
A Fast Algorithm To Generate Open Meandric
Systems and Meanders

BRUCE BOBIER

University of Waterloo

and

JOE SAWADA

University of Guelph

An open meandric system is a planar configuration of acyclic curves crossing an infinite horizontal

line in the plane such that the curves may extend in both horizontal directions. We present a
fast, recursive algorithm to exhaustively generate open meandric systems with n crossings. We

then illustrate how to modify the algorithm to generate unidirectional open meandric systems (the
curves extend only to the right) and non-isomorphic open meandric systems where equivalence

is taken under horizontal reflection. Each algorithm can be modified to generate systems with

exactly k curves. In the unidirectional case when k=1, we can apply a minor modification along
with some additional optimization steps to yield the first fast and simple algorithm to generate

open meanders.

Categories and Subject Descriptors: G.2.1 [Combinatorics]: Combinatorial algorithms

General Terms: Algorithms

Additional Key Words and Phrases: CAT algorithm, meander, open meandric system

1. INTRODUCTION

An open meander can be thought of as the system formed by an infinite river
running from northwest to east which passes beneath n bridges of an infinite straight
road going from west to east. It is from this geographical analogy, shown in Fig. 1,
that the name“meander” is derived.

Meanders have been studied in various contexts, including the map-folding prob-
lem [13], the stamp-folding problem [4; 9; 18], polymer chains [5] and in relation to
Jordan curves [3; 16], with literature dating back to Poincaré’s work on differential
geometry [15]. Meanders are also related to simple alternating transit mazes of
depth n [14], and to ovals of planar algebraic curves (Hilberts 16th problem) [2].
The problem of enumerating meanders is known to be a difficult problem and a
significant body of work has been dedicated to it [1; 4; 7; 8; 11; 12]. However, until
now, no algorithms have been developed that focus on the efficient generation of

Author’s email: Bruce Bobier (bbobier@engmail.waterloo.ca), Joe Sawada (jsawada@uoguelph.ca)

Research supported by NSERC.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, December 2008, Pages 1–0??.

2 · Bruce Bobier and Joe Sawada

Fig. 1. Geographic analogy of a road with 6 bridges and a meandering river.

(b)(a)

Fig. 2. a) Example of an open meandric system with 7 crossings. b) Example of a unidirectional
open meandric system with 6 crossings.

meanders.
Open meandric systems are a generalization of open meanders obtained by al-

lowing multiple unclosed curves extending in one or both horizontal directions.
They should not be confused with “systems of meanders” which refer to systems
of non-intersecting closed curves. Formally, an open meandric system is a planar
configuration of acyclic curves crossing an infinite horizontal line in the plane such
that the curves may extend infinitely in both horizontal directions. An example of
an open meandric system with 7 crossings (and 3 curves) is shown in Fig. 2a. A
unidirectional open meandric system is similar to an open meandric system, except
that all curves must extend to the right (Fig. 2b). The study of (unidirectional)
open meandric systems was originally motivated by the discussion of non-crossing
matchings and sphere cut branch decompositions in [6]. It turns out that these sys-
tems, and in particular, their enumeration sequences, have also been studied rather
extensively by Bacher [3] as they relate to a graded algebra of meander slices.

In this paper we develop Constant Amortized Time (CAT) algorithms (i.e., the
amount of computation time is proportional to the number of generated objects)
which generate:

—all open meandric systems with n crossings,
—all unidirectional open meandric systems with n crossings, and
—all (unidirectional) open meanderic systems with n crossings and equivalence

under reflection.

Additionally, each algorithm can easily be modified to list all such systems with
n crossings having exactly k curves. In the unidirectional case when k=1, we can
apply a minor modification along with simple optimizations to yield the first fast
ACM Journal Name, Vol. V, No. N, December 2008.

A Fast Algorithm to Generate Open Meandric Systems and Meanders · 3

O D U C

Fig. 3. The alphabet for crossings.

and simple algorithm for generating open meanders.

2. GENERATING OPEN MEANDRIC SYSTEMS

In this section, we develop a fast algorithm for generating (unidirectional) open
meandric systems with n crossings. Before we do this, however, we first introduce
a simple string representation for these systems.

Let each point where a curve intersects the line be called a crossing. Then
each crossing can be represented by one of four characters, as adopted from [10]:
{O,D,U,C} (O=Open, D=Down, U=Up, C=Close).

Fig. 3 illustrates how the characters correspond to pieces of each curve. As
reference, some other notations that have been used to describe similar systems
include:

—{D,R,L,U} to describe meanders situated on a vertical line [1],

—{(, \, /,)} in [3], and

—{a, b, c, d} in [12].

For the remainder of this paper we will represent each open meandric system
with n crossings as a word (string) of length n over the alphabet {O,D,U,C}.

2.1 A Simple Algorithm

Using the string representation we can generate all open meandric systems by ap-
plying a standard recursive approach that builds up the strings one character at a
time. The only constraint when adding a new character to the end of a string is
that it cannot create a cycle. Observe that this is only possible only when adding
the character C. For example the words OC and OUDC do not correspond to valid
open meandric systems since they form cycles (closed curves).

Pseudocode for such an algorithm to exhaustively list all open meandric systems
with n crossings is given in Algorithm 1, where the global array word is used to
maintain the current string representation. The function Cycle can be implemented
to run in O(n) time by tracing back through the string. It returns true only if the
addition of a C to the current string creates a cycle. The function Print prints out
the contents of word. The initial call is SimpleGen(1).

ACM Journal Name, Vol. V, No. N, December 2008.

4 · Bruce Bobier and Joe Sawada

Algorithm 1: SimpleGen(t)

procedure SimpleGen(t : integer)
if t > n then Print();
else

word[t] := ‘O’; SimpleGen(t + 1);
word[t] := ‘D’; SimpleGen(t + 1);
word[t] := ‘U’; SimpleGen(t + 1);
word[t] := ‘C’; if not Cycle(word) then SimpleGen(t + 1);

Since every internal node in the computation tree of SimpleGen(t) has at least
2 children, the overall running time of this algorithm will be proportional to the
number of leaves (the open meandric systems) times the amount of time required
for each recursive call. Thus, the algorithm will run in O(n) amortized time. In
the next section we introduce some data structures that allow us to perform the
cycle check in constant time.

2.2 A Fast Algorithm

In this subsection, we introduce some extra data structures that allow us to perform
the cycle test in constant time. The main idea is to keep track of the endpoints of
each curve in the open meandric system so that when we add a new character, we
can determine which curves, if any, it will attach to. To do this, we use two stacks
top and bot to store the endpoints of available curves that extend “to the right”:
one for the top of the line, and one for the bottom. If a character creates a new
curve, we initially label the curve with its position in the sequence.

Observe that anytime we add an O, we will always push its position onto both
stacks. When adding a D (or symmetrically a U) and the top stack is non-empty, we
push the new position only onto the bottom stack since the other endpoint extends
infinitely to the left. If the top stack is non-empty, the new crossing will attach
itself to an existing curve for which we pop an endpoint off the top stack and push
it onto the bottom stack. The difficult case is when we attempt to add a C. If both
stacks are empty, we do nothing. If only one stack is non-empty, we simply pop an
endpoint off the non-empty stack. If both stacks are non-empty, then after popping
endpoints of curves off of both stacks, one of two things can happen. If the popped
endpoints belong to the same curve, then adding a C will form a cycle. If they
belong to different curves, then we end up joining two curves together. The tricky
part is how to join the curves together since the other endpoints of each curve may
still be in the stack.

To handle this case, we first considered using the position of the first crossing to
represent each curve. However, for some cases this strategy still requires a linear
amount of work. Instead, we introduce a mapping f of the endpoints for each curve.
Initially, the mapping for each curve t is itself: f(t) = t. Then, when two curves
get joined together, the unjoined endpoints get mapped to each other.

In Fig. 4 we illustrate the data structures for the word OUOUOODCCDCC.
Initially the stacks are empty and f [t] = t for t = 1 to n. The stacks are ordered
so that the top of each stack is the left of the list.
ACM Journal Name, Vol. V, No. N, December 2008.

A Fast Algorithm to Generate Open Meandric Systems and Meanders · 5

CUOUO O O D C D C C

t word top bot f

0 - - - f [t] := t
1 O 1 1 -
2 U 1,1 - -

3 O 3,1,1 3 -
4 U 3,3,1,1 - -
5 O 5,3,3,1,1 5 -

6 O 7,5,3,3,1,1 7,5 -
7 D 5,3,3,1,1 7,7,5 -
8 C 3,3,1,1 7,5 f [5] := 7, f [7] := 5
9 C 3,1,1 5 f [5] := 3, f [3] := 5

10 D 1,1 3,5 -
11 C 1 5 f [1] := 5, f [5] := 1
12 C - - cycle

Fig. 4. Illustrating the data structures for the word OUOUOODCCDCC .

Observe when we add the U at t=2 that the endpoint 1 gets popped off of the
bottom stack and added to the top stack. When we add the C at t = 8, we are
joining the two curves 5 and 7 together. Since f [5] = 5 and f [7] = 7, we match
up their other endpoints by setting f [5] := 7 and f [7] := 5. Then at t = 9 (the
tricky part of the example), we are joining the endpoints 3 and 7 together. Since
f [3] = 3 and f [7] = 5 we must map their corresponding endpoints 3 and 5 together:
f [3] := 5 and f [5] := 3. When we add the C at t = 11 we pop 1 and 3 from
the stacks. Since f [1] = 1 and f [3] = 5 we map the endpoints 1 and 5 together:
f [1] := 5 and f [5] := 1. Finally, at t = 12, we pop 1 and 5 off of the stacks.
Now since f [1] = 5, we know that we are joining the endpoints of the same curve
together and are creating a cycle. Thus, the cycle detection can be performed in
constant time.

Pseudocode which applies these data structures to generate open meandric sys-
tems is shown in Algorithm 2. Since the cycle detection can be performed in
constant time, the running time of the algorithm will be proportional to the size of
the computation tree (the number of recursive calls). Further, since each node in
this tree has at least 2 children and each leaf in the tree corresponds to a unique
open meandric system, we arrive at the following theorem:

ACM Journal Name, Vol. V, No. N, December 2008.

6 · Bruce Bobier and Joe Sawada

Algorithm 2: Gen(t)

procedure Gen(t : integer)

local x, y, a, b, a2, b2 : integer;

if t > n then Print();
else

word[t] := ‘O’;
push(top, t); push(bot, t);

Gen(t + 1);

pop(top); pop(bot);

word[t] := ‘D’;

if notEmpty(top) then
x : = pop(top); push(bot, x);

Gen(t + 1);
x : = pop(bot); push(top, x);

else
push(bot, t);

Gen(t + 1);

pop(bot);

word[t] := ‘U’;

if notEmpty(bot) then
x : = pop(bot); push(top, x);
Gen(t + 1);

x : = pop(top); push(bot, x);
else

push(top, t);
Gen(t + 1);

pop(top);

word[t] := ‘C’;

if notEmpty(top) and notEmpty(bot) then
x := pop(top); y := pop(bot);

a := f [x]; b := f [y];
a2 := f [a]; b2 := f [b];

if a 6= y then
f [b] := a; f [a] := b;

Gen(t + 1);

f [b] := b2; f [a] := a2;
push(top, x); push(bot, y);

else if notEmpty(top) then
x := pop(top);

Gen(t + 1);
push(top, x);

else if notEmpty(bot) then
x := pop(bot);
Gen(t + 1);

push(bot, x);
else

Gen(t + 1);

ACM Journal Name, Vol. V, No. N, December 2008.

A Fast Algorithm to Generate Open Meandric Systems and Meanders · 7

OC

O

OUO OUD OUU OUC

OUOD

ODCODUODO ODD

OO

OOO OOD OOU OOC

Fig. 5. Computation tree for unidirectional open meandric systems.

Theorem 2.1. The algorithm Gen(t) for exhaustively listing all open meandric
systems with n crossings is CAT.

To generate all open meandric systems with n crossings and exactly k curves,
we can add a simple constant time test to the Print function that checks if the
number of elements in the two stacks top and bot sums to 2k.

2.3 Unidirectional Open Meandric Systems

In this subsection, we describe the modifications required to convert Gen(t) so that
it only generates unidirectional open meandric systems.

From our definition of unidirectional open meandric systems, we know that all
curves must extend to the right, meaning that the words first character can only
be an O. Also, we can never add a D or C if the top stack is empty since it would
result in a curve extending to the left. Similarly we cannot add a U or a C if the
bottom stack is empty. To enforce these constraints, we can simply remove the else
statements marked by a vertical bar in Gen(t) of Algorithm 2 and make the same
initial call of Gen(1) .

Fig. 5 illustrates the computation tree for n = 3 that results from applying these
modifications to Gen(t). The dashed lines indicate nodes that will not be generated
since they either create a cycle or have a curve that extends to the left. Notice that
at each successive level in this tree we are generating all words for n at depth t, and
that the leaf nodes in bold represent the words produced. Observe that at every
node we can always add an O and at least one of D or U. Thus each internal node
in the computation tree will still have at least two children.

Theorem 2.2. Unidirectional open meandric systems with n crossings can be
generated in constant amortized time with a modified version of Gen(t).

2.4 Equivalence Under Horizontal Reflection

In this section we consider equivalence under reflection about the horizontal line.
When we reflect a string representing a (unidirectional) open meandric system the O
and the C remain invariant while each U becomes a D and vise-versa. For example,
the string CODDUC is isomorphic to COUUDC under reflection (see Fig. 6).

It is easy to see that the strings that are self-equivalent under reflection are those
that do not contain any Ds or Us. These are precisely the strings composed of i
Cs followed by n − i Os for i = 0 to n. For unidirectional open meandric systems,

ACM Journal Name, Vol. V, No. N, December 2008.

8 · Bruce Bobier and Joe Sawada

(b)

O U U D C UDDC O C

(a)

C

Fig. 6. Two open meandric systems that are equivalent under reflection.

only the sequence of all Os is equivalent to itself under reflection.
Since we only want to generate one string from each equivalence class, we arbi-

trarily let the string that has a D preceding all Us represent each class that contains
two strings. The algorithm Gen(t) can easily be adapted to handle this by main-
taining an additional parameter that indicates whether or not a D has been added
to the current string. If it has not been added, then we do not consider the case
where we add a U.

Theorem 2.3. (Unidirectional) open meandric systems with n crossings and
equivalence under horizontal reflection can be generated in constant amortized time
with a modified version of Gen(t).

We have also considered equivalence under reversal and 180 degree rotation (re-
flection and reversal). These equivalence classes can also be generated in constant
amortized time in a fairly straightforward manner, but we omit the details.

2.5 Enumeration Sequences

Let Sn denote the number of open meandric systems with n crossings and let Un

denote the number of unidirectional systems with n crossings. Similarly, let S′
n

and U ′
n denote the corresponding systems with equivalence under reflection. In

earlier discussion we demonstrated that the number of strings in Sn and Un that
are invariant under reflection are n+1 and 1 respectively. Thus, we get the following
theorem:

Theorem 2.4. For n ≥ 0,

S′
n = (Sn + n + 1)/2,

U ′
n = (Un + 1)/2.

In [3], the enumeration sequences for Sn and Un are given up to n=26 and
n=19 respectively. We extended these sequences by distributing our algorithm
using SHARCNET1. The computation of S28 took less than a month using 25
processors while taking advantage of the equivalence under reflection. The results
are in Table I. The sequences for Sn and Un correspond to sequences A060111 and
A060089 respectively in Sloans Encyclopedia of Integer Sequences [17].

1SHARCNET is a consortium of colleges and universities in a cluster of clusters of high perfor-

mance computers, linked by advanced fibre optics (http://www.sharcnet.ca).

ACM Journal Name, Vol. V, No. N, December 2008.

A Fast Algorithm to Generate Open Meandric Systems and Meanders · 9

n Sn Un

0 1 1
1 4 1

2 15 3

3 56 7
4 207 23

5 764 63

6 2805 213
7 10288 627

8 37609 2149
9 137380 6597

10 500655 22787

11 1823440 71883
12 6629423 249523
13 24090332 802291

14 87418221 2794365
15 317085352 9111917

16 1148825185 31814061
17 4160744164 104862813
18 15054719697 366796437

19 54454345624 1219313185
20 196805925995 4271041447
21 711077858188 14295561451

22 2567375653681 50131159253
23 9267176552040 168742700865
24 33430012251123 592279599483

25 120565130387572 2003050663889
26 434578910451203 7035894016347
27 1566103257814584 23890177457535

28 5641039781305999 83968962295531

Table I. The first terms of the sequences Sn and Un.

3. GENERATING MEANDERS

Earlier we described an open meander as a river that starts in the northwest and
flows east passing beneath n bridges of an infinite road going from west to east.
Typically, a (closed) meander of order n refers to a self-avoiding closed curve that
crosses a line in the plane at exactly 2n locations. There is a 1-1 correspondence
between open meanders of order 2n − 1 and (closed) meanders of order n [12].
Table II shows the sequence of meandric numbers (open meanders) of order n. It
corresponds to sequence A005316 in Sloanes Encyclopedia of Integer Sequences [17].
The odd numbered terms correspond to sequence A005315: the closed meandric
numbers.

Open meanders are closely related to unidirectional open meandric systems with
exactly one curve (k = 1). The only extra restriction required is that one of the
endpoints of the single curve starts above the horizontal line, which represents the
endpoint of the open meander that must start in the northwest. Thus, to generate
open meanders, we can simply modify the Print function in the unidirectional
pseudocode to test that k = 1 and that the stack top is not empty. Both tests
can be performed in constant time. (If desired, to change the direction of the first
endpoint in the stack top from east to west, the index of the character for each

ACM Journal Name, Vol. V, No. N, December 2008.

10 · Bruce Bobier and Joe Sawada

n Open meanders n Open meanders

0 1 13 13820
1 1 14 30694

2 1 15 110954

3 2 16 252939
4 3 17 933458

5 8 18 2172830

6 14 19 8152860
7 42 20 19304190

8 81 21 73424650
9 262 22 176343390

10 538 23 678390116

11 1828 24 1649008456
12 3926 25 6405031050

Table II. The meandric numbers.

endpoint should also be maintained in the stack. Thus, this character can be found
in constant time. An O gets changed to a D and a U gets changed to a C.)

Notice that the amount of work (in the asymptotic sense) to generate open me-
anders of order n is the same as the amount of work to generate all unidirectional
open meandric systems with n crossings. In the next subsection we consider how
to optimize the algorithm for open meanders.

3.1 Optimizing the Generation of Meanders

To optimize the generation of meanders of length n, we can prune the computation
tree by identifying sequences of length t that can never be extended into a meander
of length n. For a sequence σ of length t to be extendable into a meander, the n− t
remaining characters must be sufficient so that it is possible for the unidirectional
open meandric sequence being generated to end up with exactly one curve where
the top stack is non-empty. This means that for each sequence the top stack will end
up with 1 or 2 endpoints while the bottom stack will end up with 1 or 0 endpoints.

To determine the number of curves k currently in σ, we must maintain (in con-
stant time) the size of the two stacks top and bot. The number of curves k can thus
be computed: |top|+|bot|

2 . Now, if σ is currently composed of k > 1 curves, then the
only way we can reduce the number of curves is to append a C, which will reduce
the number by 1 if it does not create a cycle. This means that σ can be extended
into a meander of length n only if k − 1 ≤ n − t.

We can improve on this optimization by focusing on how the endpoints are dis-
tributed among the two stacks. Since the bottom stack must end up with at most
one endpoint, σ will require at least |bot| − 1 appended characters to satisfy this
constraint. This is because each appended character will reduce the stack size by
at most 1. Similarly, σ will require at least |top| − 2 appended characters to ensure
that the stack top ends up with at most 2 endpoints. Thus σ can be extended to
a meander of length n only if |bot| − 1 ≤ n − t and |top| − 2 ≤ n − t. Observe that
these two restrictions together imply the earlier restriction that k − 1 ≤ n − t.

As one final optimization, observe that if |top| > 2 where the first two endpoints
in the stack top correspond to the same curve (which can be tested in constant time
if the stacks are implemented as arrays), then appending |top| − 2 characters will
ACM Journal Name, Vol. V, No. N, December 2008.

A Fast Algorithm to Generate Open Meandric Systems and Meanders · 11

n Open meanders Comp tree un-optimized Ratio Comp tree optimized Ratio

10 538 10222 19.0 2347 4.4
11 1828 34299 18.8 9093 5.0

12 3926 108280 27.6 17800 4.5

13 13820 367697 26.6 71650 5.2
14 30694 1186862 38.7 143597 4.7

15 110954 4061487 36.6 594629 5.4

16 252939 13315389 52.6 1214315 4.8
17 933458 45809969 49.1 5140082 5.5

18 2172830 151912154 69.9 10659244 4.9
19 8152860 524688621 64.4 45919155 5.6
20 19304190 1755153136 90.9 96451719 5.0

Table III. Comparison of the running times of two algorithms to generate meanders.

not be sufficient to reduce to one curve. To see this notice that after appending
|top| − 2 characters, the curve corresponding to the first two endpoints in the stack
top never get affected. Thus any such extended sequence will still consist of at least
two curves. Thus, in this case we can add the restriction that |top| − 1 ≤ n − t.

To apply these optimizations to generate meanders of order n, we can simply add
the following pseudocode before the first if statement in the algorithm Gen(t) (for
generating unidirectional open meandric systems):

if |bot| − 1 > N − t + 1 or |top| − 2 > N − t + 1 then return;
if |top| − 1 > N − t + 1 and |top| > 2 and top[1] = f [top[2]] then return;
if t > N and (|top| = 0 or |top| + |bot| > 2) then return;

The first two lines are the optimization steps and can easily be implemented in
constant time, where top[i] represents the i-th element in the stack top. The third
line is the restriction that ensures that the final sequence is an open meander.

Table III shows the amount of computation required to generate meanders com-
paring the unoptimized algorithm with the optimized version just described. Notice
that for n = 20 the number of nodes in the optimized computation tree is about 18
times less than the un-optimized version. The ratios in the table represent the num-
ber of nodes in the computation tree divided by the number of meanders generated.
If the ratio is bounded by a constant, then the algorithm would achieve the optimal
time bound of running in constant amortized time. Even though it does not appear
that the optimized version of the algorithm attains this result, it is nonetheless the
fastest and simplest algorithm currently known to generate meanders.

4. SUMMARY

In this paper we have presented a CAT algorithm to generate (unidirectional) open
meandric systems. The algorithm can be easily modified to yield a fast and simple
algorithm to generate open and closed meanders. It can also be easily modified
to list those systems with exactly k curves, however the algorithm will not run in
constant amortized time. Thus, an interesting problem is to find a CAT algorithm
to generate open meandric systems with n crossings and k curves.

Another interesting open problem is whether or not there exists a Gray code for
(unidirectional) open meandric systems.

ACM Journal Name, Vol. V, No. N, December 2008.

12 · Bruce Bobier and Joe Sawada

REFERENCES

M.H. Albert, M.S. Paterson, Bounds for the growth rate of meander numbers, Journal of Com-
binatorial Theory, Series A 112 (2005), pp. 250-262.

V.I. Arnold, The branched covering of CP2→ S4, hyperbolicity and projective topology, Siberian

Math. J. 29, (1988), pp. 717-726 (translated from Sibirskii Matematicheskii Zhurnal 29:(36)

(1988)).

R. Bacher, Meander Algebras, prépublication de l’Institut Fourier 478, (1999).

P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, Nuc.

Phys. B 482, (1996), pp. 497-535.

P. Di Francesco, O. Golinelli and E. Guitter, Meander, Folding, and Arch Statistics, Mathl.

Comput. Modelling 26:(9), (1997), pp. 97-147.

F. Dorn, E. Penninkx, H. Bodlaender, and F.V. Fomin, Efficient exact algorithms on planar

graphs: Exploiting sphere cut branch decompositions, in Proceedings of the 13th Annual Euro-

pean Symposium on Algorithms (ESA 2005), vol. 3669 of LNCS, Springer, Berlin, (2005), pp.
95-106.

R. Franz and B. Earnshaw, A constructive enumeration of meanders, Annals of Combinatorics

6:(1) (2002), pp. 7-17.

I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33:(24)
(2000), pp. 5953-5963.

J. E. Koehler, Folding a strip of stamps, Journal of Combinatorial Theory, 5 (1968), pp. 135-152.

M.A. La Croix, Approaches to the Enumerative Theory of Meanders, Master’s Essay, University

of Waterloo, Canada, (2003).

S.K. Lando and A.K. Zvonkin, Meanders, Selecta Mathematica Sovietica, 11 no. 2 (1992), pp.
117-144.

S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science

11:(2) (1993), pp. 117-144.

W. Lunnon, A map folding problem, Math. of Computation 22 (1968), pp. 193-199.

A. Phillips, Simple alternating transit mazes, preprint. Abridged version appeared as “La
topologia dei labirinti”, in M. Emmer, editor, L’Occio di Horus: Itinerari nell’Imaginario Matem-

atico. Istituto della Enciclopeida Italia, Rome, 1989, pp. 57-67.

H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912).

J. Reeds and L. Shepp, An upper bound on the meander constant, preprint (1999).

N. Sloane, The on-line encyclopedia of integer sequences: ID A000108, A001011, A060089,
A060111, www.research.att.com/∼njas/sequences/index.html (2007).

J. Touchard, Contributions à l’étude du problème des timbres poste, Canad. J. Math., 2 (1950),

pp. 385-398.

ACM Journal Name, Vol. V, No. N, December 2008.

