflection centered at67

v0). In both cases V0 ⊆ N(vj), as illustrated in Figure 2(b) for G6. Thus, since x and y are both68

not adjacent to either v0 or vj , they must belong to V1. From Remark 2.1, V1 is a stable set, which69

contradicts the edge (x, y). Thus, v0 does not belong to a 2K2. 270

Since every P5 contains a 2K2, we obtain the following corollary.71

Corollary 2.3 Gp is P5-free, for p ≥ 2.72

The following theorem proves that there an infinite number of 5-vertex-critical P5-free graphs.73

Theorem 2.4 Gp is 5-vertex-critical, for all p ≥ 2.74
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Proof. Suppose Gp is 4-colorable. Observe that the vertices {vi, vi+1, vi+2, vi+3} form a K4 for any75

i (modulo 4p+1). WLOG, assign colors 0, 1, 2, 3 to v0, v1, v2, v3 respectively. It is easy to see that76

each vertex, vi for i ∈ {4, 5, . . . , 4p−1}, must have color i taken modulo 4. However, the vertex77

v4p is adjacent to a vertex of each of the four colors, a contradiction. Thus Gp is not 4-colorable.78

From Remark 2.1, the vertices of Gp can be partitioned into 3 stable sets V1, V2, V3 along with79

V0 which consists of a single edge (v0, v4p). Thus, Gp can be 5-colored by assigning colors 1, 2,80

3 to the stable sets V1, V2, V3 respectively, and then coloring V0 − {v4p} with color 0 and coloring81

v4p with 5. Clearly, by removing v4p from Gp, the resulting graph is 4-colorable. Thus Gp is82

5-vertex-critical. 283

Given a graph G, let G ∨ u denote the graph obtained from G by adding a new vertex u and
adding all edges between u and the vertices of G. We say that G∨ u is obtained from G by adding
a universal vertex. Let Hp,k be defined recursively as follows for p ≥ 2 and k ≥ 5:

Hp,k =

{
Gp if k = 5

Hp,k−1 ∨ u if k > 5.

It is easy to verify that if G is k-vertex-critical, then G ∨ u is (k + 1)-vertex-critical. Thus the84

following corollary follows from the previous Theorem.85

Corollary 2.5 Hp,k is k-vertex-critical, for all p ≥ 2 and k ≥ 5.86

Since Gp is 2K2-free, observe that each graph Hp,k is also 2K2-free (and hence P5-free) because87

adding a universal vertex will never introduce a new 2K2. Thus, for a fixed k ≥ 5, the set of88

all Hp,k, where p ≥ 2, is an infinite set of k-vertex-critical P5-free graphs. Recall, however, our89

original question was to determine whether or not there was a finite number of k-critical P5-graphs,90

for fixed k ≥ 5. We introduce one more lemma before resolving this question.91

Lemma 2.6 Let C be a class of graphs. If G ∈ C is k-vertex-critical, then there exists a subgraph92

of G on the same set of vertices that is k-critical (w.r.t. C).93

Proof. Suppose the Lemma is false. Choose a graph G with the fewest number of edges that is a94

counter example. Since G is not k-critical, by definition there is a non-empty subset of edges E95

such that G − E is not (k − 1)-colorable and belongs to C. But clearly G − E is also k-vertex-96

critical, and thus also a counter example to the Lemma. But this contradicts our original choice of97

G. 298

Together, Lemma 2.6 and Corollary 2.5 establish the existence of an infinite set of k-critical99

P5-free graphs for fixed k ≥ 5. However, we do not have a precise construction of such a set.100

Through an exhaustive computer search, focusing on k = 5, we found:101

. 5 unique 5-critical P5-free graphs that are proper subgraphs of G3,102

. 3 unique 5-critical P5-free graphs that are proper subgraphs of G4,103

. 1 unique 5-critical P5-free graphs that is a proper subgraph of G5, and104

. for 6 ≤ p ≤ 25, Gp is a 5-critical P5-free graph.105

Figure 3 illustrates three 5-critical P5-free graphs that are subgraphs of G3, G4, and G5 respectively.106

A formal description of these nine subgraphs are given in the Appendix.107
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Figure 3: Three 5-critical P5-free graphs on 13, 17, and 21 vertices. They are subgraphs of G3, G4,
and G5 respectively.

We now formally prove that Gp is a 5-critical P5-free graph for all p ≥ 6. Part of the proof108

relies on a computer aided test on two graphs with 23 vertices. In particular, given a set of forced109

edges EF and one of our graphs G, we need to verify that G does not have a P5-free subgraph110

that contains EF . The function CHECK-P5 given in Algorithm 1 can be used for this verification.111

It is a simple recursive approach that considers whether or not a given edge e could belong to a112

possible P5-free subgraph. If it is part of the subgraph, then it is added to the list of forced edges113

EF . Otherwise it is removed from the graph. If the input graph to the function is P5-free, it returns114

True. If there is a P5 that consists of only forced edges in EF , the function returns False. Observe115

that if neither of these conditions hold, then there exists an edge in the input graph, E(G), that is116

not in EF .117

Algorithm 1 Test if G contains a P5-free subgraph containing EF

1: function CHECK-P5(G,EF ) returns Boolean
2: if G is P5-free then return True
3: if G has an induced P5 with all 4 edges in EF then return False
4: Choose e ∈ E(G) \ EF

5: return CHECK-P5(G,EF ∪ e) or CHECK-P5(G \ e, EF )

Theorem 2.7 Gp is a 5-critical P5-free graph, for all p ≥ 6.118

Proof. Suppose Gp is not a 5-critical P5-free graph. Then there exists a non-empty subset of119

edges E ′ such that Gp\E ′ is P5-free and not 4-colorable. Recall that Gp has n = 4p+1 vertices. We120

refer to an edge (vi, vi+d) as a distance d edge, where indices are considered modulo n . Consider121

4 cases for E ′ based on various distances:122

Case 1: Suppose E ′ contains an edge of distance 1. WLOG let (v4p, v0) be such an edge. This123

implies that the vertices of Gp \ E ′ can be partitioned into 4 stable sets from Remark 2.1. Such a124

graph is 4-colorable, which is a contradiction. Thus, E ′ cannot contain an edge of distance 1.125

Case 2: Suppose E ′ contains an edge of distance 2. WLOG let (v1, v3) be such an edge.126

Consider the subgraph H of Gp induced by v0, v1, v2, . . . , v22 with this edge removed. Observe that127
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H is the same for each Gp where p ≥ 6. Setting EF to be all the edges of distance 1 in H , we run128

the algorithm CHECK-P5(H,EF ) given in Algorithm 1. It returns False, which proves that every129

subgraph of H including EF contains a P5. Thus, for any set of edges E ′ that includes (v1, v3) and130

no distance 1 edges, Gp \ E ′ contains a P5, a contradiction. Thus, E ′ cannot contain an edge of131

distance 2.132

Case 3: We apply the same steps as Case 2 replacing the edge (v1, v3) with (v1, v4) to prove133

that E ′ cannot contain an edge of distance 3.134

Case 4: Suppose E ′ contains no edge of distance ≤ 3. Since E ′ is non-empty WLOG let135

(v0, vt) be an edge of minimal distance in E ′. Since t > 3, it must be that t mod 4 is either 2 or136

3. If t mod 4 = 2 then the path v0, v1, v4, vt, vt+3 is an induced P5 consisting of edges of distance137

less than t. If t mod 4 = 3 then the path v0, v3, v4, vt, vt+1 is an induced P5 consisting of edges of138

distance less than t. In both cases Gp \ E ′ contains a P5, a contradiction.139

Since the above four cases cover all eventualities, the Theorem is proved. 2140

It is interesting to note that for k ≥ 6, Gk contains a C5. In particular, one such induced cycle141

is given by the sequence v0, v10, v4k−4, v5, v4k−9, v0. In the next section we show that there are a142

finite number of 5-critical {P5, C5}-free graphs.143

3 {P5, C5}-free graphs144

In this section we describe an algorithm that verifies there are exactly eight 5-critical {P5, C5}-free145

graphs. We opt for a programmatic approach since a case-based proof similar to that given in [2]146

is far too tedious for these more complex graphs.147

To begin, we consider a generic algorithm to exhaustively generate all k-critical graphs with148

respect to a class C that can be described by some forbidden subgraph characterization. Such149

an algorithm, EXTEND ALL, is outlined in Algorithm 2. The algorithm takes as input a set of150

graphs Xn ∈ C on n vertices, that are (k−1)-colorable. For each graph G in Xn an isolated151

vertex is added and every edge combination involving the new vertex is considered. For each new152

graph in C: if it is (k−1)-colorable, it is added to the set Xn+1; otherwise, if adding the new153

vertex increases the chromatic number to k while also being k-critical, then it is added to Yn+1.154

The (k−1)-colorable graphs become the input for the next run of the algorithm. Before making155

the recursive call, isomorphisms are removed from Xn+1 and Yn+1 using ‘nauty’1. The initial156

call is EXTEND ALL(X1) where X1 contains a single graph with one vertex, and Y1 is initialized157

appropriately.158

The algorithm terminates only if an input Xn is empty. In this case, the algorithm proves that159

Y1 ∪ Y2 ∪ · · · ∪ Yn are precisely the k-critical graphs with respect to the class C.160

For our purposes, we want to use the algorithm for k = 5 where C is the set of {P5, C5}-free161

graphs. The check if G ∈ C can be done simply by testing if any set of 5 vertices is a P5 or C5.162

The chromatic number of G can be determined by a simple recursive backtracking approach. As163

an optimization, if the chromatic number of G is k, any subsequent edge set (considered on line 6)164

that contains E ′ can be skipped since the resulting graph will not be k-critical (w.r.t. C ). To test165

if a graph G is k-critical, we first test if it is k-vertex-critical by considering the chromatic number166

1Version 2.4 (r2) from http://cs.anu.edu.au/˜bdm/nauty/
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Algorithm 2 Extend all graphs in Xn ∈ C
1: procedure EXTEND ALL(Xn)
2: Xn+1 ← ∅
3: Yn+1 ← ∅
4: for each G ∈ Xn do
5: V (G)← V (G) ∪ {n+ 1}
6: for each non-empty E′ ⊆ {(v0, vn+1), (v1, vn+1), . . . , (vn, vn+1)} do
7: E(G)← E(G) ∪ E′
8: if G ∈ C then
9: if χ(G) = k then

10: if G is k-critical then Yn+1 ← Yn+1 ∪G
11: else Xn+1 ← Xn+1 ∪G
12: E(G)← E(G)\E′
13: REMOVE ISOMORPHISMS(Xn+1)
14: REMOVE ISOMORPHISMS(Yn+1)
15: EXTEND ALL(Xn+1)

of G− v for each vertex v ∈ G. If it is, then we consider all subsets of edges E ′′ such that G−E ′′167

is {P5, C5}-free. If all such G− E ′′ are also (k − 1)-colorable, then G is k-critical.168

To optimize our search we apply the Strong Perfect Graph Theorem [3]. Since K5 is a 5-169

critical {P5, C5}-free graph, this theorem implies that any other such graph must contain a Ck or170

its complement Ck as an induced subgraph for some odd k ≥ 5. However:171

• C5 = C5 is forbidden,172

• each Ck contains a forbidden P5, for odd k ≥ 5,173

• each Ck contains a K5, for odd k ≥ 11,174

• C9 contains a proper subgraph that is 5-vertex-critical (the graph on nine vertices in Figure175

4).176

Thus, every other 5-critical {P5, C5}-free graph must contain a C7. Hence, as a starting point for177

our search, we set X7 to contain the single graph C7 as the first input of the program.178

Unfortunately, this algorithm will never terminate. For example, let the vertex set of C7 be179

{c1, c2, . . . , c7}. The program can extend the graph by adding a vertex, u1, with N(u1) = N(c1).180

This new graph, G′, is {P5, C5}-free and 4-colorable. The graph G′ can be extended further by181

adding a vertex, u2, with N(u2) = N(c1). Again, this new graph, G′′, is {P5, C5}-free and 4-182

colorable. Adding such vertices can continue forever, and so Xn will never be empty. Thus, we183

consider some additional properties of k-vertex-critical graphs.184

Lemma 3.1 Let G be a graph with chromatic number k. If G contains two disjoint m-cliques185

A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bm} such that N(ai) ⊆ N(bi) for all 1 ≤ i ≤ m, then186

G is not k-vertex-critical.187

Proof. Suppose G is k-vertex-critical. Then, G−A must be (k−1)-colorable. Apply such a188

(k−1)-coloring to the corresponding vertices of G and assign ai the color of bi. The result is a189

valid (k−1)-coloring, a contradiction. 2190
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n=9n=8

n=13 n=17 n=21

Figure 4: The eight 5-critical {P5, C5} -free graphs.

We note that the case m = 1 is a well known folklore in graph coloring. We apply Lemma 3.1191

to the exhaustive search as follows. First, we consider an application of m = 1: if there exists two192

vertices u and v in the current graph such that N(u) ⊆ N(v), then in order for any extension of193

the graph to ever be k-vertex-critical, there must be some vertex w added that is adjacent to u but194

not v. WLOG, we can make this the new vertex added to the graph. If no such vertices exist, then195

we consider an application of the lemma when m = 2: if there exists two disjoint edges (u, u′)196

and (v, v′) in the current graph such that N(u) ⊆ N(v) and N(u′) ⊆ N(v′), then in order for any197

extension of the graph to ever be k-vertex-critical, there must be some vertex w added that is either198

adjacent to u but not v or adjacent to u′ but not v′. WLOG, we can make this the new vertex added199

to the graph.200

By applying these applications of Lemma 3.1, it is sufficient to force the exhaustive search to201

terminate (in about 2 minutes) when X21 = ∅ giving us the following result:202

Theorem 3.2 There are eight 5-critical {P5, C5}-free graphs.203

The eight {P5, C5}-free graphs are listed in Figure 4. Their formal descriptions are given in the204

Appendix. The three largest graphs found with n = 13, 17, 21 are isomorphic to G3,G4, and G5205

respectively.206

This theorem implies that one can answer whether or not a {P5, C5}-free graph G is 4-colorable207

by testing whether or not G contains one of the 8 5-critical graphs as a subgraph. If the graph is208

not 4-colorable, this approach yields a polynomial time algorithm for providing a no-certificate of209

a minimal obstruction causing the graph to be non 4-colorable.210

4 Open Problems211

There are a number of interesting open problems related to this work:212
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1. Is there a generic infinite construction of k-critical P5-free graphs when k ≥ 5?213

2. Other than the infinite set of 5-critical P5-free graphs described in this paper, are there a214

finite number of other graphs that are 5-critical?215

3. Is the 3-colorability question polynomial time solvable for Pt-free graphs, for any fixed t?216

4. Is the 4-colorability question polynomial time solvable for P6-free graphs?217

5. Is the STABLE SET problem for {P5, C5}-free graphs NP-hard? An overview of this problem218

for {P5, X}-free graphs for a variety of small graphs X is given in [11].219

A Appendix220

Edge listings for the 9 proper subgraphs of G3,G4 and G5 that are 5-critical P5-free graphs.221

n = 13: (1,2),(1,4),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(3,4),(3,6),(3,13),(4,5),(4,6),(4,7),(4,10),(4,11),222

(5,6),(5,7),(5,12),(6,7),(6,8),(6,9),(6,12),(6,13),(7,8),(7,9),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11),(10,12),223

(10,13),(11,12),(11,13),(12,13)224

n = 13: (1,2),(1,4),(1,7),(1,8),(1,12),(1,13),(2,3),(2,4),(2,8),(2,9),(2,12),(3,4),(3,5),(3,6),(3,9),(3,13),(4,5),(4,6),(4,7),(4,10),225

(4,11),(5,6),(5,7),(5,8),(5,12),(6,7),(6,8),(6,12),(7,8),(7,9),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),226

(10,12),(10,13),(11,12),(11,13),(12,13)227

n = 13: (1,2),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,12),(2,13),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(6,7),(6,8),(6,12),228

(7,8),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(12,13)229

n = 13: (1,2),(1,7),(1,12),(1,13),(2,3),(2,4),(2,8),(2,12),(2,13),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(5,7),(5,8),(5,12),(6,7),230

(6,8),(6,12),(7,8),(7,13),(8,9),(8,10),(8,11),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(12,13)231

n = 13: (1,2),(1,7),(1,12),(1,13),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(6,7),(6,8),(6,9),232

(6,12),(6,13),(7,8),(7,9),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)233

n = 17: (1,2),(1,3),(1,7),(1,11),(1,15),(1,16),(1,17),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,16),(2,17),(3,4),(3,5),(3,6),(3,10),234

(3,13),(3,14),(3,17),(4,5),(4,6),(4,7),(4,11),(4,15),(5,6),(5,7),(5,11),(5,15),(6,7),(6,8),(6,9),(6,12),(6,16),(7,8),(7,9),235

(7,10),(7,13),(7,14),(7,17),(8,9),(8,10),(8,11),(8,15),(9,10),(9,11),(9,15),(10,11),(10,12),(10,16),(11,12),(11,13),236

(11,14),(11,17),(12,13),(12,14),(12,15),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16),(15,17),(16,17)237

n = 17: (1,2),(1,15),(1,16),(1,17),(2,3),(2,4),(2,5),(2,8),(2,12),(2,13),(2,16),(2,17),(3,4),(3,5),(3,14),(4,5),(4,14),(5,6),(5,7),238

(5,8),(5,12),(5,15),(6,7),(6,8),(6,13),(7,8),(7,13),(8,9),(8,10),(8,11),(8,14),(8,15),(9,10),(9,11),(9,12),(10,11),(10,12),239

(11,12),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),(15,16),(15,17),(16,17)240

n = 17: (1,2),(1,15),(1,16),(1,17),(2,3),(2,4),(2,8),(2,9),(2,12),(2,13),(2,16),(2,17),(3,4),(3,9),(3,14),(4,5),(4,6),(4,7),(4,10),241

(4,11),(4,14),(4,15),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8),(8,9),(8,10),(8,11),(8,14),(8,15),(9,10),(9,11),(9,15),(10,11),242

(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),(15,16),(15,17),(16,17)243

n = 21: (1,2),(1,19),(1,20),(1,21),(2,3),(2,4),(2,5),(2,8),(2,9),(2,12),(2,13),(2,16),(2,17),(2,20),(2,21),(3,4),(3,5),(3,9),(3,13),244

(3,17),(3,18),(4,5),(4,6),(4,7),(4,10),(4,11),(4,14),(4,15),(4,18),(4,19),(5,6),(5,7),(5,8),(5,12),(5,16),(5,19),(6,7),245

(6,8),(6,9),(6,13),(6,17),(7,8),(7,9),(7,13),(7,17),(8,9),(8,10),(8,11),(8,14),(8,15),(8,18),(8,19),(9,10),(9,11),(9,12),246

(9,16),(9,19),(10,11),(10,12),(10,13),(10,17),(11,12),(11,13),(11,17),(12,13),(12,14),(12,15),(12,18),(12,19),247

(13,14),(13,15),(13,16),(13,19),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19),248

(18,19),(19,20),(19,21),(20,21)249

Edge listings for the eight 5-critical {P5, C5}-free graphs.250

n = 5: (1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)251

n = 8: (1,3),(1,4),(1,5),(1,6),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,8),(6,8),(7,8)252

9



n = 9: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(7,9)253

n = 10: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),254

(4,9),(4,10),(5,7),(5,10),(6,10),(7,9),(7,10),(8,9),(8,10)255

n = 11: (1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,11),(3,5),(3,6),(3,7),(3,8),(3,11),(4,6),256

(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,9),(6,10),(7,9),(7,10),(8,10),(8,11),(9,10),(9,11),(10,11)257

n = 13: (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,12),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),258

(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(5,7),(5,8),(5,9),(5,12),(5,13),(6,9),(6,11),(6,12),(6,13),(7,10),(7,11),259

(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,12),(10,13),(11,13),(12,13)260

n = 17: (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,13),(1,14),(1,15),(2,4),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(2,13),(2,14),(2,15),261

(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,13),(3,14),(3,17),(4,6),(4,7),(4,8),(4,9),(4,10),(4,13),(4,14),(4,17),(5,7),(5,8),(5,9),262

(5,12),(5,13),(5,16),(5,17),(6,9),(6,11),(6,12),(6,15),(6,16),(6,17),(7,10),(7,11),(7,12),(7,14),(7,15),(7,16),(8,11),(8,12),263

(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,14),(9,15),(9,16),(10,12),(10,15),(10,16),(10,17),(11,12),(11,13),(11,16),264

(11,17),(12,13),(12,14),(12,15),(13,15),(13,16),(13,17),(14,16),(14,17),(15,17),(16,17)265

n = 21: (1,3),(1,4),(1,5),(1,6),(1,8),(1,10),(1,11),(1,14),(1,15),(1,19),(1,20),(1,21),(2,4),(2,5),(2,6),(2,7),(2,8),(2,10),(2,11),(2,14),266

(2,15),(2,16),(2,20),(2,21),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(3,18),(3,21),(4,6),(4,7),(4,8),(4,9),267

(4,10),(4,15),(4,16),(4,17),(4,18),(4,21),(5,7),(5,8),(5,9),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(6,9),(6,11),(6,12),268

(6,13),(6,14),(6,18),(6,19),(6,20),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,19),(7,20),(8,11),(8,12),(8,13),(8,14),269

(8,18),(8,19),(8,20),(9,10),(9,11),(9,12),(9,14),(9,15),(9,19),(9,20),(9,21),(10,12),(10,13),(10,16),(10,17),(10,18),270

(10,19),(11,13),(11,15),(11,16),(11,17),(11,18),(11,21),(12,14),(12,15),(12,16),(12,17),(12,20),(12,21),(13,14),271

(13,15),(13,16),(13,17),(13,20),(13,21),(14,16),(14,17),(14,18),(14,19),(15,17),(15,18),(15,19),(16,18),(16,19),272

(16,20),(17,19),(17,20),(17,21),(18,20),(18,21),(19,21),(20,21)273
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