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Abstract. A de Bruijn sequence is a circular binary string of length 2n

that contains each binary string of length n exactly once as a substring. A
maximum-density de Bruijn sequence is a circular binary string of length(
n
0

)
+
(
n
1

)
+
(
n
2

)
+· · ·+

(
n
m

)
that contains each binary string of length n with

density (number of 1s) between 0 and m, inclusively. In this paper we
efficiently generate maximum-density de Bruijn sequences for all values
of n and m. An interesting special case occurs when n = 2m+ 1. In this
case our result is a “complement-free de Bruijn sequence” since it is a
circular binary string of length 2n−1 that contains each binary string of
length n or its complement exactly once as a substring.
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codes, necklaces, Lyndon words, cool-lex order

1 Introduction

Let B(n) be the set of binary strings of length n. The density of a binary
string is its number of 1s. Let Bd(n) be the subset of B(n) whose strings
have density d. Let B(n,m) = B0(n) ∪B1(n) ∪ · · · ∪Bm(n) be subset of
B(n) whose strings have density at most m. A de Bruijn sequence (or de
Bruijn cycle) is a circular binary string of length 2n that contains each
string in B(n) exactly once as a substring [2]. De Bruijn sequences were
studied by de Bruijn [2] (see earlier [3]) and have many generalizations,
variations, and applications. For example, one can refer to the recently
published proceedings of the Generalizations on de Bruijn Sequences and
Gray Codes workshop [7].

In this paper we consider a new generalization that specifies the max-
imum density of the substrings. A maximum-density de Bruijn sequence
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is a binary string of length
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
m

)
that contains each

string in B(n,m) exactly once as a substring. For example,

0000011000101001

is a maximum-density de Bruijn sequence since its 16 substrings of length 5
(including the “wrap-arounds”) are precisely B(5, 2). Our main results are
1) an explicit construction of maximum-density de Bruijn sequences for
all n and m, and 2) an efficient algorithm that generates them.

We make four simple observations involving maximum-density de Bruijn
sequences for B(n,m):

1. A maximum-density de Bruijn sequence is simply a de Bruijn sequence
when n = m.

2. Complementing each bit in a maximum-density de Bruijn sequence
results in a minimum-density de Bruijn sequence for the binary strings
of length n whose density is at least n−m.

3. When n = 2m+1 a maximum-density de Bruijn sequence is a complement-
free de Bruijn sequence since each binary string of length n either has
density at most m or at least n−m.

4. Reversing the order of the bits in a maximum-density de Bruijn se-
quence simply gives another maximum-density de Bruijn sequence for
the same values of n and m. It is easier to describe our sequences in
one order, and then generate them in the reverse order.

Section 2 provides background results. Section 3 describes our con-
struction and proves its correctness. Section 4 provides an algorithm that
generates our construction and analyzes its efficiency.

2 Background

A necklace is a binary string in its lexicographically smallest rotation.
The necklaces over B(n) and Bd(n) are denoted N(n) and Nd(n), re-
spectively. The aperiodic prefix of a string α = a1a2 · · · an is its shortest
prefix ρ(α) = a1a2 · · · ak such that ρ(α)n/k = α. As is customary, the pre-
vious expression uses exponentiation to refer to repeated concatenation.
Observe that if |ρ(α)| = k, then α has k distinct rotations. For example,
ρ(0010100101) = 00101 and 0010100101 is a necklace since it is lexi-
cographically smaller than its other four distinct rotations 0101001010,
1010010100, 0100101001, and 1001010010. A necklace α is aperiodic if
ρ(α) = α.



One of the most important results in the study of de Bruijn sequences
is due to Fredricksen, Kessler and Maiorana [4, 5] (also see Knuth [8]).
These authors proved that a de Bruijn sequence for B(n) can be con-
structed by concatenating the aperiodic prefixes of the strings in N(n) in
lexicographic order. For example, the lexicographic order of N(6) is

000000, 000001, 000011, 000101, 000111, 001001, 001011,

001101, 001111, 010101, 010111, 011011, 011111, 111111

and so the following is a de Bruijn sequence for B(6) where · separates
the aperiodic prefixes

0 · 000001 · 000011 · 000101 · 000111 · 001 · 001011·
001101 · 001111 · 01 · 010111 · 011011 · 011111 · 1

Although this de Bruijn sequence is written linearly above, we treat it as
a circular string so that its substrings “wrap-around” from the end to the
beginning. Interestingly, the de Bruijn sequence is the lexicographically
smallest de Bruijn sequence for B(6) (when written linearly). Subsequent
analysis by Ruskey, Savage, and Wang [9] proved that these lexicograph-
ically smallest de Bruijn sequences can be generated efficiently for all
n.

Recently, this necklace-prefix algorithm was modified to create a re-
stricted type of de Bruijn sequence. To describe this modification, we first
consider two variations of lexicographic order. Co-lexicographic order is
the same as lexicographic order except that the strings are read from
right-to-left instead of left-to-right. For example, the co-lexicographic or-
der of N4(8) appears below

01010101, 00110101, 00101101, 00011101, 00110011,

00101011, 00011011, 00100111, 00010111, 00001111. (1)

Observe that the strings in (1) are ordered recursively by their suffix
of the form 01i for decreasing values of i. In particular, the string with
prefix 0∗1∗ appears last for each suffix fixed by recursion. Reverse cool-
lex order is the same as co-lexicographic order except that for each fixed
suffix the string with prefix 0∗1∗ appears first instead of last. This order
was initially defined for Bd(n) by Ruskey and Williams [12]4, and has

4 The order used in this paper is also bitwise complemented with respect to the circular
order presented in [12].



since been generalized to subsets of Bd(n) including Nd(n) by Ruskey,
Sawada, Williams [11]. In this paper coold(n) denotes the order of Nd(n).
For example,

cool4(8) = 00001111, 00011101, 00110101, 01010101, 00101101,

00011011, 00110011, 00101011, 00010111, 00100111. (2)

When comparing these orders, observe that 00001111 is last in (1) and
first in (2). Similarly, 00011101 is the last string with suffix 01 in (1) and
is the first string with suffix 01 in (2).

Let dBd(n) denote the concatenation of the aperiodic prefixes of coold(n+
1). For example, the concatenation of the aperiodic prefixes of (2) gives
the following

dB4(7) = 00001111 · 00011101 · 00110101 · 01 · 00101101·
00011011 · 0011 · 00101011 · 00010111 · 00100111. (3)

Observe that the circular string in (3) contains each string in B3(7)∪B4(7)
exactly once as a substring, and has no other substrings of length 7. For
this reason it is known as a dual-density de Bruijn sequence for B3(7) ∪
B4(7) in this paper5. More generally, Ruskey, Sawada, and Williams [10]
proved the following result.

Theorem 1. [10] The circular string dBd(n) is a dual-density de Bruijn
sequence for Bd−1(n) ∪Bd(n) when 1 < d < n.

Unfortunately, the dual-density de Bruijn sequences from Theorem 1
cannot simply be “glued together” to create maximum-density de Bruijn
sequences. However, we will show that the dual-density sequences can be
disassembled and then reassembled to achieve this goal. In order to do
this we do not need to completely understand the proof of Theorem 1, but
we do need a simple property for its dual-density de Bruijn sequences. In
other words, we need to treat each dBd(n) as a “gray box”. The specific
property we need is stated in the following simple lemma involving reverse
cool-lex order that follows immediately from equation (5.1) in [10].

Lemma 1. [10] If Nd(n) contains at least three necklaces, then

– the first necklace in coold(n+ 1) is 0n−d+11d, and

5 The string in (3) is described as a fixed-density de Bruijn sequence in [10] since
each substring in B3(7) ∪ B4(7) can be uniquely extended to a string in B4(8) by
appending its ‘missing’ bit.



– the second necklace in coold(n+ 1) is 0n−d1d−101, and

– the last necklace in coold(n+ 1) is 0x10y1d−1

where x = d(n+ 1−d)/2e and y = b(n+ 1−d)/2c. Moreover, each of the
necklaces given above are distinct from one another and are aperiodic.

In Section 3 we take apart the dual-density de Bruijn sequence dBd(n)
around the location of the necklace 0n−d+11d from coold(n+ 1). For this
reason we make two auxiliary definitions. Let cool′d(n+1) equal coold(n+
1) except that the first necklace 0n−d+11d omitted. Similarly, let dB′d(n)
be the concatenation of the aperiodic prefixes of cool′d(n+1). For example,
we will be splitting dB4(7) in (3) into 00001111 and

dB′4(7) = 00011101 · 00110101 · 01 · 00101101·
00011011 · 0011 · 00101011 · 00010111 · 00100111.

Unlike dBd(n), we treat dB′d(n) as a linear-string since we will use it as
a substring in the concatenation of other strings.

3 Construction

In this section we define a circular string dB(n,m) of length 1 +
(
n
1

)
+(

n
2

)
+ · · · +

(
n
m

)
. Then we prove that dB(n,m) is a maximum-density de

Bruijn sequence for B(n,m) in Theorem 2. The definition of dB(n,m)
appears below

=

{
0 0n−112 0n−314 · · · 0n−m+11m dB′m(n) · · · dB′4(n) dB′2(n) if m is even (4a)

0n1 0n−213 0n−415 · · · 0n−m+11m dB′m(n) · · · dB′5(n) dB′3(n) if m is odd. (4b)

Tables 1 and 2 provides examples of dB(n,m) when n = 7. To understand
(4), observe that dB(n,m) is obtained by “splicing” together the dual-
density de Bruijn sequences dBd(n + 1) = 0n−d+11d dB′d(n + 1) for d =
0, 2, 4, . . . ,m in (4a) or d = 1, 3, 5, . . . ,m in (4b). In particular, dB0(n +
1) = 0 is the aperiodic prefix of 0n+1 on the left side of (4a), and the
empty dB′0(n) and dB′1(n) are omitted from the right sides of (4a) and
(4b), respectively. For the order of the splicing, observe that dBm(n) =
0n−m+11m dB′m(n) appears consecutively in dB(n,m). That is,

dB(n,m) = · · · dBm(n) · · · .

More specifically, dB(n,m) is obtained by inserting dBm(n) into the por-
tion of dB(n,m − 2) that contains dBm−2(n). To be precise, dBm(n) is



inserted between the first and second necklaces of coolm−2(n + 1). That
is,

dB(n,m) = · · · 0n−m+31m−2︸ ︷︷ ︸
first in coolm−2(n+1)

dBm(n) 0n−m+21m−301︸ ︷︷ ︸
second in coolm−2(n+1)

· · · .

Theorem 2. The circular string dB(n,m) is a maximum-density de Bruijn
sequence for B(n,m).

Proof. The claim can be verified when n ≤ 4. The proof for n ≥ 5 is by
induction on m. The result is true when m ∈ {0, 1} since dB(n, 0) = 0 and
dB(n, 1) = 0n1 are maximum-density de Bruijn sequences for B(n, 0) and
B(n, 1), respectively. The remaining base case of m = 2 gives dB(n, 2) =
0 0n−111 dB′2(n) = 0 dB2(n), which is a maximum-density de Bruijn
sequence for B(n, 2) since dB2(n) is a dual-density de Bruijn sequence for
B1(n) ∪B2(n) by Theorem 1.

First we consider the special case where m = n. In this case, Nn−1(n+
1) contains at least three necklaces. Therefore, Lemma 1 implies that
dB(n, n− 2) and dB(n, n) can be expressed as follows

dB(n, n− 2) = · · · 0001n−2 001n−301 · · ·
dB(n, n) = · · · 0001n−2 01n︸︷︷︸

dBn(n+1)

001n−301 · · ·

Observe that every substring of length n that appears in dB(n, n−2) also
appears in dB(n, n). Furthermore, the substrings of length n that appear
in dB(n, n) and not dB(n, n − 2) are 1n−201, 1n−3011, . . . , 01n, 1n, 1n−10,
which are an ordering of Bn−1(n)∪Bn(n). Since dB(n, n−2) is a maximum-
density de Bruijn sequence for B(n, n− 2) by induction, we have proven
that dB(n, n) is a maximum-density de Bruijn sequence for B(n, n).

Otherwise m < n. In this case, Nm−2(n+1) and Nm(n+1) both con-
tain at least three necklaces. Therefore, Lemma 1 implies that dB(n,m−2)
and dB(n,m) can be expressed as follows

dB(n,m−2) = · · · 0n−m+31m−2 0n−m+21m−301 · · ·
dB(n,m) = · · · 0n−m+31m−2 0n−m+11m · · · 0x10y1m−1︸ ︷︷ ︸

dBm(n)

0n−m+21m−301 · · ·

where x = d(n + 1 − m)/2e, y = b(n + 1 − m)/2c, and the bounds m
and n imply that 0x10y1m−1 and 0n−m+21m−301 are aperiodic. The sub-
strings of length n in dB(n,m − 2) are B(n,m − 2) by induction, and



Cool-lex orders Maximum-density sequences
(even densities) dB(7, 0) dB(7, 2) dB(7, 4) dB(7, 6)

0∗1∗


00000000 0 0 0 0
00000011 00000011 00000011 00000011
00001111 00001111 00001111
00111111 00111111

cool0(8) cool′0(8)
00000000

cool2(8) cool′2(8)
00000011
00000101 00000101 00000101 00000101 00000101
00001001 00001001 00001001 00001001 00001001
00010001 00010001 0001 0001 0001

cool4(8) cool′4(8)
00001111
00011101 00011101 00011101 00011101
00110101 00110101 00110101 00110101
01010101 01010101 01 01
00101101 00101101 00101101 00101101
00011011 00011011 00011011 00011011
00110011 00110011 0011 0011
00101011 00101011 00101011 00101011
00010111 00010111 00010111 00010111
00100111 00100111 00100111 00100111

cool6(8) cool′6(8)
00111111
01110111 01110111 0111
01101111 01101111 01101111
01011111 01011111 01011111

Table 1. Maximum-density de Bruijn sequences constructed from cool-
lex order of necklaces when n = 7 and m is even. For example, dB(7, 2) =
0 00000011 00000101 00001001 0001.



Cool-lex orders Maximum-density sequences
(odd densities) dB(7, 1) dB(7, 3) dB(7, 5) dB(7, 7)

0∗1∗


00000001 00000001 00000001 00000001 00000001
00000111 00000111 00000111 00000111
00011111 00011111 00011111
01111111 01111111

cool3(8) cool′2(8)
00000111
00001101 00001101 00001101 00001101 00001101
00011001 00011001 00011001 00011001 00011001
00010101 00010101 00010101 00010101 00010101
00100101 00100101 00100101 00100101 00100101
00001011 00001011 00001011 00001011 00001011
00010011 00010011 00010011 00010011 00010011

cool5(8) cool′4(8)
00011111
00111101 00111101 00111101 00111101
00111011 00111011 00111011 00111011
01011011 01011011 01011011 01011011
00110111 00110111 00110111 00110111
01010111 01010111 01010111 01010111
00101111 00101111 00101111 00101111

cool7(8) cool′6(8)
01111111

Table 2. Maximum-density de Bruijn sequences constructed from cool-
lex order of necklaces when n = 7 and m is odd. For example, dB(7, 3) =
0000000100000111000011010001100100010101001001010000101100010011.



the substrings of length n in dBm(n) are Bm−1(n) ∪ Bm(n) by Theo-
rem 1. Therefore, we can complete the induction by proving that the
substrings of length n in dB(n,m) include those in (a) dB(n,m − 2),
and (b) dBm(n). To prove (a) we make two observations. First, the sub-
strings of length n in the 0n−m+31m−20n−m+2 portion of dB(n,m−2) are
in the 0n−m+31m−20n−m+1 portion of dB(n,m), except for 1m−20n−m+2.
Second, the substrings of length n in the 1m−20n−m+21m−3 portion of
dB(n,m−2) are in the 1m−10n−m+21m−3 portion of dB(n,m), and the
latter also includes the aforementioned 1m−20n−m+2. To prove (b), con-
sider how the insertion of dBm(n) into dB(n,m) alters its substrings that
can no longer “wrap-around” in dBm(n). The substrings of length n in
the wrap-around 1m−10n−m+1 in dBm(n) are all in the 1m−10n−m+2 por-
tion of dB(n,m). Therefore, dB(n,m) is a maximum-density de Bruijn
sequence for B(n,m). �

Corollary 1 follows from the first three simple observations made in
Section 1.

Corollary 1. The construction of the maximum-weight de Bruijn se-
quences dB(n,m) includes

1. dB(n, n) is a de Bruijn sequence for B(n),

2. dB(n,m) is a minimum-weight de Bruijn sequence for Bn−m(n) ∪
Bn−m+1(n) ∪ · · · ∪Bn(n),

3. dB(2m+1,m) is a complement-free de Bruijn sequences for B(2m+1).

4 Algorithm

As mentioned in Section 1, the reversal of dB(n,m), denoted dB(n,m)R

also yields a maximum-density de Bruijn sequence. To efficiently produce
dB(n,m)R we can use the recursive cool-lex algorithm described in [13]
to produce the reversal of dBd(n). In that paper, details are provided
to trim each necklace to its longest Lyndon prefix and to output the
strings in reverse order. An analysis shows that on average, each n bits
can be visited in constant time. There are two data structures used to
maintain the current necklace: a string representation a1a2 · · · an, and
a block representation BcBc−1 · · ·B1 where a block is defined to be a
maximal substring of the form 0∗1∗. A block of the form 0s1t is represented
by (s, t). Since the number of blocks c is maintained as a global parameter,
it is easy to test if the current necklace is of the form 0∗1∗: simply test
if c = 1. By adding this test, it is a straightforward matter to produce



the reversal of dB′d(n). To be consistent with the description in [13], the
function Gen(n−d, d) can be used to produce dB′d(n). Using this function,
the following pseudocode can be used to produce dB(n,m)R:

if m is even then start := 2
else start := 3
for i from start by 2 to m do

Initialize(n+ 1, i)
Gen(n+ 1− i, i)

for i from m by 2 downto 0 do Print( 1i0n+i−1 )
if m is even then Print( 0 )

The Initialize(n+1, i) function sets a1a2 · · · an+1 to 0n+1−i1i, sets c = 1
and sets B1 = (n + 1 − i, i). The first time it is called it requires O(n)
time, and for each subsequent call, the updates can be performed in O(1)
time. Also note that the string visited by the Print() function can also be
updated in constant time after the first string is visited. Since the extra
work outside the calls to Gen requires O(n) time, and because the number
of bits in dB(n,m) is Ω(n2) where 1 < m < n, we obtain the following
theorem.

Theorem 3. The maximum-density de Bruijn sequence dB(n,m)R can
be generated in constant amortized time for each n bits visited, where
1 < m < n.

5 Open Problems

A natural open problem is to efficiently construct density-range de Bruijn
sequences for the binary strings of length n whose density is between i
and j (inclusively) for any 0 ≤ i < j ≤ n. Another open problem is to
efficiently construct complement-free de Bruijn cycles for even values of
n (see [6] for the existence of de Bruijn cycles under various equivalence
classes).
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