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Abstract

Pick any length n binary string b1b2 · · · bn and remove the first bit b1. If b2b3 · · · bn1 is a necklace
then append the complement of b1 to the end of the remaining string; otherwise append b1. By
repeating this process, eventually all 2n binary strings will be visited cyclically. This shift rule leads
to a new de Bruijn sequence construction that can be generated in O(1)-amortized time per bit.

1 A new de Bruijn sequence construction

A de Bruijn sequence of order n is a cyclic sequence of length 2n where each substring of length n is a
unique binary string. As an example, the cyclic sequence 0000100110101111 of length 16 is a de Bruijn
sequence for n = 4. The 16 unique substrings of length 4 when considered cyclicly are:

0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000.

As illustrated in this example, a de Bruijn sequence of order n induces a very specific type of cyclic order
of the length n binary strings: the length n − 1 suffix of a given binary string is the same as the length
n− 1 prefix of the next string in the ordering.

The number of unique de Bruijn sequences for a given n is 22
n−1−n [3]; however, only a few efficient

constructions are known. In particular, there are

. a shift generation approach based on primitive polynomials by Golomb [9],

. three different algorithms to generate the lexicographically smallest de Bruijn sequence (also known
as the Ford sequence): a Lyndon word concatenation algorithm by Fredricksen and Maiorana [8], a
successor rule approach by Fredricksen [5], and a block concatenation algorithm by Ralston [12],

. a lexicographic composition concatenation algorithm by Fredricksen and Kessler [7],

. three different pure cycle concatenation algorithms by Fredricksen [6], Etizon and Lempel [4], and
Huang [10] respectively, and

. cool-lex based constructions by Sawada, Stevens and Williams [13] and Sawada, Williams and
Wong [14].

Each algorithm requires only O(n) space and generates their de Bruijn sequences in O(n) time per bit,
except the pure cycle concatenation algorithm by Etizon and Lempel which requires O(n2) space. The
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Lyndon word concatenation algorithm and the cool-lex based approaches achieve O(1)-amortized time
per bit. There also exist interesting greedy constructions including the “prefer-1” and “prefer-opposite”
approaches by Martin [11] and Alhakim [1]; however, they require Ω(2n) space. Finding Euler cycles in
the de Bruijn graph is an approach that will find all de Bruijn sequences for a given n, but again, storing
the graph requires Ω(2n) space.

In this paper, a novel shift-based construction for producing a new de Bruijn sequence is presented. It is
based on testing whether or not a given string is a necklace. A necklace is the lexicographically smallest
string in an equivalence class of strings under rotation. The new construction is based on the following
function over binary strings, where b denotes the complement of the bit b:

f(b1b2 · · · bn) =

{
b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace;
b2b3 · · · bnb1 otherwise.

As an illustration, successive applications of this rule for n = 5 starting with the string 00000 (the
underlined strings will be discussed later) produce the following listing:

00000, 00001, 00011, 00111, 01111, 11111, 11110, 11101,
11011, 10111, 01110, 11100, 11001, 10011, 00110, 01100,
11000, 10001, 00010, 00101, 01011, 10110, 01101, 11010,
10101, 01010, 10100, 01001, 10010, 00100, 01000, 10000.

Observe that every binary strings of length 5 are visited exactly once and that by applying one more
application of the rule, we return to the first string 00000. This property holds in general for all n > 1.
This leads to the following theorem, where B(n) denotes the set of binary strings with length n.

Theorem 1. The shift rule f induces a cyclic ordering on B(n).

Before proving this theorem, observe that a de Bruijn sequence results from concatenating the first bit
of each string in the exhaustive listing for B(n) produced by repeatedly applying f . We denote this de
Bruijn sequence by dB(n). As an example, dB(5) is:

00000111110111001100010110101001.

The above sequence is different from all other known constructions. In particular, a reversed rotation of
the well known Ford sequence (the lexicographically smallest de Bruijn sequence) differs at the 14th bit:

00000111110110101110010100110001.

Since a membership tester for necklaces can be implemented in O(n) time [2], dB(n) can be generated
in O(n) time per bit. However, by studying the properties of this de Bruijn sequence, a slightly more
sophisticated approach will generate the sequence in O(1)-amortized time per bit.

The rest of the paper is outlined as follows. In Section 2, we present some definitions and notation
used later in the paper. In Section 3, we prove Theorem 1, which leads to a new de Bruijn sequence
construction. Then in Section 4, we present an algorithm that produces this de Bruijn sequence in O(1)-
amortized time per bit.

The main results of this paper are also found in Wong’s PhD thesis [15].
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2 Definitions and Notation

Consider a binary string α = b1b2 · · · bn. The string α is said to be periodic if there exists some shorter
string β such that α = βt for some t > 1, where the exponent t denotes the number of repeated
concatenations. A string that is not periodic is aperiodic. The longest aperiodic prefix of α is denoted by
ap(α).

A left rotation of α is b2b3 · · · bnb1 and is denoted by LR(α). Let LRr(α) denote the string that results
from applying a left rotation r times to α. Thus LRr(α) = br+1br+2 · · · bnb1b2 · · · br when 0 ≤ r < n.
The set of strings rotationally equivalent to α is denoted by Rots(α), and the set of all length n binary
necklaces is denoted by N(n).

A string β is reachable from α if β can be obtained from α by repeatedly applying the shift rule f .

3 Proof of Theorem 1

The proof for Theorem 1 is done in two steps. First, we show that the function f is a bijection. Then, we
show that every strings are reachable from 0n by applying f .

Lemma 1. The function f is a bijection.

Proof. Since the domain and the range of f are the same, it suffices to show that f is onto. Con-
sider a binary string β = b2 · · · bnb1. If b2 · · · bn1 is a necklace then f(b1b2 · · · bn) = β. Otherwise
f(b1b2 · · · bn) = β.

Since f is a bijection, its inverse is well defined as follows:

f−1(b1b2 · · · bn) =

{
bnb1b2 · · · bn−1 if b1b2 · · · bn−11 is a necklace;
bnb1b2 · · · bn−1 otherwise.

Now, revisit the example listing of B(5) given in Section 1. Observe that given any necklace α ∈ N(5),
the sequence of strings α, LR(α), LR2(α), LR3(α) and LR4(α) appears as a subsequence in the listing.
As an example, the underlined strings are Rots(00001) and appear in the order described. This property
is the key to proving that all strings are reachable from 0n.

Lemma 2. Let α ∈ N(n) and β = b1b2 · · · bn ∈ Rots(α). Then β is reachable from α.

Proof. Apply induction on the number of 0s of α. In the base case, α = 1n is the only string with zero
0s and the only string in Rots(α) is 1n. Inductively, assume that for α ∈ N(n) with 0 ≤ k < n 0s, each
string β ∈ Rots(α) is reachable from α. Consider α ∈ N(n) with k + 1 0s. The set Rots(α) contains
all the left rotations of α. We now show by induction that LRr+1(α) is reachable from LRr(α) where
r = {0, 1, . . . , n− 2}.

In the base case, when r = 0, LR0(α) = α and is reachable from α. Inductively, assume
LRt(α) is reachable from α where 0 ≤ t < n − 1. Consider LRt+1(α) = b1b2 · · · bn. If
b1b2 · · · bn−11 /∈ N(n), then f−1(b1b2 · · · bn) = b2b3 · · · bnb1 = LRt(α). Otherwise, bn =
0 and f−1(b1b2 · · · bn) = 1b1b2 · · · bn−1 because b1b2 · · · bn /∈ N(n) but b1b2 · · · bn−11 ∈
N(n). Now observe that b1b2 · · · bn−11 ∈ N(n) has k 0s and it is the necklace representative
of 1b1b2 · · · bn−1. Thus by the (external) inductive hypothesis, the string 1b1b2 · · · bn−1 is
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reachable from b1b2 · · · bn−11. Finally, f−1(b1b2 · · · bn−11) = 0b1b2 · · · bn−1 = LRt(α),
and thus LRt+1(α) is reachable from LRt(α).

Since LRr+1(α) is reachable from LRr(α), by transitivity, each β ∈ Rots(α) is reachable from α.

Lemma 3. Each string α ∈ B(n) is reachable from 0n.

Proof. Apply induction on the number of 1s of α. In the base case, the only string with zero 1s is 0n,
which is reachable from 0n. Inductively, assume any string with 0 ≤ k < n 1s is reachable from 0n.
Consider a string β with k + 1 1s and assume β ∈ Rots(α) where α = b1b2 · · · bn is a necklace. Note
that bn = 1 since α is a necklace with at least one 1. By Lemma 2 β is reachable from α. Clearly α
is reachable from α′ = f−1(α) = 0b1b2 · · · bn−1. Since α′ has k 1s, it is reachable from 0n by the
inductive assumption. Thus, by transitivity, β is reachable from 0n.

Together, Lemma 1 and Lemma 3 prove Theorem 1.

4 Generating the de Bruijn sequence efficiently

As mentioned earlier, our de Bruijn sequence dB(n) is obtained by concatenating the first bit of each
string in an exhaustive listing for B(n) produced by repeatedly applying f . Since a membership tester for
necklaces can be implemented inO(n) time [2], dB(n) can be generated inO(n) time per bit. However,
by studying the strings of the form b1b2 · · · bn such that b2b3 · · · bn1 is a necklace, we can improve the
algorithm to run in O(1)-amortized time per bit.

In Table 1 we list the binary strings of length 6 obtained by starting from 000000 and successively apply-
ing the function f a total of 26 − 1 times. Each row ends with a string b′1b

′
2 · · · b′n such that b′2b

′
3 · · · b′n1

is a necklace, and hence when the function f is applied to this final string, it will complement the fi-
nal bit after rotation. This means that the first string α = b1b2 · · · bn in each row has the property that
b1b2 · · · bn−11 is a necklace. Observe there are 2|N(6)|−2 = 2(14)−2 = 26 rows in this table. We will
prove this observation for all n later in this section. The value g(α) corresponds to the number of strings
in each row. Formally, g(α) is the number of successive applications of the function f starting from α
until a bit gets complemented by the function f . Let f j(α) be the string obtained from j successive appli-
cations of the shift rule f starting with α = b1b2 · · · bn. Recall that LRj(α) = bj+1bj+2 · · · bnb1b2 · · · bj .
Then g(α) corresponds to the value smallest value j such that f j(α) 6= LRj(α).

In the proof of the following lemma, the Kleene star operator b∗ denotes 0 or more concatenations of b.

Lemma 4. Let α = b1b2 · · · bn and b1b2 · · · bn−11 ∈ N(n), and g be the function on α which computes
the minimum nonnegative value j such that f j(α) 6= LRj(α). Then:

g(α) =


1 if b2b3 · · · bn1 ∈ N(n),
|ap(α)| if b2b3 · · · bn1 /∈ N(n) and α ∈ N(n),
n− q if b2b3 · · · bn1 /∈ N(n) and α /∈ N(n),

where q is the largest value such that α has suffix 0q.

Proof. By the definition of f , clearly g(α) = 1 when b2b3 · · · bn1 ∈ N(n). Otherwise consider two
cases depending on whether or not α is a necklace.
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i α, f(α), f(f(α)), . . . g(α) dB
1 000000 1 0
2 000001 1 0
3 000011 1 0
4 000111 1 0
5 001111 1 0
6 011111 1 0
7 111111 1 1
8 111110, 111101, 111011, 110111, 101111 5 11111
9 011110, 111100, 111001, 110011, 100111 5 01111

10 001110, 011100, 111000, 110001, 100011 5 00111
11 000110 1 0
12 001101 1 0
13 011011, 110110, 101101 3 011
14 011010, 110100, 101001, 010011, 100110 5 01101
15 001100, 011000, 110000, 100001 4 0011
16 000010 1 0
17 000101 1 0
18 001011 1 0
19 010111, 101110, 011101, 111010, 110101, 101011 6 010111
20 010110, 101100, 011001, 110010, 100101 5 01011
21 001010 1 0
22 010101, 101010 2 01
23 010100, 101000, 010001, 100010 4 0101
24 000100 1 0
25 001001, 010010, 100100 3 001
26 001000, 010000, 100000 3 001

Table 1: The cyclic order of B(6) induced by the function f starting from 000000. The rows break down the order
based on when f complements the last bit after a rotation. The value g(α) corresponds to the number of strings in
each row, and dB is the concatenation of the first bits of the strings in each row. Concatenating together the strings
in the column dB gives dB(6).

Case 1: α is a necklace. If α is periodic with p = |ap(α)|, then the substring bp+1bp+2 · · · b2p is lexico-
graphically smaller than bibi+1 · · · bp for all i > 1. Thus f j(α) = LRj(α) when j < p. Now consider
fp−1(α), observe that fp−1(α) = 1ap(α)p−1b1b2 · · · bp−1 and ap(α)p−1b1b2 · · · bp−11 = α ∈ N(n).
Thus fp(α) 6= LRp(α) and g(α) = p = |ap(α)|. When α is aperiodic, let γ be the lexicographi-
cally least maximal substring of the form 0∗1∗ within α. Clearly b1b2 · · · b|γ| = γ because α ∈ N(n).
Also since b2b3 · · · bn1 /∈ N(n), there exists some substring β within b|γ|+1b|γ|+2 · · · bn which is lexico-
graphically smaller than bibi+1 · · · b|γ|+i−1 for all 1 < i < |γ|. Thus f j(α) = LRj(α) when j < |γ|.
Then notice that f |γ|(α) contains the suffix γ which is strictly the lexicographically least maximal sub-
string in α. Thus f j(α) = LRj(α) when j < n. Now observe that fn−1(α) = bnb1b2 · · · bn−1 and
b1b2 · · · bn−11 = α ∈ N(n), thus fn(α) 6= LRn(α) and g(α) = n = |ap(α)|.

Case 2: α is not a necklace. Since b1b2 · · · bn−11 ∈ N(n) but α /∈ N(n), α ends with the suffix 0q

with q ≥ 1. Similar to the argument of Case 1, let γ be the lexicographically least maximal substring
of the form 0∗1∗ within α. Clearly b1b2 · · · b|γ| = γ because b1b2 · · · bn−11 ∈ N(n) and bn = 0. The
string f j(α) = LRj(α) when j < |γ| since bi+1bi+2 · · · b|γ| is lexicographically larger than the suffix
0qbi for all 1 ≤ i ≤ |γ|. Now consider f |γ|(α); it contains the suffix 0qγ which will be the unique
lexicographically least maximal substring of the form 0∗1∗ in α (by definition of γ). Thus f j(α) =
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LRj(α) when j < n − q. Now observe that fn−q−1(α) = bn−q0
qγb|γ|+1b|γ|+2 · · · bn−q−1 and note

that 0qγb|γ|+1b|γ|+2 · · · bn−q−11 is a necklace because it ends with 1 and as mentioned earlier 0qγ is the
unique lexicographically least maximal substring of the form 0∗1∗ within α. Thus fn−q(α) 6= LRn−q(α)
and g(α) = n− q.

Still focussing on Table 1, note that the concatenation of the first bit of each string in each row is high-
lighted in the final column labeled dB. By concatenating all the strings together in this final column we
obtain dB(6). Also observe that the strings in each row of Table 1 are obtained by repeatedly applying
a left rotation starting from the initial string α. Thus, given the value g(α), we can output the string in
the column dB in constant time per bit. This leads to an optimized algorithm to generate dB(n) given
in Algorithm 1. A complete C implementation of the algorithm is given in Wong’s PhD thesis [15].

Algorithm 1 Optimized shift-based algorithm to generate dB(n) in O(1)-amortized time per bit.
1: procedure FASTDEBRUIJN
2: b1b2 · · · bn ← 0n

3: do
4: j ← g(b1b2 · · · bn)
5: Print(b1b2 · · · bj)
6: b1b2 · · · bn ← f(bjbj+1 · · · bnb1b2 · · · bj−1)
7: while b1b2 · · · bn 6= 0n

4.1 Analysis
To analyze this optimized algorithm we first need to consider how often a bit gets complemented by the
function f . Recall that N(n) denotes the set of binary necklaces of length n; we use N(n) for the size
of this set. It is well known that

N(n) =
1

n

∑
d|n

φ(d) 2n/d,

where φ is Euler’s totient function.

Lemma 5. There are 2N(n)−2 binary strings of the form b1b2 · · · bn such that b2b3 · · · bn1 is a necklace.

Proof. With the exception of the necklace of all zeroes, every binary necklaces of length n end with 1.
For each of these N(n)− 1 necklaces of the form b2b3 · · · bn1, we can assign b1 to be either 0 or 1.

Theorem 2. The algorithm FastDeBruijn generates the de Bruijn sequence dB(n) in O(1)-amortized
time per bit.

Proof. The functions f and g can be computed in O(n) time by applying a standard membership tester
for necklaces [2] which can easily be modified to return |ap(α)|. Thus, each iteration of the do/while
loop requires O(n) time. From Lemma 5 there are 2N(n)− 2 iterations of the do/while loop. Thus, the
overall running time will be proportional to O(nN(n)) = Θ(2n).
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