Available online at www.sciencedirect.com

SCIENcE@DIRECT" Theoretical
Computer Science

e

LSEVIE Theoretical Computer ScientH (1118) 11111

o

www.elsevier.com/locate/tcs

Oracles for vertex elimination orderings

J. Sawada
Computing and Information Science, University of Guelph, Guelph, Ont., Canada N1G 2W1

Received 11 December 2003; received in revised form 5 January 2005; accepted 20 March 2005

Communicated by G. Ausiello

Abstract

By maintaining appropriate data structures, we develop constant-time transposition oracles that
answer whether or not two adjacent vertices in a simple elimination ordering (SEO) or a semiperfect
elimination ordering (semiPEO) can be swapped to produce a new SEO or semiPEO, respectively.
Combined with previous results regarding convex geometries and antimatroids, this allows us to list
all SEOs of a strongly chordal graph and all semiPEOs of an HHDA-free graph in Gray code order.
By applying a new amortized analysis we show that the algorithms run in constant amortized time.

Additionally, we provide a simple framework that can be used to exhaustively list the basic words
for other antimatroids.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Gray code; Antimatroid; Convex geometry; Simple elimination ordering; Semiperfect elimination
ordering; Strongly chordal graph; HHDA-free graph; Weak bipolarizable

1. Introduction

A Gray codeis an exhaustive listing of a combinatorial object where successive objects
differ by a constant amount. The ultimate goal for algorithms that produce such listings is
for the running time to be proportional to the number of objects generated. Such algorithms
are said to be CAT since they run in constant amortized time. In this paper, we combine

E-mail addresssawada@cis.uoguelph.ca

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.051

http://www.elsevier.com/locate/tcs
mailto:sawada@cis.uoguelph.ca

2 J. Sawada / Theoretical Computer Scieh(nin) il

several previous results and several new results to yield an efficient Gray code algorithm
that will list:

1. all simple elimination orderings (SEOs) of a strongly chordal graph and

2. all semiperfect elimination orderings (semiPEOs) of an HHDA-free graph.

The algorithm described in this paper is based on a result concerning antimatroids. The
basic wordof an antimatroid are those that are of maximal length. It is shohlijthat a
Gray code exists for the basic words of any antimatroid. An algorithm that produces the Gray
code listing is given in [12]. The key ingredient required by the algorithm is an antimatroid-
specificoraclethat answers correctly whether or not an adjacent pair of elements (vertices)
in a basic word (ordering) can be swapped to obtain a new basic word. Linear extensions of
a poset are an example of the basic words of an antimatroid and a corresponding constant
time oracle is given in [12]. The perfect elimination orderings (PEOs) of a chordal graph
also form the basic words of an antimatroid, and a corresponding constant time oracle is
givenin [2]. In this paper, we focus on the more difficult problem of finding a constant time
oracle for the basic words of two other antimatroids: the SEOs of a strongly chordal graph,
and the semiPEOs of an HHDA-free graph.

It was proved in [11] that if an oracle for a particular antimatroid can be implemented in
0O(1) time, then the basic words for the antimatroid can be generated in constant amortized
time. In this paper we improve this upper bound permitted by the oracl€ijoWherei is
discussed in Section 5. This analysis is crucial in proving that we can generate all SEOs and
semiPEOs in constant amortized time. In addition to the analysis, we also present a simple
framework based on the presentations of the generic algorithm in [12,2], that can be used
to generate the basic words for any antimatroid.

The remainder of this paper is presented as follows. In Section 2 we present graph-related
definitions focusing on chordal, strongly chordal, and HHDA-free graphs. In Section 3, we
discuss convex geometries and use results from [4,5] to show how they relate to our graphs
of interest. Then in Section 4, we discuss antimatroids and show how they relate to convex
geometries. In Section 5, we present the generic Gray code algorithm outlining the steps
required to apply it to any antimatroid. Also in that section we present some important
observations about the algorithm and improve the previous analysis. In Section 6, we apply
the general framework to PEOs, SEOs, and semiPEOSs. In doing so we present constant
time oracles for each ordering. We conclude with a brief summary in Section 7.

2. Graph definitions

We start this section with some general graph definitions. We then focus on three graph
classes that are related to convex geometries and antimatroids: chordal graphs, strongly
chordal graphs, and HHDA-free graphs.

Let G = (V, E) be an undirected graph with vertex $&twhere|V| = n, and edge set
E. Let N(v) denote the neighborhood of a vertexand letN[v] denoteN (v) U {v}. For
A C V,weletG(A) denote the subgraph 6finduced byA. A complete induced subgraph
is called acliqueand Py is used to denote an induced pathkovertices. Given an ordering
of verticesf = vy, va, ..., vy, We letG ¢ (i) denote the subgraph inducedfoy, ..., v,}.

J. Sawada / Theoretical Computer Scieh({nan) - 3
2.1. Chordal graphs

A graph G is chordal if every cycle of length 4 or more containschord—an edge
between two nonconsecutive vertices in the cycle. A vertessimplicial if G(N (v)) is a
cligue, or alternatively, if it isnotthe center of &s. An orderingf = v1, ..., v, is called
a PEOQ if for each Xi <n, the vertexy; is simplicial inG ¢ (7).

Theorem 1(Fulkerson and Grosg/]). A graph is chordal if and only if it admits a PEO
Theorem 2(Dirac [3]). Every nontrivial chordal graph has at lea®tsimplicial vertices
2.2. Strongly chordal graphs

A graphaG is strongly chordalf it is chordal and every even cycle of length 6 or more
contains a chord splitting the cycle into two odd length paths. A vartexsimpleif the
set{N[u] : u € N(v)} can be linearly ordered by set inclusion. Alternatively, a vertex
is simple if for any two vertices, y € N(v) eitherN[x] € N[y] or N[y] € N[x]. An
orderingf = vy, ..., v, is called a SEO if for each<i <n, the vertexv; is simple in
G ¢ (i). Observe that a simple vertex is simplicial and hence an SEO is a PEO.

Theorem 3(Farber[5]). A graph is strongly chordal if and only if it admits an SEO

Theorem 4 (Farber[5]). Every nontrivial strongly chordal graph has at lea&tsimple
vertices

2.3. HHDA-free graphs

A graphG is HHDA-free (orweak bipolarizablgif it does not contain a house, a hole (a
cycle of length at least 5), a domino, or an ‘A’ as an induced subgraph (se&) Hifj1 DA-
free graphs were introduced in [10] as both a generalization of bipolarizable graphs and as
of any P4 in G. An ordering f = v1, ..., v, is called a semiPEO if for each<li <n,
the vertexv; is semisimplicial inG ¢ (i). It turns out that the existence of semiPEOs does
not characterize HHDA-free graphs (in fact, they characteFigzsimplicial graphs [8]),
however every HHDA-free graph admits a semiPEO.

Theorem 5(Dragan et al.[4]). Every nontrivial HHDA-free graph has at legadsemisim-
plicial vertices

3. Convex geometries

Following the definitions ifi6], analignmenton a finite se¥ is a family F of subsets of
V that is closed under intersection and contains Bo#md the empty set. Elements 5&f
are considered to mnvex setand the pai(V, F) is called araligned spaceThe smallest

4 J. Sawada / Theoretical Computer Scien(nnr) ii—i

House Domino ‘A’

Fig. 1. House, domino, A.

Fig. 2. lllustrating the antiexchange propertym%.

member ofF containing a given se§ € V is called thehull of S. An elementy of a set
Y € Fis called arextreme poinof Y if ¥ — {y} isin F.

A convex geometryn a finite set is an aligned spa@é, F) such thaMinkowski—Krein—
Milman propertyis satisfied: every convex setis the hull of its extreme points. Alternatively, a
convex geometry is an aligned space that satisfiesrtiexchange propertyor any convex
setY and two distinct points, y ¢ Y, if x is in the hull ofY U {y} theny is not in the
hull of Y U {x}. This latter property is an abstraction of a property of convex closures in
Euclidean spaces—see FR.

In this paper, we will focus on four different types of convexity related to graphs: mono-
phonic convexity, geodesic convexity, strong convexity, afeconvexity.

3.1. Monophonic convexity

A set of verticesY is said to bemonophonically convefm-convex) if and only ifY
contains every vertex on every chordless path between vertideNote that a vertex is
an extreme point of an m-convex géif and only if it is simplicial inG (Y).

Theorem 6 (Farber and Jamisoff6]). The monophonic alignment of a graghs a convex
geometry if and only i& is chordal

This theorem implies that every m-convex set of a chordal graph is the hull of its simplicial
vertices.

J. Sawada / Theoretical Computer Scieh({nan) - 5
3.2. Geodesic convexity

A set of vertice? is said to begeodesically convefg-convex) if and only ifY contains
every vertex on every shortest path between verticds fgain, note that a vertexis an
extreme point of a g-convex sktif and only if it is simplicial inG (Y). A gemis a P4 with
an additional vertex adjacent to all vertices of thge

Theorem 7 (Farber and Jamisoff6]). The geodesic alignment of a graghis a convex
geometry if and only i€ is chordal and gem free

This theorem implies that every g-convex set of a gem-free chordal graph is the hull of
its simplicial vertices.

3.3. Strong convexity

A set of vertice¥ is said to bestrongly convexs-convex) if and only iy contains every
vertex on every even-chorded path whose endpoints are Mote that a vertex is an
extreme point of an s-convex sgtif and only if it is simple inG(Y).

Theorem 8(Farber and Jamisoff6]). The strong alignment of a grapy is a convex
geometry if and only i6; is strongly chordal

This theorem implies that every s-convex set of a strongly chordal graph is the hull of its
simple vertices.

3.4. m® convexity

A set of vertice is said to be ri-convexf and only if for any pair of vertices, y € Y
each induced path of length at least 3 connectiagdy is completely contained iH. Note
that a vertex is an extreme point of an frconvex set’ if and only if it is semisimplicial
inG(Y).

Theorem 9(Dragan et al.[4]). Them3-convex alignment of a graphi is a convex geom-
etry if and only ifG is HHDA-free

This theorem implies that every$tonvex set of an HHDA-free graph is the hull of its
semisimplicial vertices.

4. Antimatroids

A somewhat complementary approach to convex geometries is the shelling of extreme
vertices of graphs. The following theorem gives an indication as to how PEOs, SEOs, and
semiPEOs relate to convex geometries.

6 J. Sawada / Theoretical Computer Scien(nnr) ii—i

Theorem 10(Farber and Jamisoff6], Korte et al.[9]). If (V, F) is a convex geometry
thenY e F if and only if there exists an ordering, ..., v; of V — Y such thaty; is an
extreme point o U {x;, ..., x;} for eachl<i <.

This theorem associates a hereditary language, and in fact an antimatroid, with every
convex geometry. To define an antimatroid, we first require some definitions. Given a finite
alphabetV, a language is a nonempty set of words consisting of letterd/ofA language
is simpleif there are no words with repeated letters. Toatentof a worda, denoteds,
is the set of distinct letters of. An antimatroidis a pair(V, £) such that is a nonempty
simple language satisfying the following two properties:

1. Ifaff € £, thena € L.
2. Ifa, p e L, wherex ¢ ﬁ then there exists an € a such that thega € L.

To see the direct correspondence between convex geometries and antimatroids we need
some extra notation. Given a convex geométry 7), let L(F) denote the set of words
{vivo---vj : V —{vg, ..., v} € Ffor 1<i < j}. Given an antimatroidV, £), let F (L)
denote the set systefWW — a : o € L}.

Theorem 11(Bjorner and Zieglef1]). If (V, F) is a convex geometry thélw, L(F)) is
an antimatroid. Converselif (V, £) is an antimatroid theidV, F(£)) is a convex geometry.
Furthermore L(F (L)) = Land F(L(F)) = F.

4.1. An example: PEOs

If G is a chordal graph an# is the family of all m-convex sets i@, then(V, F) is a
convex geometry. Now applying Theoreti®and 11, aword = vy, vz, ..., vjiSin L(F)
if and only if foreachi = 1, ..., j, the vertexy; is simplicial in the subgraph induced by
V —{v1,...,v;_1}. Or more simplyx € L(F) ifitis the prefix of some PEO of;. The
basic wordsof an antimatroid are the words of maximal length. Thus, the basic words of
the antimatroid'V, L(F)) are precisely the PEOs 6f.

Following this same procedure we see that the basic words of an antimatroid correspond-
ing to a strongly chordal grapy are the SEOs o&. Similarly, the basic words of an
antimatroid corresponding to an HHDA-free gra@tare the semiPEQOs df.

5. A Generic Gray code algorithm

In this section, we will describe a generic Gray code algorithm that can be used to list
the basic words of any antimatroid including:
1. all PEOs of a chordal gragg],
2. all SEOs of a strongly chordal graph, and
3. all semiPEOs of an HHDA-free graph.
In[12], a Gray code algorithm is developed to list all linear extensions of a partially ordered
set (which happen to be the basic words of a particular antimatroid). Later, in [11], it is
shown that the same algorithm can be used to list the basic words of any antimatroid by
simply customizing the initialization step and adding an antimatroid specific oracle. The

J. Sawada / Theoretical Computer Scieh({nan) - 7

Fig. 3. A Hamilton cycle in the prism off.

oraclemust answer correctly whether or not a specified adjacent pair of elements in a basic
word can be swapped to yield another basic word. Since each of the orderings listed at
the beginning of this section correspond to the basic words of an antimatroid, we can take
advantage of this algorithm. In fact, for the case of PEOs this result has already been applied
in [2].

Given an antimatroid, consider the graph= (V’, E’) where each vertex if¥’ cor-
responds to a basic word and an edgev) € E’ if and only if u and v differ by a
single adjacent transposition. Tpgism of H is the graph which results from taking
two copies of H and adding edges between the vertices that correspond to the same
basic word. For example, W' = {a,b,c,d, e, f} is a set of basic words and’ =
{(a,b), (b,c), (b,d), (c,e),(d,e), (e, f)}, then the prism off = (V’, E’) is shown in
Fig. 3. In generalH itself may not have a Hamilton cycle, but the prismmbfis proved
in [11] to always yield a Hamilton cycle. Using this fact, the basic idea behind the generic
Gray code algorithm is to trace a specific Hamilton cycle in this graph. Such a traversal
visits each basic word exactly twice. However, from Theorem 5.5 in [12], if we print only
every second basic word visited in the Hamilton cycle, we obtain each basic word exactly
once. By doing this, successive words in the Gray code listing will differ by either 1 or 2
adjacent transpositions.

The basic data structures used by the algorithm are as follows:
e f[i]: theith vertex (element) in the ordering (basic woytl}= v1, ..., v,.
e inv[v]: the position of the vertex in the orderingf.
e a;, b;: pairs of extreme vertices in the graph inducedoy {as, b1, ..., a;—1, bi_1}.
As initialization, the algorithm must find an initial basic word that is obtained by removing
pairs of extreme vertices;, b;. If n is odd, then the last element in the ordering is the
vertex remaining after removing thé | pairs of vertices. From Theorergs4, and 5, we
know that such vertex pairs exist for antimatroids related to chordal, strongly chordal, and
HHDA-free graphs. Additional initialization steps are dependent on the new data structures
that are required for the specific antimatroid.

8 J. Sawada / Theoretical Computer Scien(nnr) ii—i

procedure Gen (i: integer);
local j, mrb, mra, mla : integer; {ypical: boolean;
begin
if ¢ = 0 then return,;
Gen(i—1);
mrb = 0;
typical := false;
while Swappable(inv[b;]) and inv[h;] # n do begin
mrb :=mrb+1;
Move(invlb;]); Gen(i—1);
mra = 0;
if flinv[a;] + 1] # b; and Swappable(inv(a;]) and inv[q;] # n then begin
typical := true;
do
mra = mra+ 1;
Move(inv[a;]); Gen(i—1);
while flinv]a;] + 1] # b; and Swappable(inv[a;]) and inv[a;] # n ;
end;
if typical then begin
Switch(i—1); Gen(i—1);
if Odd(mrb) then mia := mra — 1;
else mla == mra+ 1;
for j := 1 to mla do begin
Move(inv[a;] —1); Gen(i—1);
end; end; end;
if typical and Odd(mrb) then Move(invla;] — 1);
else Switch(i — 1);
Gen(i—1);
for j := 1 to mrb do begin
Move(inv[b;] —1); Gen(i—1);
end; end;

Fig. 4.Gen(i).

Pseudocode for this Gray code algorithm is given in BigThe subroutinéviove(r)
swaps the verticeg'[¢] and f[¢t + 1] in the ordering. The subroutingwitch() swaps
the verticesu; and b, in the ordering. A call tdSwitch(z) is only made whem; andb;
are adjacent. The valug always points to the leftmost vertex of the pair, so the val-
ues ofa, andb; are also swapped in this subroutine. These two subroutines are shown
in Fig. 5. The functionSwappable(z) is the antimatroid specific oracle and the routine
Printlt() prints out the current ordering everysecondime it is called. The initial calling
sequence to generate all basic words of a given antimatrdidtigy; Printlt(); Gen([5]);
Switch([3]); Gen(5]);. For more details about the generic Gray code algorithm consult[2]
or[12].

J. Sawada / Theoretical Computer Scieh({nan) - 9

procedure Move (t: integer);
begin
Update(t);
swap(f[t], f[t + 1]);
swap(inv[f[]], inv[f[t + 1]]);
Printlt();
end;

procedure Switch (¢: integer);
begin
if t # 0 then begin
Update(inv]at]);
swap(flinv[a]], flinv[b]);
swap(inv[a], inv[b]);
swap(at, by);

end;

Printlt();
end;

Fig. 5.Move(r) andSwitch(z).

To apply this generic Gray code to the basic words of a specific antimatroid (e.g. semiPEOs

of an HHDA-free graph), we simply add the following three routines:

1. Init(): a routine to initializef, inv, and the pairg;, b;, as well as new data structures
required by the oracle.

2. Swappable(r): an oracle that correctly answers whether or not elements in positions
andr + 1 of the current basic worg can be swapped to obtain a new basic word.

3. Update(?): a routine that will update any new oracle-specific data structures upon a
swapping of adjacent elements in positiorads + 1.

In Section 6, we apply this algorithm to PEOs, SEOs and semiPEOs. But first, in the

following subsection we discuss the running time of the algorithm.

5.1. Analysis

The original analysis of the generic Gray code algorithiid ii] proves that the algorithm
runs in constant amortized time given a constant time oracle. In this section, we make some
important observations about the algorithm and improve the lower time bound required by
the oracle for the generic algorithm to be CAT. These observations are crucial to proving
that we can list all SEOs and semiPEOs in constant amortized time. The following result
is proved by showing that the number of recursive call&éa(i) is proportional to the
number of basic words generated:

10 J. Sawada / Theoretical Computer Scien(nnr) ii—i

Theorem 12(Pruesse and Rusk§¥l]). Let(V, £) be an antimatroid with a®(1) trans-
position oracle. Then the basic words @f, £) can be generated in constant amortized
time such that each word differs from the next by no more than two transpositions

If additional data structures are required by the oracle, then to apply this theorem directly
they must also be maintained in constant time per transposition or swap. However, note
that after two adjacent elements are swapped either by a cdlote(z) or Switch(r)
during a call toGen(i), a recursive call is immediately made &n(i — 1). Now an
important observation to make is that this single recursive call immediately spawis
recursive calls (with parameters- 2,i — 3, ..., 0) via the recursive call at the beginning
of the routine (Fig4). Thus for each swap, we can perforni Qoperations to update our
data structures and amortize the cost overitihecursive calls. Now because the oracle
Swappable(t) is never questioned more than twice before a swap takes place, the cost
of the oracle can also be amortized over thecursive calls. This proves the following
theorem:

Theorem 13. If there exists a transposition oracle for an antimatrgid, £) that answers
correctly in O(i) time and whose data structures can be update®{n time after a
swap during a call tdGen(i), then the basic words @/, £) can be generated in constant
amortized time such that each word differs from the next by one or two transpositions

Before introducing some specific oracles, we make one more observation about the
generic Gray code algorithm. Recall that the initial basic word is created by successively
removing pairsq;, b; of extreme elements. The following observation can be made by
focusing on the parameters in the calls mad&tmve(r) and Switch(z) during a call to
Gen(i).

Observation 1. After two vertices are swapped in the generic Gray code algorithm during
a call to Gen(i), any query to the oracl®wappable(r) that is deeper in the computation
will be between two adjacent verticesand y in the current basic word where precedes
yandx € {a1, b1, ..., a;i, b;}.

We will see in the next section that this observation will allow us to make only partial
updates to the oracle specific data structures, since the first vertex involved in all swaps
deeper in the recursion will be restricted.

6. The oracles

In this section, we outline efficient oracles for antimatroids related to chordal graphs,
strongly chordal graphs, and HHDA-free graphs. In each case, the number of basic words
(PEOs, SEOs, semiPEOs) generated(&"), since there are at leastextreme(sim-
plicial, simple, semisimplicial) vertices in any induced subgraph. Thus, any polynomial
amount of precomputation will not affect the overall running time of the generic Gray code
algorithm.

J. Sawada / Theoretical Computer Scieh({nan) - 11

procedure Swappable (¢: integer);
local z, y : integer;
begin
z:=flt; y:=flt+1];
return(h, = hy, + 1 or (z,y) # E);

end;

procedure Update (¢: integer);
local z, y : integer;
begin
z = flt; y:=ft+1];
if (z,y) € E then begin
hy :=hy+1; hy=hy—1;
end; end;

Fig. 6. Swappable(r) andUpdate(r) for PEOs.

6.1. PEOs of a chordal graph

A constanttime oracle for the perfect elimination orderings of achordal graph(V, E)
is described if2]. To obtain the constant time efficiency, for each venigin the current
ordering f, we maintain the valué;: the size of the neighborhood of with respect to
G ¢ (i). With this information, along with the basic adjacency information, the oracle and
the update routines can be implemented in constant time—see Fig. 6. The oracle is based
on the following theorem:

Theorem 14(Chandran et al[2]). If f =v1,..., v, isaPEO of a chordal grapl then
fiisaPEOOfG ifonly if (vj,vj41) ¢ Eorhj =hji1+ 1.

The initial ordering can be initialized in linear time—again §&dor details. Using this
ordering, the values fdr; can also be initialized in linear time by visiting the neighborhoods
of each vertex.

6.2. SEOs of a strongly chordal graph

In this section, we outline an efficient transposition oracle for simple elimination order-
ings. We start by outlining the basic requirements foto be an SEO, given that is an
SEO.

Lemma 1. Let f = vy, ..., v, be an SEO of a strongly chordal graph G. Thénis an
SEO if and only ifv; is a simple vertex it 7 ().

Proof. By definition, the ordering/; = us, ..., u, isan SEO if and only if;; is simple in
Gy, (i) for 1<i<n. Now observe that; = v; andG y, (i) = G (i) for all i not equal toj

12 J. Sawada / Theoretical Computer Scien(nnr) ii—i

Fig. 7. A forbidden triple(x, y, z) in a strongly chordal graph.

or j + 1. Thus, sincef is an SEOy; is simple inGf; (i) for all i not equal toj or j + 1.
Also sincev; = u ;1 is simple inG ¢(j), it will also be simple in the induced subgraph
Gy (j +1). Now because; = vj1 andGy,;(j) = G(j), the orderingf; will be an
SEO if and only ifv; 1 is a simple vertex itG ¢ (j). U

This lemma states that a transposition oracle for SEOs need only test if the weriex
is simple inG ¢(j). For the remainder of this discussion, assume that all neighborhoods
are with respect to the induced subgrapp(j). The task of verifying whether or not 1
is simple becomes difficult in the case whenis adjacent to one or more vertices in
N (vj+1) but notv; itself. In all other cases;; 1 will be simple inG ¢(;) as long as it
is simplicial—and this can be tested in constant time using the PEO oracle.

Now, assuming that ;1 is simplicial in G ¢(j), we consider whem;,1 will not be
simple. From the definition of a simple vertex, this will be the case when there exists two
verticesu, v € N(vj41) such thatV[u] € N[v] and N[v] € N[u]. In other wordsy; 1
will notbe simple inG ¢ () if and only if there exists vertices, v, z € G ¢(j) such that
u,v € N(v;4+1) anduisadjacentta;, but notz, andv is adjacenttae, but notv ;. Performing
such atest will require more than a constant amount of work unless we introduce some new
data structures.

The following definition arises from our previous observatiorfoAbidden triple(with
respect to strongly chordal graphs) is an ordered triple of unique vetticesz) that along
with two not necessarily unigyeining verticesu andv form an induced subgraph (a bull)
with edge sef(x, u), (x, v), (u, v), (u, y), (v, z)}. Note thatif(x, y, z) is a forbidden triple,
then so iS(x, z, y). For example, the graph in Fig.illustrates a forbidden tripléx, y, z).

In addition, this graph contains the forbidden triplesz, y), (x, y, t) and(x, ¢, y). From
the definitions of a forbidden triple and a simple vertex we obtain the following lemma.

Lemma 2. Letx be a simplicial vertex in a strongly chordal gragh. Then the vertex
is simple if and only if there is no forbidden triple of the fofm y, z) for any vertices
v,z€G.

J. Sawada / Theoretical Computer Scieh({nan) - 13
Next, we apply the notion of a forbidden triple to SEOs.

Lemma 3. Let f be a PEO of a strongly chordal grapi. Then f is an SEO if and only
if for every forbidden triplgv;, v;, vr)eG we have > min(j, k).

Proof. (=) Sincef is an SEOy; is a simple vertex ity 1 (i) and by applying the previous
lemma, there is no forbidden triple i@ ¢ (i). Now suppose that there exists a forbidden
triple (v;, vj, vr) € G with joining verticesy andv. The vertexy; must come after at least
one of the other vertices ifi since there is no forbidden triple ifi (i). However, since
fis a PEO, both: andv must come aftex in the ordering, otherwise; would not be
simplicial in G ¢ (i). Thus we must have> min(j, k).

(«<) The orderingf is an SEO if for each £ i <n, the vertex; is simple inG ¢ (i). The
fact thatv; is simple inG ¢ (i) follows from the previous lemma sineg s simplicial (f is
a PEO) and there is no forbidden trifglg , v;, vy) in G ¢ (i). Thereforef is an SEO. [

We now present a theorem that will be the basis for an efficient oracle for SEOs.

Theorem 15. Let f = vy, ..., v, be an SEO of a strongly chordal gragh and assume
that f; is a PEO. Thery; is an SEQ if and only if there is no forbidden trigte; .1, v;, vi)
in G such thatc > ;.

Proof. (=) Let f; = u1,...,u, be an SEO. Thug; = v, 1,u;41 = v; anduy = vy.
Lemma3 states that every forbidden triple of the fofm;, u; 11, ux) in G must satisfy
j > min(j + 1, k). Therefore, sincg < j + 1, we must havg > k.

(<) From Lemma 1 we need only show that, ; is simple inG ¢(j) in order for f; to
be an SEO. From Lemma 2 we must show that there is no forbidden ¢riple, y, z) for
v,z € Gy(j). Sincev;y1 is simple inG ¢ (j + 1), there is no forbidden triplev; 1, y, z)
wherey, z € G¢(j + 1) (again by Lemma 2). Now sino@;1, v, vr) is not a forbid-
den triple fork > j, there also is no forbidden tripl@;41, vk, v;). Thereforef; is an
SEO. O

We can now apply this theorem to develop a constant time transposition oracle for sim-
ple elimination orderings. First, we must precompute all forbidden triples so that we can
determine whether or nak, y, z) is a forbidden triple in constant time. Second, we must
maintain a countenumBadyx, y) for every ordered pair of verticeg, y) that stores the
number of verticeg such that; comes after in the current ordering angk, y, z) is a
forbidden triple. By maintaining this latter data structure, two adjacent vernticasdv ;1
in an SEQf can be swapped to produce a new SEO if and omiyihBadv; 1, v;) =0
and the resulting ordering is a PEO. Thus, since the oracle for PEOs takes constant time,
an oracle for SEOs can also be implemented to run in constant time.

Unfortunately, the constant time oracle has a side effect: after a transposition of adja-
cent vertices); andv; 11 happens in a call tGen(i), we must update the information in
numBadv;, z) andnumBadv; 11, z) for each vertex. If (v;11, z, v;) is a forbidden triple
then we must incrememumBadv; 1, z) by 1. If (v}, z, vj41) is a forbidden triple, then
sincev; 1 now precedes; in the ordering we must decrementmBadv;, z) by 1. If we

14 J. Sawada / Theoretical Computer Scien(nnr) ii—i

update the values for each vertghen the time required to perform such an updateis @

the worst case. However, from Observatigwe do not need to perform this update for every
possible vertex. This is because queries to the ordgleappable(z) deeper in the computa-
tion tree will only involve looking ahumBad?, z) wherez is in the sefas, b1, . . ., a;, b;}.
Thus, we need only maintain the correct valuestemBadv; 1, z) andnumBadv;, z) for
those vertices € {a1, b1, ..., a;, b;}. Since the values fanumBadx, y) are global, one
might wonder whether or not the values will be accurate when we return from a recursive
call. However, since the ordering is the same at the beginning of a recursive GaH)

as the end [12], the values foumBadx, y) will also be the same. This means that the
required updates can be done i time and hence Theorem 13 immediately gives us the
following result.

Theorem 16. The simple elimination orderings of a strongly chordal graph can be gener-
ated in constant amortized time

Pseudocode for the oracle and update routines are shown i8.Fige update routine
makes use of one additional global arrpair [], that is computed during the initialization
step. For a specified vertax the valuepair[v] holds the index of the a;, b; pair that
v belongs to. Ifn is odd, then the vertex that does not belong to a pair is assigned
pair[v] = [5]. The valugorb[x][y][z] is set to TRUE if and only ifx, y, z) is a forbidden
triple in G. The countenumBadx][y] holds the value fonumBadx, y).

The initialization routine for SEOs must perform the following steps:

1. Find an initial SEOf obtained by removing pairs of simple vertices. Using this SEO
initialize the pairsy;, b;, inv, andpair.

2. Initialize forb[x][y][z] for all triples of vertices.

3. Initialize numBadx][y] for all pairs of vertices based on the initial orderifig

Such initialization will be dominated by step 2, which can be done(@Ptime.

6.3. SemiPEOs of an HHDA-free graph

The approach for constructing the transposition oracle of semiPEOs is very similar to the
construction of the oracle for SEOs described in the previous subsection. Again, we will
introduce the notion of a forbidden triple—but this time it will be defined relative to an
HHDA-free graph and semiPEOs. We begin by outlining the basic requirements for
be a semiPEO, given thatis a semiPEQ. The proof of the lemma is similar to the proof
of Lemmal.

Lemma 4. Let f = v1---v, be a semiPEO of an HHDA-free grapli. Then f; is a
semiPEQ if and only i ;1 is a semisimplicial vertex it ().

Given thatf is a semiPEO we know thaj 1 is semisimplicial inG ¢ (j + 1). Thus, the
only way thatv; 1 will notbe semisimplicial inG ¢ () is if it is the midpoint of aP4 in
G ¢(j) where one of the endpoints mustie Naively, we can test this condition i)
time by considering all other vertices in the remaining two positions ofthéHowever,
our goal is an oracle that takes constant time. To achieve this goal, we need to maintain

J. Sawada / Theoretical Computer Scieh({nan) - 15

procedure Swappable (z: integer);
local x, y : integer;
begin
xo=flrl: y:= flr +1I;
return ((hy =hy +1or (x, y) # E) andnumBady][x] =0);
end,

procedure Update (z: integer);
locali, j, u, v, x, y : integer;
begin
x = fltl; y:= flt +1I;
if (x,y) € E then begin
hy :=hy+1 hy=hy—1;
end,
i ;= MIN(pair[x], pair[y]);
for j := 1toi do begin
u:=aljl; v:=>bljl;
if forb[x][u][y]thennumBadx][«] := numBadx][u] — 1,
if forb[x][v][y]then numBadx][v] := numBadx][v] — 1;

if forb[y][u][x]then numBady](u] := numBady][u] + 1;
if forb[y][v][x]then numBady][v] := numBadx][y] + 1;
end; end;

Fig. 8.Swappable(r) andUpdate(r) for SEOs.

some additional data structures. In particular, we again use the notion of a forbidden triple
of vertices. Aforbidden triple(with respect to an HHDA-free graph) is an ordered triple of
vertices(x, y, z) such thatv is the midpoint of aP4 with y andz as the endpoints. Thus, if

(x, y, z) is a forbidden triple, then so &, z, y). Applying this definition to the definition

of a semiPEO we obtain the following lemma.

Lemma 5. Let G be an HHDA-free graph an¢® = wvs, ..., v, be an ordering of its
vertices. Thery is a semiPEO if and only if for every forbidden triple, v;, vi) € G we
havei > min(j, k).

Proof. (=)SupposethatisasemiPEO and thatthere exists aforbidden t(iglev;, vi) €
G suchthai < min(j, k). This implies that there exists’y composed of;, v;, andv, and
some fourth vertex; in G wherev; andv; are the endpoints. This means that v;, vy)
is also a forbidden triple. However, sinegis a semisimplicial vertex in the gragh (i),
we must havé < i. However, this contradicts the fact thatis semisimplicial inG ¢ (7).

(<) The orderingf is a semiPEO if for eachdi <n, the vertexv; is semisimplicial
in the induced subgrap@ ((i). We are given that for each forbidden triple of the form
(vi, vj, vr), I > min(j, k). Thus, eachy; is semisimplicial inG ¢ (i) since by definition of
a forbidden triple it cannot be a midpoint of aRy in G r(i). U

16 J. Sawada / Theoretical Computer Scieh(nin) il
We now present a theorem that will be the basis for an efficient oracle for SEOs.

Theorem 17. Let f = vy, ..., v, be a semiPEO of an HHDA-free grajth Thenf; is a
semiPEQ if and only if there is no forbidden triple; 1, v;, vi) in G such thatc > ;.

Proof. (=)Assume thalf; = ua, ..., u, isasemiPEO. Thus; = v;,1, uj41 = v; and
ur = vg. Sincev; comes immediately befong 1 in f;, the previous lemma implies that
for anyk > j that(v;y1, v;, vi) is not a forbidden triple irG.

(<) From Lemma4 we need only show that; ; is semisimplicial inG ¢(j) in order
for f; to be semiPEO. Now since there is no forbidden triplg 1, v;, v¢) such thak > j
in f, it follows immediately thab;,; is semisimplicial inG s (j). U

We can now apply this theorem to develop a constant time transposition oracle for
semiPEOs. First, we must precompute all forbidden triples so that we can determine whether
or not(x, y, z) is a forbidden triple in constant time. This can be done by searching for all
P4’s in O(n*) time. Second, we must maintain a courmemBadx, y) for every ordered
pair of vertices(x, y) that stores the number of verticesuch that comes aftex in the
current ordering andkx, y, z) is a forbidden triple. By maintaining this latter data struc-
ture, two adjacent verticag andv;;1 in a semiPEQf can be swapped to produce a new
semiPEQf; if and only if numBadv;1, v;) = 0. Thus, by maintaining this additional
data structure our oracle responds in constant time by examining the appropriate counter.

As with the SEO case, the constant time oracle has a side effect: after a successful transpo-
sition of adjacent vertices; andv; 1, we must update the informationmumBadv; 1, z)
andnumBadv;, z) for each vertex. It turns out that the updates required are identical as the
updates for the SEO case, except we do not have to update the information required to detect
simplicial vertices. The analysisis also based on the same reasoning applied to the SEO case.

Theorem 18. The semiPEOs of an HHDA-free graph can be generated in constant amor-
tized time

The oracle and the update routines for semiPEOs are shown i8.Hige initialization

steps are virtually the same as the steps required for SEOs, except the notions of forbidden

triple are with respect to HHDA-free graphs and semiPEOs.

1. Find an initial SEOf obtained by removing pairs of simple vertices. Using this SEO
initialize the pairsy;, b;, inv, andpair.

2. Initializeforb[x][y][z] for all triples of vertices.

3. Initialize numBadx][y] for all pairs of vertices based on the initial orderifig

Such initialization will be dominated by step 2 which can be done(Qtime.

7. Summary

In this paper we combine several previous results and introduce some new results (the
oracles) to obtain efficient (CAT) Gray code listings of:
e SEOs of a strongly chordal graph, and
e semiPEOs of an HHDA-free graph.

J. Sawada / Theoretical Computer Scieh({nan) - 17

procedure Swappable (z: integer);
local x, y : integer;
begin
xio=fltls y:= flr +1];
return (numBady][x] =0);
end,

procedure Update (z: integer);
locali, j, u, v, x, y : integer;
begin
x = flt]; y:= flt+1];
i := MIN(pair[x], pair[y]);
for j := 1toi do begin
u:=aljl; v:=0>bljl;
if forb[x][u][y] then numBadx][u] := numBadx][u] — 1;
if forb[x][v][y] then numBadx][v] := numBadx][v] — 1;

if forb[y][u][x] then numBady][«] := numBady][u] + 1;
if forb[y][v][x] then numBady][v] := numBadx][y] + 1;
end; end;

Fig. 9.Swappable(r) andUpdate(z) for semiPEOs.

Previously, it was known that such efficient listings were possible for PEOs of a chordal
graph and for linear extensions of a partially ordered set. An open question is whether listings
for the basic words of other antimatroids can also be generated in constant amortized time.
One that does not seem trivial is the antimatroid obtained by shelling the vertices on the
convex hull of a set of points.

Acknowledgements

Thanks to Frank Ruskey for introducing the problem, to the anonymous referee who
pointed out new references, and to NSERC for supporting the research.

References

[1] A. Bjorner, G.M. Ziegler, Introduction to Greedoids, in: N. White (Ed.), Matroid Applications, Cambridge
Univ. Press, Cambridge, 1992.

[2] L.S. Chandran, L. Ibarra, F. Ruskey, J. Sawada, Generating and characterizing the perfect elimination
orderings of a chordal graph, Theoret. Comput. Sci. 307 (2) (2003) 303-317.

[3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 24 (1961) 71-76.

[4] F. Dragan, F. Nicolai, A. Brandstédt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1) (1999)
119-135.

[5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189.

[6] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (3)
(1986) 433—444.

18 J. Sawada / Theoretical Computer Scieh(nin) il

[7] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835—855.
[8] C.T. Hoang, B.A. Reed, Some classes of perfectly orderable graphs, J. Graph Theory 13 (4) (1989) 445-463;
Academic Press, New York, 1980
[9] B. Korte, L. Lovasz, R. Schrader, Greedoids, Springer, Berlin, 1991.
[10] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159-171.
[11] G. Pruesse, F. Ruskey, Gray codes for antimatroids, Order 10 (1993) 239-252.
[12] G. Pruesse, F. Ruskey, Generating linear extensions fast, SIAM J. Comput. 23 (2) (1994) 373-386.

