
1

A successor rule framework for constructing
k-ary de Bruijn sequences and universal cycles

D. Gabric J. Sawada A. Williams D. Wong

Abstract—We present a simple framework for construct-
ing k-ary de Bruijn sequences, and more generally, universal
cycles, via successor rules. The framework is based on the
often used method of joining disjoint cycles. It generalizes
several previously known de Bruijn sequence constructions
based on the pure cycling register and is applied to derive
a new construction that is perhaps the simplest of all
successors. Furthermore, it generalizes an algorithm to
construct binary de Bruijn sequences based on any arbitrary
nonsingular feedback function. The framework is applied to
derive and prove the correctness of successors to efficiently
construct (i) universal cycles for k-ary strings of length
n whose weight is bounded by some w and (ii) universal
cycles for permutations. It has also been subsequently been
applied to find the first universal cycle constructions for
weak orders.

I. INTRODUCTION

Let Σk denote the alphabet {1, 2, . . . , k} and let Σnk
denote the set of all k-ary strings of length n. A de
Bruijn sequence is a k-ary string of length kn that when
considered cyclicly, contains every string in Σnk as a
substring. More generally, given a subset S of Σnk , a
universal cycle for S is a k-ary string of length |S|
that when considered cyclicly contains every string in S
as a substring. In this paper, we present a framework
for deriving and proving the correctness of de Bruijn
sequence constructions, and more generally, universal
cycle constructions, by applying the standard approach of
joining disjoint cycles. Each application of the framework
yields a successor rule which is a function that determines
the next symbol in a universal cycle using the previous
n symbols.

De Bruijn sequences are well known to be in one-to-
one correspondence with Euler cycles in the de Bruijn
graph. A downside to applying standard Euler cycle
algorithms to construct de Bruijn sequences, such as the
ones by Hierholzer [11] and Fleury [7], is that they
require O(kn) memory to store the graph. This has led to
a significant amount of disjoint literature for producing
a wide variety of space-efficient algorithms to construct
de Bruijn sequences. Due to the correspondence with the
aforementioned Euler cycles, every construction method
will have a corresponding cycle-joining interpretation in
the de Bruijn graph (following Hierholzer’s approach),
even if its correspondence is unknown or hard to deter-
mine. The framework presented in this paper generalizes

several previously known k-ary de Bruijn sequence con-
structions including:

1) A concatenation scheme with an implicitly de-
scribed successor rule by Fredricksen and Maio-
rana [8],

2) A successor rule based approach by Etzion [5] that
can be used to construct an exponential number of
de Bruijn sequences.

3) A cycle-joining approach by Yang and Dai [25] that
can be applied to any nonsingular feedback function
to construct de Bruijn sequences.

4) A very simple successor rule by Wong et al. [21],
[22].

5) A concatenation scheme with an explicitly de-
scribed successor rule by Dragon et al. [4],

Compared to the binary case [6], [16], [17], there are
relatively few efficient constructions for an alphabet of
arbitrary size. Ralston [18] describes a recursive ap-
proach that is based on the aforementioned algorithm by
Fredricksen and Maiorana [8]. There are preference based
greedy constructions as detailed by Alhakim [1] and a
look-up table approach by Xie [24]; however, like the
Euler cycle approaches, they require exponential space.

In Section II we present our generic successor rule
framework for universal cycles and de Bruijn sequences
that is very similar in spirit to the approach by Yang and
Dai [25]. Then in Section III we apply the framework to
obtain eight universal cycle successors for sets of strings
with a weight constraint. When the weight constraints are
removed, the successors construct de Bruijn sequences.
In Section IV we apply the framework to derive four
de Bruijn sequence constructions based on any arbitrary
nonsingular feedback function. In Section V we outline
how the framework can be applied to easily produce a
shorthand universal cycle for permutations. The frame-
work has also been applied to find the first universal
cycle constructions for weak orders [23]. We conclude in
Section VI with some implementation considerations. Our
k-ary framework generalizes a simpler spanning-tree-like
framework for the binary case [9].

II. A SUCCESSOR RULE FRAMEWORK

For the remainder of this paper assume n, k ≥ 2 and
that S is a non-empty subset of Σnk . All arithmetic is
considered to be modulo k, where 0 ≡ k.

2

Definition 2.1: A function f : Σnk → Σk is said to be
a feedback function.

Definition 2.2: A feedback function f is a UC-
successor of S if there exists a universal cycle U for
S such that each string α ∈ S is followed by f(α) in U .
In this definition the domain of f is defined to be Σnk ,
not S, to simplify some of our upcoming proofs. In the
special case where S = Σnk we say a UC-successor is a
de Bruijn-successor.

Definition 2.3: A partition of S into subsets
S1,S2, . . . ,Sm is a UC-partition with respect to f if f
is a UC-successor for each Si where i ∈ {1, 2, . . . ,m}.

Definition 2.4: Let S1,S2, . . . ,Sm be an ordered
partition of S. For 2 ≤ i ≤ m, let xi, yi, zi ∈
Σk and let βi ∈ Σn−1k . A sequence of tuples
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) is
a spanning sequence of the partition if for each
(βi, xi, yi, zi):

(i) yiβi ∈ Si,
(ii) if i = first(βi) then xiβi ∈ Sj for some j < i,

(iii) xiyizi is a substring of the cyclic string created by
starting with xfirst(βi) then appending each yj from tuples
(βj , xj , yj , zj) where βj = βi in increasing order of index
j,

where first(βi) is the smallest index of a tuple contain-
ing βi.

We note the following two remarks with respect to the
above definition.

Remark 2.5: If βi is distinct amongst all tuples then
xi = zi.

Remark 2.6: If βi = βj such that i < j and there is no
i < t < j such that βt = βj then yi = xj and zi = yj .

Example 1 Consider S = Σ4
3 and the feedback

function f(a1a2a3a4) = a1+1. The following partition
of S into sets S1,S2, . . . ,S8 is a UC-partition with
respect to f .

S1 S2 S3 S4 S5 S6 S7 S8

1111 1113 1121 1123 1131 1133 1213 1231
1112 1132 1212 1232 1312 1332 2132 2312
1122 1322 2122 2322 3122 3322 1323 3123
1222 3222 1223 3223 1221 3221 3232
2222 2221 2232 2231 2212 2211 2321
2223 2213 2323 2313 2123 2113 3213
2233 2133 3233 3133 1233 2131
2333 1333 2331 1331 2332 1313
3333 3332 3313 3312 3323 3132
3331 3321 3131 3121 3231 1321
3311 3211 1311 1211 2311 3212
3111 2111 3112 2112 3113 2121

The corresponding universal cycles for each part can be
obtained by concatenating together the first symbol from
each string (top to bottom). Specifically the 8 universal
cycle are:

α1 = 111122223333 α5 = 113122123323
α2 = 111322213332 α6 = 113322
α3 = 112122323313 α7 = 121323213132
α4 = 112322313312 α8 = 123

The following is a spanning sequence for this partition:

(β5=113, 1, 3, 2)
(β2=111, 3, 2, 3) (β6=113, 3, 2, 1)
(β3=112, 1, 3, 2) (β7=121, 3, 2, 3)
(β4=112, 3, 2, 1) (β8=123, 1, 3, 1)

In this case, observe that each yiβi is last string in Si.

The following lemma describes when two universal
cycles can be joined together to create a universal cycle
for a larger set. The result follows from [5, Theorem 1]
and more directly from [20, Lemma 3].

Lemma 2.7 (Cycle Joining Lemma): Let S1,S2 be a
UC-partition of S with respect to a feedback function
f where xβ ∈ S1 and yβ ∈ S2. Then the following
feedback function f ′ is a UC-successor for S:

f ′(α) =

 f(xβ) if α = yβ;
f(yβ) if α = xβ;
f(α) otherwise.

Theorem 2.8: Let S1,S2, . . . ,Sm be a UC-partition
of S with respect to f with spanning sequence

(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)

for some m ≥ 2. Then the following feedback function g
is a UC-successor for S:

g(α) =

f(yiβi) if α = xiβi for some i ∈ {2, 3, . . . ,m}

and i = first(βi);
f(ziβi) if α = yiβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

Proof. The proof is by induction on m. In the base case
when m = 2, the spanning sequence is (β2, x2, y2, z2).
By definition, we have x2β2 ∈ S1 and y2β2 ∈ S2, and
by Remark 2.5 x2 = z2. The function g(α) is obtained
by applying the Cycle Joining Lemma where β = β2,
x = x2 and y = y2. If m > 2, there are two cases
depending on whether or not βm is distinct amongst all
tuples in the spanning sequence.

• (βm is distinct) Since βm is distinct,
(β2, x2, y2, z2), . . . , (βm−1, xm−1, ym−1, zm−1)
is a spanning sequence for the UC-partition
S1,S2, . . . ,Sm−1 of S \ Sm with respect to f .
Let g′ be the UC-successor for S \ Sm obtained
by applying induction. By its definition, g′ is
equivalent to f for strings in Sm and thus g′ is
also a UC-successor for Sm. Since βm is distinct,
by Remark 2.5 xm = zm. By applying the Cycle
Joining Lemma on S \ Sm and Sm where β = βm,
x = xm and y = ym, the resulting UC-successor
for S is equivalent to g.

• (βm is not distinct) Let j be the largest index less
than m such that βj = βm. From Remark 2.6 yj =
xm and zj = ym. Also if i is the smallest index such

3

that βi = βj = βm, then xi = zm by point (iii) in
the definition of a spanning sequence. Thus

(β2, x2, y2, z2), (β3, x3, y3, z3), . . . ,
(βj , xj , yj , zm), . . . , (βm−1, xm−1, ym−1, zm−1)

is a spanning sequence of the UC-partition
S1,S2, . . . ,Sm−1 of S\Sm with respect to f . Let g′

be the UC-successor for S\Sm obtained by applying
induction. By its definition, g′ is equivalent to f for
strings in Sm and thus g′ is also a UC-successor for
Sm. By applying the Cycle Joining Lemma on S1

and S2 where β = βm, and x = xm and y = ym,
the resulting UC-successor for S is equivalent to
g. Note in particular that g′(yjβj) = f(zmβm)
and that g(yjβj) = f(ymβm) = f(zjβj) and
g(ymβm) = g′(yjβj) = f(zmβm).

2

Example 2 Recall the UC-partition of S = Σ4
3 with

respect to f(a1a2a3a4) = a1+1 and its corresponding
spanning sequence (from Example 1). The following illus-
trates the universal cycle construction for S by applying
Theorem 2.8 (or more specifically, the upcoming The-
orem 4.3). Erratum: α8 is joined in the wrong place based on the

Theorem; it should be attached to α4

The corresponding universal cycle for S is:
11112122323313112322313312132321313212112
2223333111312212312332311332211322213332.

A similar UC-successor can be derived by essentially
reversing the direction of each β-cycle (see the figure
in Example 1). A proof of the following theorem will be
identical to the previous proof, except for updating the
observations in the final sentence.

Theorem 2.9: Let S1,S2, . . . ,Sm be a UC-partition
of S with respect to f with spanning sequence

(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)

for some m ≥ 2. Then the following feedback function
g′ is a UC-successor for S:

g′(α) =

f(xiβi) if α=yiβi for some i ∈ {2, 3, . . . ,m}

and i = first(βi);
f(yiβi) if α=ziβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

A. Simplification for special cases
In this section we provide a simplified definition of a

spanning sequence for the special case when each βi is
distinct. This leads to a more restricted, but simplified
successor rule result. This result can be further simplified
for the binary case when k = 2, as described in [9].

Definition 2.10: Let S1,S2, . . . ,Sm be an ordered
partition of S. For 2 ≤ i ≤ m, let xi, yi ∈
Σk and let βi ∈ Σn−1k . A sequence of tuples
(β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) is a simplified
spanning sequence of the partition if each βi is unique
and for each i the string yiβi ∈ Si and the string
xiβi ∈ Sj for some j < i.
The following corollary is a direct consequence of The-
orem 2.8 and Remark 2.5.

Corollary 2.11: Let S1,S2, . . . ,Sm be a UC-partition
of S with respect to f with simplified spanning sequence

(β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym)

for some m ≥ 2. Then the following feedback function h
is a UC-successor for S:

h(α)=

 f(xiβi) if α=yiβi for some i ∈ {2, 3, . . . ,m};
f(yiβi) if α=xiβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

III. UC-SUCCESSORS BASED ON THE PCR
Each of the eight successors presented in this section

are based on the Pure Cycling Register (PCR) which is
defined by the feedback function f(a1a2 · · · an) = a1.
It is well known that the UC-partition of Σnk with
respect to the PCR corresponds to equivalence classes
of strings under rotation. We call the lexicographically
smallest string in each such class a necklace. Let Nk(n)
denote the set of all necklaces in Σnk . Let Neck(α)
be the set of strings rotationally equivalent to α. Then
{Neck(α) | α ∈ Nk(n)} is a UC-partition of Σnk with
respect to the PCR.

The weight of a string α, denoted by ω(α), is the sum
of its symbols. In this section we apply the framework
from the previous section to develop four UC-successors
for subsets of Σnk whose strings have weight at most w.
Then we present four UC-successors for subsets of Σnk
whose strings have weight at least w. When the weight
constraints are removed, the UC-successors correspond to
de Bruijn-successors which are discussed in more detail
at the end of this section.

4

A. Lower bound on weight

First symbol
Let α = a1a2 · · · an and let n ≤ w ≤ kn.
Assume ω(α) ≥ w. Let x be the largest symbol
in Σk \ {k} such that xa2a3 · · · an is in Nk(n) and
ω(xa2a3 · · · an) ≥ w, or let x = 0 if no such symbol
exists. Let v be the smallest value in Σk such that
ω(va2a3 · · · an) ≥ w. Define two functions from Σnk
to Σk as follows:

g1(α) =

 v if x > 0 and a1 = x+1;
a1+1 if x > 0 and a1 < x+1;
a1 otherwise,

and

g′1(α) =

 x+1 if x > 0 and a1 = v;
a1−1 if x > 0 and v < a1 ≤ x+1;
a1 otherwise.

Theorem 3.1: The functions g1 and g′1 are UC-
successors for the subset S of Σnk consisting of strings
whose weight is greater than or equal to some fixed w
where n ≤ w ≤ kn.
Proof. If w = kn then S = {kn} and
g1(α) = g′1(α) = a1 which are UC-successors for
S. Thus, assume w < kn. Consider the UC-partition
S1,S2, . . . ,Sm of S with respect to the PCR. This is
well-defined since each subset contains strings with
equal weight. Let the subsets be ordered in reverse
lexicographic order with respect to their necklace
representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since the largest necklace representative
is kn and w < kn, we have S1 = {kn}, m ≥ 2, and
for i ∈ {2, 3, . . . ,m} the necklace representative γi for
Si must start with a symbol yi that is less than k. Let
βi = b1b2 · · · bn−1 and let γi = yiβi. Since yiβi is in Si,
condition (i) is satisfied in the definition of a spanning
sequence. Let xi = yi + 1. Observe that the necklace
representative of Neck(xiβi) is clearly larger than γi
and has more weight than γi. This implies that xiβi is
in some Sj where j < i. Thus (ii) is satisfied in the
definition of a spanning sequence. Let x be the largest
symbol of Σk \ {k} such that xβi is a necklace and
ω(xβi) ≥ w. Let v be smallest value in Σk such that
ω(vβi) ≥ w. If yi > v, then let zi = yi − 1; otherwise
yi = v and let zi = x+1. Because of the ordering
imposed on the UC-partition, condition (iii) is satisfied
and we have just constructed a valid spanning sequence
for the partition. The UC-successor for S obtained by
applying Theorem 2.8 (respectively, Theorem 2.9) to this
UC-partition and spanning sequence is equivalent to g1
(respectively, g′1). 2

Last non-k (lex least)
Let α = a1a2 · · · an and let n ≤ w ≤ kn. Assume
ω(α) ≥ w. If α = kn, let j = n; otherwise
let j be the smallest index of a2a3 · · · an such
that aj 6= k. Let x be the smallest symbol in
Σk such that ajaj+1 · · · anxkj−2 is in Nk(n) and
ω(xa2a3 · · · an) ≥ w, or let x = 0 if no such
symbol exists. Define two functions from Σnk to Σk
as follows:

g2(α) =

 x if x 6= 0 and a1 = k;
a1+1 if x 6= 0 and a1 < k;
a1 otherwise,

and

g′2(α) =

 k if x 6= 0 and a1 = x;
a1−1 if x 6= 0 and a1 > x;
a1 otherwise.

Theorem 3.2: The functions g2 and g′2 are UC-
successors for the subset S of Σnk consisting of strings
whose weight is greater than or equal to some fixed w
where n ≤ w ≤ kn.
Proof. If w = kn then S = {kn} and
g2(α) = g′2(α) = a1 which are UC-successors for
S. Thus, assume w < kn. Consider the UC-partition
S1,S2, . . . ,Sm of S with respect to the PCR. This is
well-defined since each subset contains strings with
equal weight. Let the subsets be ordered in reverse
lexicographic order with respect to their necklace
representatives. We now construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since the largest necklace representative
is kn and w < kn, we have S1 = {kn}, m ≥ 2,
and for i ∈ {2, 3, . . . ,m} the necklace representative
γi = c1c2 · · · cn for Si must contain a symbol less than
k. Let j be the largest index such that cj 6= k and let
yi = cj . Let βi = cj+1 · · · cnc1 · · · cj−1. Since yiβi
is a rotation of γi, it is in Si. Thus condition (i) is
satisfied in the definition of a spanning sequence. Let
xi = yi + 1. Observe that the necklace representative
of Neck(xiβi) is clearly greater than γi and has more
weight than γi. This implies that xiβi is in some Sj
where j < i. Thus (ii) is satisfied in the definition of a
spanning sequence. Let x be the smallest symbol of Σk
such that c1 · · · cj−1xcj+1 · · · cn is a necklace. If yi = x
then let zi = k; otherwise, let zi = yi − 1. Because
of the ordering imposed on the UC-partition, condition
(iii) is satisfied and we have just constructed a valid
spanning sequence for the partition. The UC-successor
for S obtained by applying Theorem 2.8 (respectively,
Theorem 2.9) to this UC-partition and spanning sequence
is equivalent to g2 (respectively, g′2). 2

5

B. Upper bound on weight

Last symbol
Let α = a1a2 · · · an and let n ≤ w ≤ kn.
Assume ω(α) ≤ w. Let x be the smallest symbol
in Σk \ {1} such that a2a3 · · · anx is in Nk(n) and
ω(xa2a3 · · · an) ≤ w, or let x = 0 if no such symbol
exists. Let v be the largest value in Σk such that
ω(va2a3 · · · an) ≤ w. Define two functions from
Σnk to Σk as follows:

g3(α) =

 x−1 if x > 0 and a1 = v;
a1+1 if x > 0 and x−1 ≤ a1 < v;
a1 otherwise,

and

g′3(α) =

 v if x > 0 and a1 = x−1;
a1−1 if x > 0 and a1 > x−1;
a1 otherwise.

Theorem 3.3: The functions g3 and g′3 are UC-
successors for the subset S of Σnk consisting of strings
whose weight is less than or equal to some fixed w where
n ≤ w ≤ kn.
Proof. If w = n then S = {1n} and g3(α) = g′3(α) = a1
which are UC-successors for S. Thus, assume
w > n. Consider the UC-partition S1,S2, . . . ,Sm
of S with respect to the PCR. This is well-
defined since each subset contains strings with
equal weight. Let the subsets be ordered in
lexicographic order with respect to their necklace
representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since the smallest necklace
representative is 1n and w > n, we have S1 = {1n},
m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace
representative γi for Si must end with a symbol yi
that is greater than 1. Let βi = b1b2 · · · bn−1 and let
γi = βiyi. Since yiβi is a rotation of γi, it is in Si. Thus
condition (i) is satisfied in the definition of a spanning
sequence. Let xi = yi − 1. Observe that the necklace
representative of Neck(xiβi) is clearly less than γi and
has less weight than γi. This implies that xiβi is in some
Sj where j < i. Thus (ii) is satisfied in the definition
of a spanning sequence. Let x be the smallest symbol
of Σk such that βix is a necklace and ω(xβi) ≤ w.
Note x > 1. Let v be largest value in Σk such that
ω(vβi) ≤ w. If yi < v, then let zi = yi + 1; otherwise
yi = v and let zi = x−1. Because of the ordering
imposed on the UC-partition, condition (iii) is satisfied
and we have just constructed a valid spanning sequence
for the partition. The UC-successor for S obtained by
applying Theorem 2.8 (respectively, Theorem 2.9) to this
UC-partition and spanning sequence is equivalent to g3
(respectively, g′3). 2

First non-1 (Grandmama)
Let α = a1a2 · · · an and let n ≤ w ≤ kn.
Assume ω(α) ≤ w. Let j be the largest index
of a2a3 · · · an such that aj 6= 1 or j = 1 if
no such index exists. Let x be the largest symbol
in Σk such that 1n−jxa2 · · · aj is in Nk(n) and
ω(xa2a3 · · · an) ≤ w, or let x = 0 if no such
symbol exists. Define two functions from Σnk to Σk
as follows:

g4(α) =

 1 if x 6= 0 and a1 = x;
a1+1 if x 6= 0 and a1 < x;
a1 otherwise,

and

g′4(α) =

 x if x 6= 0 and a1 = 1;
a1−1 if x 6= 0 and 1 < a1 ≤ x;
a1 otherwise.

Theorem 3.4: The functions g4 and g′4 are UC-
successors for the subset S of Σnk consisting of strings
whose weight is less than or equal to some fixed w where
n ≤ w ≤ kn.
Proof. If w = n then S = {1n} and g4(α) = g′4(α) = a1
which are UC-successors for S. Thus, assume
w > n. Consider the UC-partition S1,S2, . . . ,Sm
of S with respect to the PCR. This is well-
defined since each subset contains strings with
equal weight. Let the subsets be ordered in
lexicographic order with respect to their necklace
representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since the smallest necklace
representative is 1n and w > n, we have S1 = {1n},
m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace
representative γi = c1c2 · · · cn for Si must contain
a symbol greater than 1. Let j be the smallest
index such that cj 6= 1 and let yi = cj . Let
βi = cj+1 · · · cnc1 · · · cj−1. Since yiβi is a rotation
of γi, it is in Si. Thus condition (i) is satisfied in the
definition of a spanning sequence. Let xi = yi − 1. Note
that the necklace representative of Neck(xiβi) is less
than γi and has less weight than γi. This implies that
xiβi is in some Sj where j < i. Thus (ii) is satisfied
in the definition of a spanning sequence. Let x be the
largest symbol of Σk such that c1 · · · cj−1xcj+1 · · · cn
is a necklace. If yi = x then let zi = 1; otherwise,
let zi = yi + 1. Because of the ordering imposed on
the UC-partition, condition (iii) is satisfied and we
have just constructed a valid spanning sequence for
the partition. The UC-successor for S obtained by
applying Theorem 2.8 (respectively, Theorem 2.9) to this
UC-partition and spanning sequence is equivalent to g4
(respectively, g′4). 2

6

TABLE I: De Bruijn sequences for n = 4 and k = 3

successor de Bruijn sequence generated by the given successor for n = 4 and k = 3
g1 111122223333133323131323233123321331133223122321231123221312132113111322212122112
g′1 111122231223312333133332323131323321331133223212311232213121321131113222212122112
g2 111121113112211231132113312121312221223123212331313221323133213332222322332323333
g′2 111131132113313221323131332133332222322332323331222122312121312321233112211231112
g3 111122223333233223232221223122112321233123112121313121113221323132113321333133113
g′3 111133313321331132313221321131112331232123112231222333323322323222212211213131212
g4 111121211221222213221132123213321113121313112312232223132323113312332233133323333
g′4 111131312131133133332333123322331123132323122322231112121132133212321122132212222

C. De Bruijn-successors

When removing the weight constraint from the previ-
ous eight successor rules, we obtain de Bruijn-successors
based on the PCR.

Corollary 3.5: The functions g1, g′1, g2, g
′
2, g3, g

′
3, g4, g

′
4

are de Bruijn-successors for Σnk .

Table I illustrates the de Bruijn sequences for n = 4 and
k = 3 constructed from these eight de Bruijn-successors
by starting with 1111.

Three of the successor rules correspond to previously
known de Bruijn-successors. In particular:

• The de Bruijn-successor g2 constructs the lexico-
graphically smallest k-ary de Bruijn sequence. A
concatenation scheme for this sequence is given
in [8]. The proof of their construction implicitly
describes g2, although it is not explicitly stated. The
sequence can also be constructed using a prefer-
smallest greedy approach.

• The de Bruijn-successor g3 corresponds to the suc-
cessor presented in [22].

• The de Bruijn-successor g4 constructs the grand-
mama k-ary de Bruijn sequence. A concatenation
scheme for this sequence is given in [3] which also
includes a successor rule that is equivalent to g4.

By removing the weight constraints, the statements of the
de Bruijn-successors can be simplified. In particular, we
re-state the new de Bruijn-successor g1, which is also the
simplest of all the successors.

First symbol (no weight constraint)
Let α = a1a2 · · · an. Let x be the largest symbol
in Σk \ {k} such that xa2a3 · · · an is in Nk(n), or
let x = 0 if no such symbol exists. Then g1 can be
restated as:

g1(α) =

 1 if x > 0 and a1 = x+ 1;
a1+1 if x > 0 and a1 < x+ 1;
a1 otherwise.

IV. DE BRUIJN-SUCCESSORS FOR AN ARBITRARY
FEEDBACK FUNCTION

In this section we generalize two results from the
previous section based on the PCR to an entire class of
feedback functions.

Definition 4.1: A feedback function f is said to be
nonsingular if the function F : Σnk → Σnk defined as
F (a1a2 · · · an) = a2a3 · · · anf(a1a2 · · · an) is one-to-
one.
Necessary and sufficient conditions for when k-ary feed-
back functions are nonsingular are given by Lai [15].
In the binary case, a feedback function is nonsingular
if and only if it is of the form f(a1a2 · · · an) = a1 +
f0(a2a3 · · · an) where f0 is any function that maps length
n−1 binary strings to {0, 1} [10].

First, we generalize the Last symbol approach which
in turn generalizes the binary de Bruijn sequence con-
structions give by Jansen, Franx, and Boekee [13]. Then
we generalize the First non-1 approach. In each case let
the representative of each part (cycle) induced by the
nonsingular feedback function f be its lexicographically
smallest string and let Reps(f) denote the set containing
each of these representatives.

A. Last symbol

In this section we apply our successor rule frame-
work by focussing on the last symbol of each string in
Reps(f).

Definition 4.2: Let β ∈ Σn−1k . Define τ(β) to be the
increasing sequence of symbols x ∈ Σk such that βx ∈
Reps(f) with one possible addition: (a) if 1 is already
in the sequence and β1 6= 1n, then prepend f(1β) to the
front or (b) if 1 is not in this sequence and the sequence
is non-empty, then prepend 1 to the front. In the special
case when β = 1n−1 and x = 1 is the only symbol in
Σk such that βx ∈ Reps(f), define τ(β) to be empty.
Note that if β1 6= 1n and v = f(1β) then 1β < βv,
and hence βv /∈ Reps(f). Thus, each symbol in τ(β) is
unique. Also note that by this definition τ(β) will never
have only one symbol.

7

Example 3 Consider the UC-partition S1,S2, . . . ,S8

of Σ4
3 with respect to f(a1a2a3a4) = a1+1 ordered

lexicographically based on the lexicographically smallest
string as representative:

S1 S2 S3 S4 S5 S6 S7 S8

1111 1113 1121 1123 1131 1133 1213 1231
1112 1132 1212 1232 1312 1332 2132 2312
1122 1322 2122 2322 3122 3322 1323 3123
1222 3222 1223 3223 1221 3221 3232
2222 2221 2232 2231 2212 2211 2321
2223 2213 2323 2313 2123 2113 3213
2233 2133 3233 3133 1233 2131
2333 1333 2331 1331 2332 1313
3333 3332 3313 3312 3323 3132
3331 3321 3131 3121 3231 1321
3311 3211 1311 1211 2311 3212
3111 2111 3112 2112 3113 2121

Since

Reps(f) = {1111, 1113, 1121, 1123, 1131, 1133, 1213, 1231},

based on the definition of τ(β) we have

τ(111) = 〈1, 3〉, τ(112) = 〈2, 1, 3〉, τ(113) = 〈2, 1, 3〉,
τ(121) = 〈1, 3〉, τ(123) = 〈2, 1〉,

and for all other β, τ(β) is empty.

The set of sequences τ effectively describe how univer-
sal cycles for the UC-partition of Σnk with respect to f can
be joined together using our successor rule framework.

Generalized last symbol
Let α = a1a2 · · · an. Let τ(a2a3 · · · an) =
t1, t2, . . . , tp be considered cyclicly. Define g5 :
Σnk → Σk as follows:

g5(α)=

{
tj+1 if f(α)=tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Define g′5 : Σnk → Σk as follows:

g′5(α)=

{
tj−1 if f(α)=tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Theorem 4.3: The functions g5(α) and g′5(α) are de
Bruijn-successors for Σnk .
Proof. Consider the UC-partition S1,S2, . . . ,Sm
of Σnk with respect to a nonsingular feedback
function f . Let the subsets be ordered in
lexicographic order with respect to their cycle
representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since 1n is the smallest string
in Σnk , it must be the cycle representative of S1,
and for i ∈ {2, 3, . . . ,m} the cycle representative
γi = c1c2 · · · cn for Si must contain an symbol greater
than 1. Let βi = c1c2 · · · cn−1. Let τ(βi) = t1, t2, . . . , tp

and let tj = cn. As noted earlier, p 6= 1. Define the cyclic
string σ = s1s2 · · · sp where sj is the symbol of Σk
such that f(sjβ) = tj . This symbol is well-defined since
f is nonsingular. Then let (xi, yi, zi) = (sj−1, sj , sj+1).
Since f(yiβi) = cn, yiβi ∈ Si and thus condition (i) is
satisfied in the definition of a spanning sequence. Since
γi 6= 1n, by the definition for each of the three cases for
τ ′(βi), the representative of the subset containing xiβi
will be less than γi. Thus (ii) is satisfied in the definition
of a spanning sequence. Finally, because of the ordering
imposed on the UC-partition and the definition of σ(βi),
condition (iii) is satisfied. By applying Theorem 2.8 and
Theorem 2.9 to this UC-partition and spanning sequence
and simplifying the resulting functions we obtain the de
Bruijn-successors g5 and g′5. 2

When this theorem is applied to Σ4
3 with feedback func-

tion f(a1a2a3a4) = a1+1, the resulting function g5(α)
produces the de Bruijn sequence outlined in Example 2.

B. First non-1

In this section we apply our successor rule framework
to generalize the binary de Bruijn-successors given in
Section III based on focussing on the first non-1 of
each string in Reps(f). Let α = a1a2 · · · an. Let
F (α) = a2 · · · anf(α) and define F j(α) recursively to
be F j−1(F (α)) where F 1(α) = F (α) and F 0(α) = α.

Definition 4.4: Let β = b1b2 · · · bn−1 and let j be the
largest integer such that 1j is a suffix of β. Define τ ′(β)
to be the increasing sequence of symbols x ∈ Σk \ {1}
such that Fn−j−1(βx) ∈ Reps(f) with 1 prepended to
the front if the sequence is non-empty.
Based on this definition observe that τ ′(β) will never have
only one symbol.

Example 4 Recall the cycle representatives

Reps(f) = {1111, 1113, 1121, 1123, 1131, 1133, 1213, 1231}

for the UC-partition of Σ4
3 with respect to the nonsingular

feedback function f(a1a2a3a4) = a1+1 presented in
Example 3. Based on the definition of τ(β) we have

τ ′(111) = 〈1, 3〉, τ ′(211) = 〈1, 2, 3〉, τ ′(231) = 〈1, 2〉,
τ ′(311) = 〈1, 2, 3〉, τ ′(321) = 〈1, 2〉,

and for all other β, τ ′(β) is empty. As further example,
for β = 231 note that j = 1 is the largest integer such
that 1j is a suffix of β and F 2(β2) = 1231 which is in
Reps(f).

The set of sequences τ ′ effectively describe how uni-
versal cycles for the UC-partition of Σnk with respect
to f can be joined together using our successor rule
framework.

8

Generalized first non-1
Let α = a1a2 · · · an. Let τ ′(a2a3 · · · an) =
t1, t2, . . . , tp be considered cyclicly. Define g6 :
Σnk → Σk as follows:

g6(α)=

{
tj+1 if f(α)=tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Define g′6 : Σnk → Σk as follows:

g′6(α)=

{
tj−1 if f(α)=tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Theorem 4.5: The functions g6(α) and g′6(α) are de
Bruijn-successors for Σnk .
Proof. Consider the UC-partition S1,S2, . . . ,Sm
of Σnk with respect to a nonsingular feedback
function f . Let the subsets be ordered in
lexicographic order with respect to their cycle
representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)
for the partition. Since 1n is the smallest string in
Σnk , it must be the cycle representative of S1, and for
i ∈ {2, 3, . . . ,m} the cycle representative γi for Si
must contain a symbol greater than 1. Let j be the
largest integer (it must be less than n) such that 1j is
a prefix of γi. Let γ′i = c1c2 · · · cn be the unique string
such that Fn−j−1(γ′i) = γi. Let βi = c1c2 · · · cn−1.
Let τ ′(βi) = t1, t2, . . . , tp and let tj = cn. As noted
earlier, p 6= 1. Define the cyclic string σ = s1s2 · · · sp
where sj is the symbol of Σk such that f(sjβ) = tj .
This symbol is well-defined since f is nonsingular. Then
let (xi, yi, zi) = (sj−1, sj , sj+1). Since f(yiβi) = cn,
yiβi ∈ Si and thus condition (i) is satisfied in the
definition of a spanning sequence. Since γi 6= 1n, by
the definition for each of the three cases for τ ′(βi),
the representative of the subset containing xiβi will be
less than γi. Thus (ii) is satisfied in the definition of
a spanning sequence. Finally, because of the ordering
imposed on the UC-partition and the definition of σ(βi),
condition (iii) is satisfied. By applying Theorem 2.8 and
Theorem 2.9 to this UC-partition and spanning sequence
and simplifying the resulting functions we obtain the de
Bruijn-successors g6 and g′6. 2

V. SHORTHAND UNIVERSAL CYCLES FOR
PERMUTATIONS

It is easy to demonstrate that universal cycles for
permutations in their standard notation do not exist [14].
However, there are several known universal cycle con-
structions for permutations using a shorthand nota-
tion [19], [12]. Let π = p1p2 · · · pn be a permutation
of order n. A shorthand permutation for π is given by
p1p2 · · · pn−1, where the missing symbol pn is easily

determined. Let SP(n) denote the set of all shorthand
permutations of order n. For example, SP(4) =

123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243
312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432.

An example of a universal cycle for SP(4) using our
upcoming construction is: 123124132143243142134234.
It differs from the previous constructions of [19], [12] in
which n appears periodically at every n-th position.

An inversion of a permutation π is an ordered pair
(pi, pj) such that i < j and pi > pj .

Definition 5.1: Let π = p1p2 · · · pn be a permutation
of order n. Consider the rotation π′ = q1q2 · · · qn of π
that starts with the symbol 1. Let j be the smallest index
in π′ such that there exists an inversion (qi, qj) for some
i < j. Define inv(π)= qj .
As an example, if π = 634215, then π′ = q1q2 · · · q6 =
156342 and inv(π) = q4 = 3. We apply our successor
rule framework to SP(n) using this definition.

Shorthand permutation successor
Let π = p1p2 · · · pn−1 be a shorthand permutation
of order n and let z be the missing symbol. Define
g7 : SP(n)→ {1, 2, 3, . . . , n} as follows:

g7(π) =

z if (z = n and p1 = inv(πz)) or

(p1 = n and z = inv(zp2p3 · · · pn−1p1));
z if z = p1 − 1 or z = p1 + 1;
p1 otherwise.

Theorem 5.2: The function g7 is a UC-successor for
SP(n).
Proof. Since SP(n) is closed under rotation, consider
its UC-partition S1,S2, . . . ,Sm with respect to the PCR.
Let the representatives of each part be the lexicograph-
ically smallest string. Order the subsets based on these
representatives in increasing order by the number of
inversions, then by lexicographic order. Thus, the rep-
resentative of S1 is 12 · · · (n−1). Every other repre-
sentative must either contain n or have at least one
inversion. We construct a simplified spanning sequence
(β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for the parti-
tion. For i ∈ {2, 3, . . . ,m} consider the representative
πi = p1p2 · · · pn−1 for Si with missing symbol z.
Consider two cases depending on whether or not the
missing symbol is n.
• Suppose z = n. Then πi is a permutation of order
n−1. Let yi = inv(πi). Define βi such that yiβi
is a rotation of πi. Clearly yiβi ∈ Si. Let xi =
z. Observe that the representative of xiβi will be
πi with the symbol yi replaced with n. Thus, its
representative has fewer inversions than πi which
implies that xiβi belongs to some Sj where j < i.

• Suppose z 6= n. Let yi = (z+1). Define βi such
that yiβi is a rotation of πi. Clearly yiβi ∈ Si. Let

9

xi = z. Note that the representative of xiβi will be
πi with the symbol (z+1) replaced with z. Thus, its
representative has the same number of inversions as
πi, but is smaller lexicographically. This implies that
xiβi belongs to some Sj where j < i.

Consider some βi and its missing symbol z based on the
two cases above. If z = n, then βi contains neither n nor
yi 6= n−1 based on the definition of inv(πi). Otherwise,
βi contains neither z nor yi = z+1. Thus, if βi = βj
for some 2 ≤ i < j ≤ m, then they must have the same
missing symbol which implies that yi = yj . However this
implies yiβi = yjβj which contradicts i 6= j. Thus each
βi is unique, and we have satisfied the conditions in the
definition of a simplified spanning sequence.

A UC-successor for SP(n) is obtained from this
simplified spanning sequence by applying Corollary 2.11.
When simplified, it corresponds to g7. The first line of g7
corresponds to the case outlined above when z = n, and
the second line corresponds to the case when z 6= n. 2

VI. IMPLEMENTATION CONSIDERATIONS

Testing whether or not a string α = a1a2 · · · an is a
necklace can be tested in O(n) time using O(n) space [2].
By naı̈vely applying such an algorithm, the values x and
v from the eight UC-successors presented in Section III
can be computed in O(kn) time. It is not difficult to
improve the running time of each successor to O(n) time
by performing preliminary scans of the relevant string to
restrict the possible values for x or v to two choices. We
omit the details.

Theorem 6.1: The UC-successors g1, g′1, g2, g
′
2, g3, g

′
3,

g4, and g′4 can be computed in O(n) time using O(n)
space.

Using a similar approach, we can test whether a string
α is the lexicographically smallest in an equivalence class
S induced by a nonsingular feedback function. If the
feedback function can be computed in O(1) time, then by
computing a universal cycle for S this test can be done
in O(|S|) time using O(|S|) space. Alternatively, if |S|
is large, then this test can be performed in O(n|S|) time
using O(n) space by applying f to compute successive
strings in the equivalence class and comparing them to
α.

Theorem 6.2: Let f be a nonsingular feedback function.
If the largest set in the UC-partition of Σnk with respect
to f has size C, then the de Bruijn-successors g5, g′5, g6,
and g′6 can construct de Bruijn sequences in O(knC) time
using O(n) space. Alternatively, if f can be computed
in O(1) time, then the successors can be computed in
O(kC) time using O(C) space.

The shorthand permutation successor g7 requires that
the O(n) time function inv be computed only if the
permutation starts with n or its missing symbol is n.

Otherwise the function can be computed in O(1) time.
By using a circular array to store the current shorthand
permutation, and amortizing the work required by the
function inv , we obtain the following result.

Theorem 6.3: The function g7 can be used to compute
a shorthand universal cycle for SP(n) in O(1)-amortized
time per symbol using O(n) space.

The constructions outlined in this paper are available
with their implementations at http://debruijnsequence.org.

VII. ACKNOWLEDGEMENTS

This research was supported by the MSIT(Ministry
of Science and ICT), Korea, under the ICT Consilience
Creative program(IITP-2019 H8601-15-1011) supervised
by the IITP(Institute for Information & communications
Technology Planning & Evaluation). We acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), RGPIN-2018-04211.

REFERENCES

[1] A. Alhakim. Spans of preference functions for de Bruijn se-
quences. Discrete Applied Mathematics, 160(7-8):992 – 998,
2012.

[2] K. S. Booth. Lexicographically least circular substrings. Inform.
Process. Lett., 10(4/5):240–242, 1980.

[3] P. B. Dragon, O. I. Hernandez, J. Sawada, A. Williams, and
D. Wong. Constructing de Bruijn sequences with co-lexicographic
order: The k-ary Grandmama sequence. European Journal of
Combinatorics, 72:1–11, 2018.

[4] P. B. Dragon, O. I. Hernandez, and A. Williams. The grandmama
de Bruijn sequence for binary strings. In Proceedings of LATIN
2016: Theoretical Informatics: 12th Latin American Symposium,
Ensenada, Mexico, pages 347–361. Springer Berlin Heidelberg,
2016.

[5] T. Etzion. An algorithm for constructing m-ary de Bruijn
sequences. Journal of Algorithms, 7(3):331 – 340, 1986.

[6] T. Etzion and A. Lempel. Algorithms for the generation of full-
length shift- register sequences. IEEE Transactions on Information
Theory, 30(3):480–484, May 1984.

[7] M. Fleury. Deux problèmes de géométrie de situation. Journal de
Mathématiques Élémentaires, pages 257–261, 1883.

[8] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors
and k-ary de Bruijn sequences. Discrete Mathematics, 23(3):207–
210, 1978.

[9] D. Gabric, J. Sawada, A. Williams, and D. Wong. A framework
for constructing de Bruijn sequences via simple successor rules.
Discrete Mathematics, to appear, 2018.

[10] S. W. Golomb and L. R. Welch. Nonlinear shift-register sequences.
Jet Prop. Lab., Pasadena, CA, Memo, pages 20–149, 1957.

[11] C. Hierholzer. Ueber die möglichkeit, einen linienzug ohne
wiederholung und ohne unterbrechung zu umfahren. Mathema-
tische Annalen, 6(1):20–32, 1873.

[12] A. E. Holroyd, F. Ruskey, and A. Williams. Shorthand universal
cycles for permutations. Algorithmica, 64(2):215–245, 2012.

[13] C. J. A. Jansen, W. G. Franx, and D. E. Boekee. An efficient al-
gorithm for the generation of DeBruijn cycles. IEEE Transactions
on Information Theory, 37(5):1475–1478, Sep 1991.

[14] J. R. Johnson. Universal cycles for permutations. Discrete
Mathematics, 309(17):5264–5270, 2009.

[15] X. Lai. Condition for the nonsingularity of a feedback shift-
register over a general finite field. IEEE Transactions on Infor-
mation Theory, 33(5):747–749, Sep 1987.

[16] C. Li, X. Zeng, C. Li, and T. Helleseth. A class of de Bruijn
sequences. IEEE Trans. Inform. Theory, 60(12):7955–7969, 2014.

10

[17] C. Li, X. Zeng, C. Li, T. Helleseth, and M. Li. Construction
of de Bruijn sequences from LFSRs with reducible characteristic
polynomials. IEEE Trans. Inform. Theory, 62(1):610–624, 2016.

[18] A. Ralston. A new memoryless algorithm for de Bruijn sequences.
J. Algorithms, 2(1):50–62, 1981.

[19] F. Ruskey and A. Williams. An explicit universal cycle for the
(n−1)-permutations of an n-set. ACM Transactions on Algorithms
(TALG), 6(3):45, 2010.

[20] J. Sawada, A. Williams, and D. Wong. Universal cycles for
weight-range binary strings. In Combinatorial Algorithms - 24th
International Workshop, IWOCA 2013, Rouen, France, July 10-12,
2013, Revised Selected Papers, volume 8288 of Lecture Notes in
Computer Science, pages 388–401. Springer, 2013.

[21] J. Sawada, A. Williams, and D. Wong. A surprisingly simple de
Bruijn sequence construction. Discrete Math., 339:127–131, 2016.

[22] J. Sawada, A. Williams, and D. Wong. A simple shift rule for
k-ary de Bruijn sequences. Discrete Mathematics, 340(3):524 –
531, 2017.

[23] J. Sawada and D. Wong. Universal cycle constructions for weak
orders. manuscript, 2018.

[24] S. Xie. Notes on de Bruijn sequences. Discrete Applied Mathe-
matics, 16(2):157 – 177, 1987.

[25] J.-H. Yang and Z.-D. Dai. Construction of m-ary de Bruijn
sequences (extended abstract). In J. Seberry and Y. Zheng,
editors, Advances in Cryptology — AUSCRYPT ’92, pages 357–
363, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

11

Appendix - C code for constructing de Bruijn
sequences applying g5, g′5, g6, or g′6

#include<stdio.h>
#define MAX_N 50
int n,k,a[MAX_N];
//====================================
int Mod(int x) {

while (x < 1) x+=k;
while (x > k) x-=k;
return x;

}
//====================================
int f(int a[]) {

//INSERT ANY NONSINGULAR FEEDBACK FUNCTION
return (Mod(a[1] + 1));

}
//====================================
int Ones(int a[]) {

for (int i=1; i<=n; i++) if (a[i] != 1) return 0;
return 1;

}
//====================================
//TRUE iff b[1..n] is a cycle rep
//====================================
int IsRep(int b[]) {

int i, new_bit, cycle[MAX_N];

for (i=1; i<=n; i++) cycle[i] = b[i];

while (1) {
//Shift and add new bit until returning to b[]
new_bit = f(cycle);
for (i=1; i<=n; i++) cycle[i] = cycle[i+1];
cycle[n] = new_bit;

//Compare b[] to another in the cycle
for (i=1; i<=n; i++) {

if (b[i] < cycle[i]) break;
if (b[i] > cycle[i]) return 0;

}
if (i > n) return 1; //Back to initial string b[]

}
}
//====================================
//Compute tau[] and return its size
//====================================
int TauLastSymbol(int a[], int tau[]) {

int i,p=0,b[MAX_N];

//Shift and try all values for b[n]
for (i=1; i<=n; i++) b[i] = a[i+1];

for (i=1; i<=k; i++) {
b[n] = i;
if (IsRep(b)) {

if (i == 1 && !Ones(b)) {
a[1] = 1;
tau[++p] = f(a);

}
else if (i > 1 && p == 0) tau[++p] = 1;
tau[++p] = i;

}
}
return p;

}
//====================================
int LastSymbol(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauLastSymbol(a,tau);
for (i=1; i<=j; i++) {

if (v == tau[i] && i < j) return tau[i+1];
if (v == tau[i] && i == j) return tau[1];

}
return v;

}

//====================================
int LastSymbol2(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauLastSymbol(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i == 1) return tau[j];
if (v == tau[i] && i > 1) return tau[i-1];

}
return v;

}
//====================================
//Compute tau’[] and return its size
//====================================
int TauFirstNonOne(int a[], int tau[]) {

int i,v,t,j=0,p=0,b[MAX_N];

for (i=1; i<=n; i++) b[i] = a[i];

//Shift the j 1s in the suffix to front of string
while (j < n && b[n-j] == 1) j++;
for (i=1; i<=n-j; i++) {

v = f(b);
for (t=1; t<n; t++) b[t] = b[t+1];
b[n] = v;

}
if (j == n) return 0;

//Try all values > 1 at position j+1 to see if rep
p=0;
for (i=2; i<=k; i++) {

b[j+1] = i;
if (IsRep(b)) {

if (p == 0) tau[++p] = 1;
tau[++p] = i;

}
}
return p;

}
//====================================
int FirstNonOne(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauFirstNonOne(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i < j) return tau[i+1];
if (v == tau[i] && i == j) return tau[1];

}
return v;

}
//====================================
int FirstNonOne2(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauFirstNonOne(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i == 1) return tau[j];
if (v == tau[i] && i > 1) return tau[i-1];

}
return v;

}
//====================================
//Generate de Bruijn sequences by iteratively
//applying a successor rule h() or h2()
//====================================
void DB(int type) {

int i, new_bit;

//Initialize first n bits to 1ˆn - could start with
//any string changing the termination
for (i=0; i<=n; i++) a[i] = 1;
do {

printf("%d", a[1]);
if (type == 1) new_bit = LastSymbol(a);
if (type == 2) new_bit = LastSymbol2(a);

12

if (type == 3) new_bit = FirstNonOne(a);
if (type == 4) new_bit = FirstNonOne2(a);

//Shift and add new bit
for (i=1; i<=n; i++) a[i] = a[i+1];
a[n] = new_bit;

} while (!Ones(a));
}
//====================================
int main() {

printf("Enter n: "); scanf("%d", &n);
printf("Enter k: "); scanf("%d", &k);

printf("Last symbol (incr):\n");
DB(1); printf("\n\n");

printf("Last symbol (decr):\n");
DB(2); printf("\n\n");

printf("First non-1 (incr):\n");
DB(3); printf("\n\n");

printf("First non-1 (decr):\n");
DB(4); printf("\n\n");

}

