
ARTICLE IN PRESS

Theoretical Computer Science () –

www.elsevier.com/locate/tcs

Oracles for vertex elimination orderings

J. Sawada
Computing and Information Science, University of Guelph, Guelph, Ont., Canada N1G 2W1

Received 11 December 2003; received in revised form 5 January 2005; accepted 20 March 2005

Communicated by G. Ausiello

Abstract

By maintaining appropriate data structures, we develop constant-time transposition oracles that
answer whether or not two adjacent vertices in a simple elimination ordering (SEO) or a semiperfect
elimination ordering (semiPEO) can be swapped to produce a new SEO or semiPEO, respectively.
Combined with previous results regarding convex geometries and antimatroids, this allows us to list
all SEOs of a strongly chordal graph and all semiPEOs of an HHDA-free graph in Gray code order.
By applying a new amortized analysis we show that the algorithms run in constant amortized time.
Additionally, we provide a simple framework that can be used to exhaustively list the basic words

for other antimatroids.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Gray code; Antimatroid; Convex geometry; Simple elimination ordering; Semiperfect elimination
ordering; Strongly chordal graph; HHDA-free graph; Weak bipolarizable

1. Introduction

A Gray codeis an exhaustive listing of a combinatorial object where successive objects
differ by a constant amount. The ultimate goal for algorithms that produce such listings is
for the running time to be proportional to the number of objects generated. Such algorithms
are said to be CAT since they run in constant amortized time. In this paper, we combine

E-mail address:sawada@cis.uoguelph.ca.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.051

http://www.elsevier.com/locate/tcs
mailto:sawada@cis.uoguelph.ca

2 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

several previous results and several new results to yield an efficient Gray code algorithm
that will list:
1. all simple elimination orderings (SEOs) of a strongly chordal graph and
2. all semiperfect elimination orderings (semiPEOs) of an HHDA-free graph.
The algorithm described in this paper is based on a result concerning antimatroids. The

basic wordsof an antimatroid are those that are of maximal length. It is shown in[11] that a
Gray codeexists for the basicwords of any antimatroid.An algorithm that produces theGray
code listing is given in [12]. The key ingredient required by the algorithm is an antimatroid-
specificoraclethat answers correctly whether or not an adjacent pair of elements (vertices)
in a basic word (ordering) can be swapped to obtain a new basic word. Linear extensions of
a poset are an example of the basic words of an antimatroid and a corresponding constant
time oracle is given in [12]. The perfect elimination orderings (PEOs) of a chordal graph
also form the basic words of an antimatroid, and a corresponding constant time oracle is
given in [2]. In this paper, we focus on the more difficult problem of finding a constant time
oracle for the basic words of two other antimatroids: the SEOs of a strongly chordal graph,
and the semiPEOs of an HHDA-free graph.
It was proved in [11] that if an oracle for a particular antimatroid can be implemented in

O(1) time, then the basic words for the antimatroid can be generated in constant amortized
time. In this paper we improve this upper bound permitted by the oracle to O(i), wherei is
discussed in Section 5. This analysis is crucial in proving that we can generate all SEOs and
semiPEOs in constant amortized time. In addition to the analysis, we also present a simple
framework based on the presentations of the generic algorithm in [12,2], that can be used
to generate the basic words for any antimatroid.
The remainder of this paper is presented as follows. In Section 2 we present graph-related

definitions focusing on chordal, strongly chordal, and HHDA-free graphs. In Section 3, we
discuss convex geometries and use results from [4,5] to show how they relate to our graphs
of interest. Then in Section 4, we discuss antimatroids and show how they relate to convex
geometries. In Section 5, we present the generic Gray code algorithm outlining the steps
required to apply it to any antimatroid. Also in that section we present some important
observations about the algorithm and improve the previous analysis. In Section 6, we apply
the general framework to PEOs, SEOs, and semiPEOs. In doing so we present constant
time oracles for each ordering. We conclude with a brief summary in Section 7.

2. Graph definitions

We start this section with some general graph definitions. We then focus on three graph
classes that are related to convex geometries and antimatroids: chordal graphs, strongly
chordal graphs, and HHDA-free graphs.
LetG = (V ,E) be an undirected graph with vertex setV , where|V | = n, and edge set

E. LetN(v) denote the neighborhood of a vertexv and letN [v] denoteN(v) ∪ {v}. For
A ⊆ V , we letG(A) denote the subgraph ofG induced byA.A complete induced subgraph
is called acliqueandPk is used to denote an induced path onk vertices. Given an ordering
of verticesf = v1, v2, . . . , vn, we letGf (i) denote the subgraph induced by{vi, . . . , vn}.

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 3

2.1. Chordal graphs

A graphG is chordal if every cycle of length 4 or more contains achord—an edge
between two nonconsecutive vertices in the cycle. A vertexv is simplicial if G(N(v)) is a
clique, or alternatively, if it isnot the center of aP3. An orderingf = v1, . . . , vn is called
a PEO if for each 1� i�n, the vertexvi is simplicial inGf (i).

Theorem 1(Fulkerson and Gross[7]). A graph is chordal if and only if it admits a PEO.

Theorem 2(Dirac [3]). Every nontrivial chordal graph has at least2 simplicial vertices.

2.2. Strongly chordal graphs

A graphG is strongly chordalif it is chordal and every even cycle of length 6 or more
contains a chord splitting the cycle into two odd length paths. A vertexv is simpleif the
set{N [u] : u ∈ N(v)} can be linearly ordered by set inclusion. Alternatively, a vertexv

is simple if for any two verticesx, y ∈ N(v) eitherN [x] ⊆ N [y] or N [y] ⊆ N [x]. An
orderingf = v1, . . . , vn is called a SEO if for each 1� i�n, the vertexvi is simple in
Gf (i). Observe that a simple vertex is simplicial and hence an SEO is a PEO.

Theorem 3(Farber [5]). A graph is strongly chordal if and only if it admits an SEO.

Theorem 4(Farber [5]). Every nontrivial strongly chordal graph has at least2 simple
vertices.

2.3. HHDA-free graphs

A graphG is HHDA-free (orweak bipolarizable) if it does not contain a house, a hole (a
cycle of length at least 5), a domino, or an ‘A’ as an induced subgraph (see Fig.1). HHDA-
free graphs were introduced in [10] as both a generalization of bipolarizable graphs and as
a modular extension of chordal graphs. A vertexv is semisimplicialif it is nota midpoint
of anyP4 in G. An orderingf = v1, . . . , vn is called a semiPEO if for each 1� i�n,
the vertexvi is semisimplicial inGf (i). It turns out that the existence of semiPEOs does
not characterize HHDA-free graphs (in fact, they characterizeP4-simplicial graphs [8]),
however every HHDA-free graph admits a semiPEO.

Theorem 5(Dragan et al.[4]). Every nontrivial HHDA-free graph has at least2semisim-
plicial vertices.

3. Convex geometries

Following the definitions in[6], analignmenton a finite setV is a familyF of subsets of
V that is closed under intersection and contains bothV and the empty set. Elements ofF
are considered to beconvex setsand the pair(V ,F) is called analigned space. The smallest

4 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

House Domino ‘A’

Fig. 1. House, domino, A.

x

y

Y

Fig. 2. Illustrating the antiexchange property inR2.

member ofF containing a given setS ⊆ V is called thehull of S. An elementy of a set
Y ∈ F is called anextreme pointof Y if Y − {y} is inF .
A convex geometryon a finite set is an aligned space(V ,F) such thatMinkowski–Krein–

Milmanpropertyis satisfied: every convexset is thehull of its extremepoints.Alternatively, a
convex geometry is an aligned space that satisfies theantiexchange property: for any convex
setY and two distinct pointsx, y /∈ Y , if x is in the hull ofY ∪ {y} theny is not in the
hull of Y ∪ {x}. This latter property is an abstraction of a property of convex closures in
Euclidean spaces—see Fig.2.
In this paper, we will focus on four different types of convexity related to graphs: mono-

phonic convexity, geodesic convexity, strong convexity, and m3-convexity.

3.1. Monophonic convexity

A set of verticesY is said to bemonophonically convex(m-convex) if and only ifY
contains every vertex on every chordless path between vertices inY . Note that a vertexv is
an extreme point of an m-convex setY if and only if it is simplicial inG(Y).

Theorem 6(Farber and Jamison[6]). Themonophonicalignment of agraphG is a convex
geometry if and only ifG is chordal.

This theorem implies that everym-convex set of a chordal graph is the hull of its simplicial
vertices.

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 5

3.2. Geodesic convexity

A set of verticesY is said to begeodesically convex(g-convex) if and only ifY contains
every vertex on every shortest path between vertices inY . Again, note that a vertexv is an
extreme point of a g-convex setY if and only if it is simplicial inG(Y). A gemis aP4 with
an additional vertex adjacent to all vertices of theP4.

Theorem 7(Farber and Jamison[6]). The geodesic alignment of a graphG is a convex
geometry if and only ifG is chordal and gem free.

This theorem implies that every g-convex set of a gem-free chordal graph is the hull of
its simplicial vertices.

3.3. Strong convexity

A set of verticesY is said to bestrongly convex(s-convex) if and only ifY contains every
vertex on every even-chorded path whose endpoints are inY . Note that a vertexv is an
extreme point of an s-convex setY if and only if it is simple inG(Y).

Theorem 8(Farber and Jamison[6]). The strong alignment of a graphG is a convex
geometry if and only ifG is strongly chordal.

This theorem implies that every s-convex set of a strongly chordal graph is the hull of its
simple vertices.

3.4. m3 convexity

A set of verticesY is said to be m3-convexif and only if for any pair of verticesx, y ∈ Y

each induced path of length at least 3 connectingx andy is completely contained inY . Note
that a vertexv is an extreme point of an m3-convex setY if and only if it is semisimplicial
in G(Y).

Theorem 9(Dragan et al.[4]). Them3-convex alignment of a graphG is a convex geom-
etry if and only ifG is HHDA-free.

This theorem implies that every m3-convex set of an HHDA-free graph is the hull of its
semisimplicial vertices.

4. Antimatroids

A somewhat complementary approach to convex geometries is the shelling of extreme
vertices of graphs. The following theorem gives an indication as to how PEOs, SEOs, and
semiPEOs relate to convex geometries.

6 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

Theorem 10(Farber and Jamison[6] , Korte et al.[9]). If (V ,F) is a convex geometry,
thenY ∈ F if and only if there exists an orderingv1, . . . , vj of V − Y such thatvi is an
extreme point ofY ∪ {xi, . . . , xj } for each1� i�j .

This theorem associates a hereditary language, and in fact an antimatroid, with every
convex geometry. To define an antimatroid, we first require some definitions. Given a finite
alphabetV , a languageL is a nonempty set of words consisting of letters ofV . A language
is simpleif there are no words with repeated letters. Thecontentof a word�, denoted̃�,
is the set of distinct letters of�. An antimatroidis a pair(V ,L) such thatL is a nonempty
simple language satisfying the following two properties:
1. If �� ∈ L, then� ∈ L.
2. If �,� ∈ L, where�̃ � �̃, then there exists ana ∈ �̃ such that the�a ∈ L.
To see the direct correspondence between convex geometries and antimatroids we need

some extra notation. Given a convex geometry(V ,F), let L(F) denote the set of words
{v1v2 · · · vj : V − {v1, . . . , vi} ∈ F for 1� i�j}. Given an antimatroid(V ,L), let F(L)
denote the set system{V − �̃ : � ∈ L}.

Theorem 11(Björner and Ziegler[1]). If (V ,F) is a convex geometry then(V , L(F)) is
an antimatroid.Conversely, if (V ,L) is an antimatroid then(V , F (L)) is a convex geometry.
Furthermore, L(F(L)) = L andF(L(F)) = F .

4.1. An example: PEOs

If G is a chordal graph andF is the family of all m-convex sets inG, then(V ,F) is a
convex geometry. Now applying Theorems10 and 11, a word� = v1, v2, . . . , vj is inL(F)

if and only if for eachi = 1, . . . , j , the vertexvi is simplicial in the subgraph induced by
V − {v1, . . . , vi−1}. Or more simply,� ∈ L(F) if it is the prefix of some PEO ofG. The
basic wordsof an antimatroid are the words of maximal length. Thus, the basic words of
the antimatroid(V , L(F)) are precisely the PEOs ofG.
Following this same procedure we see that the basic words of an antimatroid correspond-

ing to a strongly chordal graphG are the SEOs ofG. Similarly, the basic words of an
antimatroid corresponding to an HHDA-free graphG are the semiPEOs ofG.

5. A Generic Gray code algorithm

In this section, we will describe a generic Gray code algorithm that can be used to list
the basic words of any antimatroid including:
1. all PEOs of a chordal graph[2],
2. all SEOs of a strongly chordal graph, and
3. all semiPEOs of an HHDA-free graph.
In [12], a Gray code algorithm is developed to list all linear extensions of a partially ordered
set (which happen to be the basic words of a particular antimatroid). Later, in [11], it is
shown that the same algorithm can be used to list the basic words of any antimatroid by
simply customizing the initialization step and adding an antimatroid specific oracle. The

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 7

a

f

a

f

b

c

d

e

b

c

d

e

Fig. 3. A Hamilton cycle in the prism ofH .

oraclemust answer correctly whether or not a specified adjacent pair of elements in a basic
word can be swapped to yield another basic word. Since each of the orderings listed at
the beginning of this section correspond to the basic words of an antimatroid, we can take
advantage of this algorithm. In fact, for the case of PEOs this result has already been applied
in [2].
Given an antimatroid, consider the graphH = (V ′, E′) where each vertex inV ′ cor-

responds to a basic word and an edge(u, v) ∈ E′ if and only if u and v differ by a
single adjacent transposition. Theprism of H is the graph which results from taking
two copies ofH and adding edges between the vertices that correspond to the same
basic word. For example, ifV ′ = {a, b, c, d, e, f } is a set of basic words andE′ =
{(a, b), (b, c), (b, d), (c, e), (d, e), (e, f)}, then the prism ofH = (V ′, E′) is shown in
Fig. 3. In general,H itself may not have a Hamilton cycle, but the prism ofH is proved
in [11] to always yield a Hamilton cycle. Using this fact, the basic idea behind the generic
Gray code algorithm is to trace a specific Hamilton cycle in this graph. Such a traversal
visits each basic word exactly twice. However, from Theorem 5.5 in [12], if we print only
every second basic word visited in the Hamilton cycle, we obtain each basic word exactly
once. By doing this, successive words in the Gray code listing will differ by either 1 or 2
adjacent transpositions.
The basic data structures used by the algorithm are as follows:

• f [i]: theith vertex (element) in the ordering (basic word)f = v1, . . . , vn.
• inv[v]: the position of the vertexv in the orderingf .
• ai, bi : pairs of extreme vertices in the graph induced byV − {a1, b1, . . . , ai−1, bi−1}.
As initialization, the algorithm must find an initial basic word that is obtained by removing
pairs of extreme vertices:ai, bi . If n is odd, then the last element in the ordering is the
vertex remaining after removing the�n2� pairs of vertices. From Theorems2, 4, and 5, we
know that such vertex pairs exist for antimatroids related to chordal, strongly chordal, and
HHDA-free graphs.Additional initialization steps are dependent on the new data structures
that are required for the specific antimatroid.

8 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

Fig. 4.Gen(i).

Pseudocode for this Gray code algorithm is given in Fig.4. The subroutineMove(t)
swaps the verticesf [t] andf [t + 1] in the ordering. The subroutineSwitch(t) swaps
the verticesat andbt in the ordering. A call toSwitch(t) is only made whenat andbt
are adjacent. The valueat always points to the leftmost vertex of the pair, so the val-
ues ofat andbt are also swapped in this subroutine. These two subroutines are shown
in Fig. 5. The functionSwappable(t) is the antimatroid specific oracle and the routine
Printlt() prints out the current orderingf everysecondtime it is called. The initial calling
sequence to generate all basic words of a given antimatroid is:Init(); Printlt(); Gen(�n2�);
Switch(�n2�);Gen(�n2�);. Formoredetails about thegenericGraycodealgorithmconsult [2]
or [12].

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 9

Fig. 5.Move(t) andSwitch(t).

Toapply thisgenericGraycode to thebasicwordsofaspecificantimatroid (e.g. semiPEOs
of an HHDA-free graph), we simply add the following three routines:
1. Init(): a routine to initializef , inv, and the pairsai, bi , as well as new data structures

required by the oracle.
2. Swappable(t): an oracle that correctly answers whether or not elements in positionst

andt + 1 of the current basic wordf can be swapped to obtain a new basic word.
3. Update(t): a routine that will update any new oracle-specific data structures upon a

swapping of adjacent elements in positionst andt + 1.
In Section 6, we apply this algorithm to PEOs, SEOs and semiPEOs. But first, in the
following subsection we discuss the running time of the algorithm.

5.1. Analysis

The original analysis of the generic Gray code algorithm in[11] proves that the algorithm
runs in constant amortized time given a constant time oracle. In this section, we make some
important observations about the algorithm and improve the lower time bound required by
the oracle for the generic algorithm to be CAT. These observations are crucial to proving
that we can list all SEOs and semiPEOs in constant amortized time. The following result
is proved by showing that the number of recursive calls toGen(i) is proportional to the
number of basic words generated:

10 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

Theorem 12(Pruesse and Ruskey[11]). Let(V ,L) be an antimatroid with anO(1) trans-
position oracle. Then the basic words of(V ,L) can be generated in constant amortized
time such that each word differs from the next by no more than two transpositions.

If additional data structures are required by the oracle, then to apply this theorem directly
they must also be maintained in constant time per transposition or swap. However, note
that after two adjacent elements are swapped either by a call toMove(t) or Switch(t)
during a call toGen(i), a recursive call is immediately made toGen(i − 1). Now an
important observation to make is that this single recursive call immediately spawnsi − 1
recursive calls (with parametersi − 2, i − 3, . . . ,0) via the recursive call at the beginning
of the routine (Fig.4). Thus for each swap, we can perform O(i) operations to update our
data structures and amortize the cost over thei recursive calls. Now because the oracle
Swappable(t) is never questioned more than twice before a swap takes place, the cost
of the oracle can also be amortized over thei recursive calls. This proves the following
theorem:

Theorem 13. If there exists a transposition oracle for an antimatroid(V ,L) that answers
correctly inO(i) time and whose data structures can be updated inO(i) time after a
swap during a call toGen(i), then the basic words of(V ,L) can be generated in constant
amortized time such that each word differs from the next by one or two transpositions.

Before introducing some specific oracles, we make one more observation about the
generic Gray code algorithm. Recall that the initial basic word is created by successively
removing pairsai, bi of extreme elements. The following observation can be made by
focusing on the parameters in the calls made toMove(t) andSwitch(t) during a call to
Gen(i).

Observation 1. After two vertices are swapped in the generic Gray code algorithm during
a call toGen(i), any query to the oracleSwappable(t) that is deeper in the computation
will be between two adjacent verticesx andy in the current basic word wherex precedes
y andx ∈ {a1, b1, . . . , ai, bi}.

We will see in the next section that this observation will allow us to make only partial
updates to the oracle specific data structures, since the first vertex involved in all swaps
deeper in the recursion will be restricted.

6. The oracles

In this section, we outline efficient oracles for antimatroids related to chordal graphs,
strongly chordal graphs, and HHDA-free graphs. In each case, the number of basic words
(PEOs, SEOs, semiPEOs) generated is�(2n), since there are at least 2extreme(sim-
plicial, simple, semisimplicial) vertices in any induced subgraph. Thus, any polynomial
amount of precomputation will not affect the overall running time of the generic Gray code
algorithm.

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 11

Fig. 6.Swappable(t) andUpdate(t) for PEOs.

6.1. PEOs of a chordal graph

Aconstant timeoracle for theperfect eliminationorderingsofachordal graphG = (V ,E)

is described in[2]. To obtain the constant time efficiency, for each vertexvi in the current
orderingf , we maintain the valuehi : the size of the neighborhood ofvi with respect to
Gf (i). With this information, along with the basic adjacency information, the oracle and
the update routines can be implemented in constant time—see Fig. 6. The oracle is based
on the following theorem:

Theorem 14(Chandran et al.[2]). If f = v1, . . . , vn is a PEO of a chordal graphG then
fj is a PEO ofG if only if (vj , vj+1) /∈ E or hj = hj+1 + 1.

The initial ordering can be initialized in linear time—again see[2] for details. Using this
ordering, the values forhi can also be initialized in linear time by visiting the neighborhoods
of each vertex.

6.2. SEOs of a strongly chordal graph

In this section, we outline an efficient transposition oracle for simple elimination order-
ings. We start by outlining the basic requirements forfj to be an SEO, given thatf is an
SEO.

Lemma 1. Let f = v1, . . . , vn be an SEO of a strongly chordal graph G. Thenfj is an
SEO if and only ifvj is a simple vertex inGf (j).

Proof. By definition, the orderingfj = u1, . . . , un is an SEO if and only ifui is simple in
Gfj (i) for 1� i�n. Now observe thatui = vi andGfj (i) = Gf (i) for all i not equal toj

12 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

w

y z

u v

t

x

Fig. 7. A forbidden triple(x, y, z) in a strongly chordal graph.

or j + 1. Thus, sincef is an SEO,ui is simple inGfj (i) for all i not equal toj or j + 1.
Also sincevj = uj+1 is simple inGf (j), it will also be simple in the induced subgraph
Gfj (j + 1). Now becauseuj = vj+1 andGfj (j) = Gf (j), the orderingfj will be an
SEO if and only ifvj+1 is a simple vertex inGf (j). �

This lemma states that a transposition oracle for SEOs need only test if the vertexvj+1
is simple inGf (j). For the remainder of this discussion, assume that all neighborhoods
are with respect to the induced subgraphGf (j). The task of verifying whether or notvj+1
is simple becomes difficult in the case whenvj is adjacent to one or more vertices in
N(vj+1) but notvj+1 itself. In all other cases,vj+1 will be simple inGf (j) as long as it
is simplicial—and this can be tested in constant time using the PEO oracle.
Now, assuming thatvj+1 is simplicial inGf (j), we consider whenvj+1 will not be

simple. From the definition of a simple vertex, this will be the case when there exists two
verticesu, v ∈ N(vj+1) such thatN [u] �N [v] andN [v] �N [u]. In other words,vj+1
will not be simple inGf (j) if and only if there exists verticesu, v, z ∈ Gf (j) such that
u, v ∈ N(vj+1)andu is adjacent tovj , but notz, andv is adjacent toz, but notvj . Performing
such a test will require more than a constant amount of work unless we introduce some new
data structures.
The following definition arises from our previous observation. Aforbidden triple(with

respect to strongly chordal graphs) is an ordered triple of unique vertices(x, y, z) that along
with two not necessarily uniquejoining verticesu andv form an induced subgraph (a bull)
with edge set{(x, u), (x, v), (u, v), (u, y), (v, z)}. Note that if(x, y, z) is a forbidden triple,
then so is(x, z, y). For example, the graph in Fig.7 illustrates a forbidden triple(x, y, z).
In addition, this graph contains the forbidden triples(x, z, y), (x, y, t) and(x, t, y). From
the definitions of a forbidden triple and a simple vertex we obtain the following lemma.

Lemma 2. Let x be a simplicial vertex in a strongly chordal graphG. Then the vertexx
is simple if and only if there is no forbidden triple of the form(x, y, z) for any vertices
y, z ∈ G.

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 13

Next, we apply the notion of a forbidden triple to SEOs.

Lemma 3. Letf be a PEO of a strongly chordal graphG. Thenf is an SEO if and only
if for every forbidden triple(vi, vj , vk)∈G we havei > min(j, k).

Proof. (⇒) Sincef is an SEO,vi is a simple vertex inGf (i) and by applying the previous
lemma, there is no forbidden triple inGf (i). Now suppose that there exists a forbidden
triple (vi, vj , vk) ∈ G with joining verticesu andv. The vertexvi must come after at least
one of the other vertices inf since there is no forbidden triple inGf (i). However, since
f is a PEO, bothu andv must come afterx in the ordering, otherwisevi would not be
simplicial inGf (i). Thus we must havei > min(j, k).
(⇐) The orderingf is an SEO if for each 1� i�n, the vertexvi is simple inGf (i). The

fact thatvi is simple inGf (i) follows from the previous lemma sincevi is simplicial (f is
a PEO) and there is no forbidden triple(vi, vj , vk) in Gf (i). Thereforef is an SEO. �

We now present a theorem that will be the basis for an efficient oracle for SEOs.

Theorem 15. Let f = v1, . . . , vn be an SEO of a strongly chordal graphG and assume
thatfj is a PEO. Thenfj is an SEO if and only if there is no forbidden triple(vj+1, vj , vk)

in G such thatk > j .

Proof. (⇒) Let fj = u1, . . . , un be an SEO. Thusuj = vj+1, uj+1 = vj anduk = vk.
Lemma3 states that every forbidden triple of the form(uj , uj+1, uk) in G must satisfy
j > min(j + 1, k). Therefore, sincej < j + 1, we must havej > k.
(⇐) From Lemma 1 we need only show thatvj+1 is simple inGf (j) in order forfj to

be an SEO. From Lemma 2 we must show that there is no forbidden triple(vj+1, y, z) for
y, z ∈ Gf (j). Sincevj+1 is simple inGf (j + 1), there is no forbidden triple(vj+1, y, z)

wherey, z ∈ Gf (j + 1) (again by Lemma 2). Now since(vj+1, vj , vk) is not a forbid-
den triple fork > j , there also is no forbidden triple(vj+1, vk, vj). Thereforefj is an
SEO. �

We can now apply this theorem to develop a constant time transposition oracle for sim-
ple elimination orderings. First, we must precompute all forbidden triples so that we can
determine whether or not(x, y, z) is a forbidden triple in constant time. Second, we must
maintain a counternumBad(x, y) for every ordered pair of vertices(x, y) that stores the
number of verticesz such thatz comes afterx in the current ordering and(x, y, z) is a
forbidden triple. By maintaining this latter data structure, two adjacent verticesvj andvj+1
in an SEOf can be swapped to produce a new SEO if and only ifnumBad(vj+1, vj) = 0
and the resulting ordering is a PEO. Thus, since the oracle for PEOs takes constant time,
an oracle for SEOs can also be implemented to run in constant time.
Unfortunately, the constant time oracle has a side effect: after a transposition of adja-

cent verticesvj andvj+1 happens in a call toGen(i), we must update the information in
numBad(vj , z) andnumBad(vj+1, z) for each vertexz. If (vj+1, z, vj) is a forbidden triple
then we must incrementnumBad(vj+1, z) by 1. If (vj , z, vj+1) is a forbidden triple, then
sincevj+1 now precedesvj in the ordering we must decrementnumBad(vj , z) by 1. If we

14 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

update thevalues for eachvertexz then the time required toperformsuchanupdate isO(n) in
theworst case.However, fromObservation1,wedonot need toperform this update for every
possible vertexz. This is because queries to the oracleSwappable(t) deeper in the computa-
tion tree will only involve looking atnumBad(?, z)wherez is in the set{a1, b1, . . . , ai, bi}.
Thus, we need onlymaintain the correct values fornumBad(vj+1, z) andnumBad(vj , z) for
those verticesz ∈ {a1, b1, . . . , ai, bi}. Since the values fornumBad(x, y) are global, one
might wonder whether or not the values will be accurate when we return from a recursive
call. However, since the ordering is the same at the beginning of a recursive call toGen(i)
as the end [12], the values fornumBad(x, y) will also be the same. This means that the
required updates can be done in O(i) time and hence Theorem 13 immediately gives us the
following result.

Theorem 16. The simple elimination orderings of a strongly chordal graph can be gener-
ated in constant amortized time.

Pseudocode for the oracle and update routines are shown in Fig.8. The update routine
makes use of one additional global array,pair [], that is computed during the initialization
step. For a specified vertexv, the valuepair[v] holds the indexi of the ai, bi pair that
v belongs to. Ifn is odd, then the vertexv that does not belong to a pair is assigned
pair[v] = �n2�. The valueforb[x][y][z] is set to TRUE if and only if(x, y, z) is a forbidden
triple inG. The counternumBad[x][y] holds the value fornumBad(x, y).
The initialization routine for SEOs must perform the following steps:

1. Find an initial SEOf obtained by removing pairs of simple vertices. Using this SEO
initialize the pairsai, bi, inv, andpair.

2. Initialize forb[x][y][z] for all triples of vertices.
3. InitializenumBad[x][y] for all pairs of vertices based on the initial orderingf .
Such initialization will be dominated by step 2, which can be done in O(n5) time.

6.3. SemiPEOs of an HHDA-free graph

The approach for constructing the transposition oracle of semiPEOs is very similar to the
construction of the oracle for SEOs described in the previous subsection. Again, we will
introduce the notion of a forbidden triple—but this time it will be defined relative to an
HHDA-free graph and semiPEOs. We begin by outlining the basic requirements forfj to
be a semiPEO, given thatf is a semiPEO. The proof of the lemma is similar to the proof
of Lemma1.

Lemma 4. Let f = v1 · · · vn be a semiPEO of an HHDA-free graphG. Thenfj is a
semiPEO if and only ifvj+1 is a semisimplicial vertex inGf (j).

Given thatf is a semiPEO we know thatvj+1 is semisimplicial inGf (j + 1). Thus, the
only way thatvj+1 will not be semisimplicial inGf (j) is if it is the midpoint of aP4 in
Gf (j) where one of the endpoints must bevj . Naïvely, we can test this condition in O(n2)
time by considering all other vertices in the remaining two positions of theP4. However,
our goal is an oracle that takes constant time. To achieve this goal, we need to maintain

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 15

procedureSwappable (t : integer);
local x, y : integer;
begin

x := f [t]; y := f [t + 1];
return ((hx = hy + 1 or (x, y) �= E) and numBad[y][x] = 0);

end;

procedureUpdate (t : integer);
local i, j , u, v, x, y : integer;
begin

x := f [t]; y := f [t + 1];
if (x, y) ∈ E then begin

hy := hy + 1; hx = hx − 1;
end;
i := MIN(pair[x],pair[y]);
for j := 1 to i do begin

u := a[j]; v := b[j];
if forb[x][u][y] then numBad[x][u] := numBad[x][u] − 1;
if forb[x][v][y] then numBad[x][v] := numBad[x][v] − 1;

if forb[y][u][x] then numBad[y][u] := numBad[y][u] + 1;
if forb[y][v][x] then numBad[y][v] := numBad[x][y] + 1;

end; end;

Fig. 8.Swappable(t) andUpdate(t) for SEOs.

some additional data structures. In particular, we again use the notion of a forbidden triple
of vertices. Aforbidden triple(with respect to an HHDA-free graph) is an ordered triple of
vertices(x, y, z) such thatx is the midpoint of aP4 with y andz as the endpoints. Thus, if
(x, y, z) is a forbidden triple, then so is(x, z, y). Applying this definition to the definition
of a semiPEO we obtain the following lemma.

Lemma 5. Let G be an HHDA-free graph andf = v1, . . . , vn be an ordering of its
vertices. Thenf is a semiPEO if and only if for every forbidden triple(vi, vj , vk) ∈ G we
havei > min(j, k).

Proof. (⇒)Supposethatf is a semiPEOand that thereexistsa forbidden triple(vi, vj , vk)∈
G such thati < min(j, k). This implies that there exists aP4 composed ofvi, vj , andvk and
some fourth vertexvl in G wherevj andvk are the endpoints. This means that(vl, vj , vk)

is also a forbidden triple. However, sincevi is a semisimplicial vertex in the graphGf (i),
we must havel < i. However, this contradicts the fact thatvl is semisimplicial inGf (l).
(⇐) The orderingf is a semiPEO if for each 1� i�n, the vertexvi is semisimplicial

in the induced subgraphGf (i). We are given that for each forbidden triple of the form
(vi, vj , vk), i > min(j, k). Thus, eachvi is semisimplicial inGf (i) since by definition of
a forbidden triple it cannot be a midpoint of anyP4 in Gf (i). �

16 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

We now present a theorem that will be the basis for an efficient oracle for SEOs.

Theorem 17. Letf = v1, . . . , vn be a semiPEO of an HHDA-free graphG. Thenfj is a
semiPEO if and only if there is no forbidden triple(vj+1, vj , vk) in G such thatk > j .

Proof. (⇒)Assume thatfj = u1, . . . , un is a semiPEO. Thusuj = vj+1, uj+1 = vj and
uk = vk. Sincevj comes immediately beforevj+1 in fj , the previous lemma implies that
for anyk > j that(vj+1, vj , vk) is not a forbidden triple inG.
(⇐) From Lemma4 we need only show thatvj+1 is semisimplicial inGf (j) in order

for fj to be semiPEO. Now since there is no forbidden triple(vj+1, vj , vk) such thatk > j

in f , it follows immediately thatvj+1 is semisimplicial inGf (j). �

We can now apply this theorem to develop a constant time transposition oracle for
semiPEOs. First, wemust precompute all forbidden triples so thatwe candeterminewhether
or not(x, y, z) is a forbidden triple in constant time. This can be done by searching for all
P4’s in O(n4) time. Second, we must maintain a counternumBad(x, y) for every ordered
pair of vertices(x, y) that stores the number of verticesz such thatz comes afterx in the
current ordering and(x, y, z) is a forbidden triple. By maintaining this latter data struc-
ture, two adjacent verticesvj andvj+1 in a semiPEOf can be swapped to produce a new
semiPEOfj if and only if numBad(vj+1, vj) = 0. Thus, by maintaining this additional
data structure our oracle responds in constant time by examining the appropriate counter.
Aswith theSEOcase, the constant time oracle has a side effect: after a successful transpo-

sition of adjacent verticesvj andvj+1, wemust update the information innumBad(vj+1, z)

andnumBad(vj , z) for each vertexz. It turns out that the updates required are identical as the
updates for the SEO case, except we do not have to update the information required to detect
simplicial vertices.Theanalysis is alsobasedon thesame reasoningapplied to theSEOcase.

Theorem 18. The semiPEOs of an HHDA-free graph can be generated in constant amor-
tized time.

The oracle and the update routines for semiPEOs are shown in Fig.9. The initialization
steps are virtually the same as the steps required for SEOs, except the notions of forbidden
triple are with respect to HHDA-free graphs and semiPEOs.
1. Find an initial SEOf obtained by removing pairs of simple vertices. Using this SEO

initialize the pairsai , bi, inv, andpair.
2. Initialize forb[x][y][z] for all triples of vertices.
3. InitializenumBad[x][y] for all pairs of vertices based on the initial orderingf .
Such initialization will be dominated by step 2 which can be done in O(n4) time.

7. Summary

In this paper we combine several previous results and introduce some new results (the
oracles) to obtain efficient (CAT) Gray code listings of:
• SEOs of a strongly chordal graph, and
• semiPEOs of an HHDA-free graph.

ARTICLE IN PRESS
J. Sawada / Theoretical Computer Science() – 17

procedureSwappable (t : integer);
local x, y : integer;
begin

x := f [t]; y := f [t + 1];
return (numBad[y][x] = 0);

end;

procedureUpdate (t : integer);
local i, j , u, v, x, y : integer;
begin

x := f [t]; y := f [t + 1];
i := MIN(pair[x], pair[y]);
for j := 1 to i do begin

u := a[j]; v := b[j];
if forb[x][u][y] then numBad[x][u] := numBad[x][u] − 1;
if forb[x][v][y] then numBad[x][v] := numBad[x][v] − 1;

if forb[y][u][x] then numBad[y][u] := numBad[y][u] + 1;
if forb[y][v][x] then numBad[y][v] := numBad[x][y] + 1;

end; end;

Fig. 9.Swappable(t) andUpdate(t) for semiPEOs.

Previously, it was known that such efficient listings were possible for PEOs of a chordal
graphand for linear extensionsof apartially ordered set.Anopenquestion iswhether listings
for the basic words of other antimatroids can also be generated in constant amortized time.
One that does not seem trivial is the antimatroid obtained by shelling the vertices on the
convex hull of a set of points.

Acknowledgements

Thanks to Frank Ruskey for introducing the problem, to the anonymous referee who
pointed out new references, and to NSERC for supporting the research.

References

[1] A. Björner, G.M. Ziegler, Introduction to Greedoids, in: N. White (Ed.), Matroid Applications, Cambridge
Univ. Press, Cambridge, 1992.

[2] L.S. Chandran, L. Ibarra, F. Ruskey, J. Sawada, Generating and characterizing the perfect elimination
orderings of a chordal graph, Theoret. Comput. Sci. 307 (2) (2003) 303–317.

[3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 24 (1961) 71–76.
[4] F. Dragan, F. Nicolai, A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1) (1999)

119–135.
[5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173–189.
[6] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (3)

(1986) 433–444.

18 J. Sawada / Theoretical Computer Science() –

ARTICLE IN PRESS

[7] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835–855.
[8] C.T. Hoàng, B.A. Reed, Some classes of perfectly orderable graphs, J. Graph Theory 13 (4) (1989) 445–463;

Academic Press, NewYork, 1980
[9] B. Korte, L. Lovász, R. Schrader, Greedoids, Springer, Berlin, 1991.
[10] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159–171.
[11] G. Pruesse, F. Ruskey, Gray codes for antimatroids, Order 10 (1993) 239–252.
[12] G. Pruesse, F. Ruskey, Generating linear extensions fast, SIAM J. Comput. 23 (2) (1994) 373–386.

