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Abstract. Given a length m string f over a k-ary alphabet and a pos-

itive integer n, we develop efficient algorithms to generate

(a) all k-ary strings of length n that have no substring equal to f,

(b) all k-ary circular strings of length n that have no substring equal to
f, and

(c) all k-ary necklaces of length n that have no substring equal to f,
where f is an aperiodic necklace.

Each of the algorithms runs in amortized time O(1) per string generated,

independent of k, m, and n.

1 Introduction

The problem of generating discrete structures with forbidden sub-structures is
an area that has been studied for many objects including graphs (e.g., with for-
bidden minors), permutations (e.g., which avoid the subsequence 312 of relative
values), and trees (e.g., of bounded degree). In this paper we are concerned with
generating strings that avoid some particular substring. For example, the set of
binary strings that avoid the pattern 11 are known as Fibonacci strings, since
they are counted by the Fibonacci numbers. The set of circular binary strings
that avoid 11 are counted by the Lucas numbers. Within combinatorics, the
counting of strings which avoiding particular substrings can be handled with the
“transfer matrix method” as explained, for example, in Stanley [5]. The ordinary
generating function of the number of such strings is always rational, even in the
case of circular strings. In spite of the importance of these objects within combi-
natorics, we know of no papers that explicitly address the problem of efficiently
generating all strings or necklaces avoiding a given substring.

The problem of generating strings with forbidden substrings is naturally re-
lated to the classic pattern matching problem, which takes as input a pattern P
of length m and a text T of length n, and finds all occurrences of the pattern in
the text. Several algorithms perform this task in linear time, O(n+m), including
the Boyer-Moore algorithm, the Knuth-Morris-Pratt (KMP) algorithm and an
automata-based algorithm (which requires non-linear initialization) [2].

The Boyer-Moore algorithm is not suitable for our purposes since it does not
operate in real-time. On the other hand, the automata-based algorithm operates
in real-time and the KMP algorithm can be adapted to do so [2].



Our algorithms are recursive, generating the string from left-to-right and ap-
plying the pattern matching as each character is generated. It is straight forward
to generate unrestricted strings in such a recursive manner and adding the pat-
tern matching is easy as well. However, when the pattern is taken circularly, the
algorithm and its analysis become considerably more complicated.

The algorithm for generating the necklaces uses the recursive scheme intro-
duced in [4]. This scheme has been used to generate other restricted classes
of necklaces, such as unlabelled necklaces [4], fixed-density necklaces [3], and
bracelets (necklaces that can be turned over), and is ideally suited for the present
problem.

Within the context of generating combinatorial objects, usually the primary
goal is to generate each object so that the amount of computation is O(1) per
object in an amortized sense. Such algorithms are said to be CAT (for Constant
Amortized Time). Clearly, no algorithm can be asymptotically faster. Note that
we do not take into account the time to print or process each object; rather we
are counting the total amount of data structure change that occurs.

The main result of this paper is the development of CAT algorithms to gen-
erate:

— all k-ary strings of length n that have no substring equal to f,

— all k-ary circular strings of length n that have no substring equal to f, and

— all k-ary necklaces of length n that have no substring equal to f, given that
f is Lyndon word.

Each algorithm has an embedded automata-based pattern matching algorithm.
In principle we could use the same approach to generate unlabelled necklaces,
fixed density necklaces, bracelets, or other types of necklaces, all avoiding a
forbidden necklace pattern. We expect that such algorithms will also be CAT,
but the analysis will be more difficult.

In the following section we provide background and definitions for these ob-
jects along with a brief description of the automata-based pattern matching
algorithm. In Section 3, we outline the details of each algorithm. We analyze the
algorithms, proving that they run in constant amortized time, in Section 4.

2 Background

We denote the set of all k-ary strings of length n with no substring equal to f by
I;(n, f). The cardinality of this set is Ij(n, f). For the remainder of this paper
we will assume that the forbidden string f has length m. Clearly if m > n, then
Iy(n, f) = k™, and if m = n then Iy(n, f) = k™ — 1. If m < n, then an exact
formula will depend on the forbidden substring f, but can be computed using
the transfer matrix method. In Section 4 we derive several bounds on the value
of I (n, f)

We denote the set of all k-ary circular strings of length n with no substring
equal to f by Cg(n, f). The cardinality of this set is Ck(n, f). In this case, we
allow the forbidden string to make multiple passes around the circular string.



Thus, if a string « is in Ix(n, f) and m > n, then it is still possible for the string
a to contain the forbidden string f. For example, if « = 0110 and f = 11001100,
then «a is mot in the set Cg(4, f). We prove that Ck(n, f) is proportional to
Iy (n, f) in Section 4.1.

Under rotational equivalence, the set of strings of length n breaks down
into equivalence classes of sizes that divide n. We define a necklace to be the
lexicographically smallest string in such an equivalence class of strings under
rotation. An aperiodic necklace is called a Lyndon word. A word « is called a pre-
necklace if it is the prefix of some necklace. Background information, including
enumeration formulas, for these objects can be found in [4].

The set of all k-ary necklaces of length n with no substring equal to f is
denoted N (n, f) and has cardinality Ni(n, f). The set of all k-ary Lyndon words
of length n with no substring equal to f is denoted Lg(n, f) and has cardinality
Ly (n, f). Of course for N and L, we consider the string to be circular when
avoiding f. The set of all k-ary pre-necklaces of length n with no substring equal
to f is denoted Py (n, f) and has cardinality Py(n, f). A standard application of
Burnside’s Lemma will yield the following formula for N (n, f):

Ni(n, ) = = 37 6(@Cu(n/d, ). (1
d|n

2.1 The automata-based string matching algorithm

One of the best tools for pattern recognition problems is the finite automaton.
If f = fifa--- fm is the pattern we are trying to find in a string «, then a deter-
ministic finite automaton can be created to process the string « one character at
a time, in constant time per character. In other words, we can process the string
a in real-time. The preprocessing steps required to set up such an automaton
can be done in time O(km), where k denotes the size of the alphabet (see [1],
pg. 334).

The automaton has m+1 states, which we take to be the integers 0,1, ...,m.
The state represents the length of the current match. Suppose we have processed
t characters in the string a = ajas - - - a,, and the current state is s. The transition
function &(s, j) is defined so that if j = a;y; matches fsy1, then §(s,5) = s+ 1.
Otherwise, d(s, j) is the largest state ¢ such that fi--- f; = ai—g42---ap41. If
the automaton reaches state m, the only accepting state, then the string f has
been found in a. The transition function is efficiently created using an auxiliary
function fail. The failure function is defined for 1 < i < m such that fail() is the
length of the longest proper suffix of f; --- f; equal to a prefix of f. If there is
no such suffix, then fail(¢) = 0. This fail function is the same as the fail function
in the classic KMP algorithm.

3 Algorithms

In this section we describe an efficient algorithm to generate necklaces with
forbidden necklace substrings. We start by looking at the simpler problem of



generating k-ary strings with forbidden substrings and then consider circular
strings, focusing on how to handle the wraparound.

If n is the length of the strings being generated and m is the length of the
forbidden substring f, then the following algorithms apply for 2 < m < n.
We prove that each algorithm runs in constant amortized time in the following
section. In the cases where m = 1 or 2, trivial algorithms can be developed. For
circular strings and necklaces, if m > n, then the forbidden substring can be
truncated to a length n string, as long as it repeats in a circular manner after
the nth character.

3.1 Generating k-ary strings

A naive algorithm to generate all strings in I (n, f) will generate all k-ary strings
of length n, and then upon generation of each string, perform a linear time test
to determine whether or not it contains the forbidden substring. A simple and
efficient approach for generating strings is to construct a length n string by taking
a string of length n —1 and appending each of the k characters in the alphabet to
the end of the string. This strategy suggests a simple recursive scheme, requiring
one parameter for the length of the current string. Since this recursive algorithm
runs in constant amortized time, the naive algorithm will take linear time per
string generated.

A more advanced algorithm will embed a real-time automata-based string
matching algorithm into the string generation algorithm. Since an automata-
based string matching algorithm takes constant time to process each character,
we can generate each new character in constant time. We store the string being
generated in a@ = ajas---a, and at each step, we maintain two parameters: ¢
and s. The parameter ¢ represents the next position in the string to be filled,
and the parameter s represents the state in the finite automata produced for the
string f. Recall that each state s is an integer value that represents the length
of the current match. Thus if we begin a recursive call with parameters ¢ and
s, then fi1---fs = a;_s---a;_1. We continue generating the current string as
long as s # m. When ¢t > n, we print out the string using the function Printlt().
Pseudocode for this algorithm is shown in Figure 1. The transition function
0(s,7) is used to update the state s as described in Section 2.1. The initial call
is GenStr(1,0).

Following this approach, each node in the computation tree will correspond
to a unique string in I (j, f) where j ranges from 1 to n. Since the amount of
computation at each node is constant, the total computation is proportional to

CompTreer(n, f) = ZIk 4, f)-
=1

We can show that this sum is proportional to It (n, f), which proves the following
theorem. (Recall that the preprocessing required to set up the automata for
f takes time O(km). This amount is negligible compared to the size of the
computation tree.)



procedure GenStr ( t, s : integer );
local j, q : integer;
begin
if t > n then Printlt()
else begin
for j € {0,1,...,k — 1} do begin
at := J;
q:=0(s,]);
if ¢ # m then GenStr(t + 1, q);

end; end; end;

Fig. 1. An algorithm for generating k-ary strings with no substring equal to f.

Theorem 1. The algorithm GenStr(t,s) for generating k-ary strings of length
n with no substring equal to f is CAT.

3.2 Generating k-ary circular strings

We now focus on the more complicated problem of generating circular strings
with forbidden substring f. To solve this problem we use the previous algorithm,
but now we must also check that the wraparound of the string does not yield
the forbidden substring. More precisely, if &« = ajas - - - a,, is in I (n, f) then the
additional substrings we must implicitly test against the forbidden string f are
Qn—mt14i---apay---a; fori =1,2,...,m—1. To perform these additional tests,
we could continue the pattern matching algorithm by appending the first m — 1
characters to the end of the string. This will result in m — 1 additional checks
for each generated string, yielding an algorithm that runs in time O(mI(n, f))-
This approach can be tweaked to yield a CAT algorithm for circular strings, but
leads to difficulties in the analysis when applied in the necklace context.

If we wish to use the algorithm GenStr(¢, s), we need another way to test the
substrings starting in the last m — 1 positions of a. We accomplish this feat by
maintaining a new boolean data structure match(i,t) and dividing the work into
two separate steps. In the first step we compare the substring a; - - - a; against
the last ¢ characters in f. If they match, then the boolean value match(i,?) is
set to TRUE; otherwise it is set to FALSE. In the second step, we check to
see if ap—_mt1+4i- -G, matches the first m — ¢ characters in f. If they match
and match(i,) is TRUE, then we reject the string. If there is no match for all
1 <i<m—1,then aisin Cg(n, f).

To execute the first step, we start by initializing match(i, 0) to TRUE for all
i from 1 to m — 1. We define match(i,t) for 1 <i<m—1landi<t<m-—1to
be TRUE if match(i,j — 1) is TRUE and a; = fp—j4¢. Otherwise match(i, t) is
FALSE. This definition implies that match(i, i) will be TRUE if a; - - - a; matches
the last ¢ characters of f. Pseudocode for a routine that sets these values for
each t is shown in Figure 2. The procedure SetMatch(t) is called after the ¢-th
character in the string a has been assigned for ¢ < m. Thus, if ¢ < m, we must



procedure SetMatch ( ¢ : integer );
local 7 : integer;
begin
for i€ {t,t+1,...,m — 1} do begin
if match(i,t — 1) and fr_i4+ = a; then match(i, t) := TRUE;
else match(i,t) := FALSE;

end; end;

Fig. 2. Procedure used to set the values of match(i,t).

function CheckSuffix ( s : integer ) returns boolean;
begin
while s > 0 do begin
if match(m — s, m — s) then return(FALSE);
else s := fail(s);

end;

return(TRUE);

end;

Fig. 3. Function used to test the wraparound of circular strings.

perform additional work proportional to m — ¢ for all strings in Ix(¢, f). We will
prove later that this extra work will not affect the asymptotic running time of
the algorithm.

To execute the second step, we observe that after the nth character has been
generated (t =n + 1), the string a,_s11 - - - a,, is the longest suffix of a to match
a prefix of f. Using the array fail, as described in Section 2.1, we can find all
other suffixes that match a prefix of f in constant time per suffix. Then, for each
suffix with length j found equal to a prefix of f, we check match(m — j,m —j). If
match(m — j,m—j) is TRUE, then « is not in Cg(n, f). Note that Iy(n—j, f) is
an upper bound on the number of strings where a,,—;41 - - - a, matches a prefix
of f. Thus, for each 1 < j < m — 1 the extra work done is proportional to
I(n — j, f). Pseudocode for the tests required by this second step is shown
in Figure 3. The function CheckSuffix(s) takes as input the parameter s which
represents the length of the longest suffix of a to match a prefix of f. It returns
TRUE if « is in C(n, f) and FALSE otherwise.

Following this approach, we can generate all circular strings with forbidden
substrings by adding the routines SetMatch(¢) and CheckSuffix(s) to GenStr(t, s).
Pseudocode for the resulting algorithm is shown in Figure 4. The initial call is
GenCirc(1,0).

Observe that the size of the computation tree will be the same as before;
however, in this case, the computation at each node is not always constant. The



procedure GenCirc ( t, s : integer );
local j, q : integer;
begin
if t > n then begin
if CheckSuffix(s) then Printlt();
end else begin
for j € {0,1,...,k — 1} do begin
at := J;
q:=0(s,3);
if t < m then SetMatch(t);
if ¢ # m then GenCirc(t + 1, q);
end; end; end;

Fig. 4. An algorithm for generating k-ary circular strings with no substring equal to

f.

extra work performed at these nodes is bounded by

—1 m—1
ExtraWorky(n, f) < (m — ) Ic(j, f) + Z I (n -3, f)
=1

j=1

3

The first sum represents the work done by SetMatch and the second the work
done by CheckSuffix. In Section 4.1 we show that this extra work is proportional
to I (n, f). In addition, we also prove that Ci(n, f) is proportional to I(n, f).
These results prove the following theorem.

Theorem 2. The algorithm GenCirc(t,s) for generating k-ary circular strings
of length n with no substring equal to f is CAT.

3.3 Generating k-ary necklaces

Using the ideas from the previous two algorithms, we now outline an algorithm to
generate necklaces with forbidden necklace substrings. First, we embed the real-
time automata based string matching algorithm into the necklace generation
algorithm described in [4]. Then, since we must also test the wraparound for
necklaces, we add the same tests as outlined in the circular string algorithm.
Applying these two simple steps will yield an algorithm for necklace generation
with no substring equal to the forbidden necklace f. Pseudocode for such an
algorithm is shown in Figure 5. The additional parameter p in GenNeck(t,p, s),
represents the length of the longest Lyndon prefix of the string being generated.
Lyndon words can be generated by replacing the test “n mod p = 0” with the
test “n = p.” The initial call is GenNeck(1,1,0).

To analyze the running time of this algorithm, we again must show that
the number of necklaces generated, Ng(n, f), is proportional to the amount of



procedure GenNeck ( t,p, s : integer );
local j, q : integer;
begin
if t > n then begin
if n mod p = 0 and CheckSuffix(s) then Printlt();
end else begin
at 1= Qt—p,
q = 0(s,ar);
if t < m then SetMatch(t);
if ¢ # m then GenNeck(t + 1, p,q);
for j € {as—p+1,...,k — 1} do begin
as 1= jj
q:=6(s,7);
if t < m then SetMatch(t);
if ¢ # m then GenNeck(t + 1,t, q);
end; end; end;

Fig. 5. An algorithm for generating k-ary necklaces with no substring equal to f.

computation done. In this case the size of the computation tree is

n

NeckCompTreeg(n, f) = ZPk (4, 1)

Jj=1

However, as with the circular string case, not all nodes perform a constant
amount of work. The extra work performed by these nodes is bounded by

m—1 m—1
NeckEztraWorky(n, f) < Y (m— j)Pi(j, f) + Y Pe(n —j, f)
=1 i=1

Note that this expression is the same as the extra work in the circular string
case, except we have replaced Ij(n, f) with Py(n, f).

In Section 4.2 we show that NeckCompTreer(n, ) and NeckExtraW orky(n, f)
are both proportional to %Ik (n, f). In addition, we also prove that N (n, f) is
proportional to %Ik (n, f). These results prove the following theorem.

Theorem 3. The algorithm GenNeck(t,p,s) for generating k-ary necklaces of
length n with no substring equal to f is CAT, so long as f is a Lyndon word.

We remark that the algorithm works correctly even if f is not a Lyndon word
and appears to be CAT for most strings f.

4 Analysis of the Algorithms

In this section we will state the results necessary to prove that the work done
by each of the forbidden substring algorithms is proportional to the number of



strings generated. The constants in the bounds derived in this section can be
reduced with a more complicated analysis. The algorithms are very efficient in
practice. Space limitations prevent us from giving proofs or analyzing the first
algorithm, which has the simplest analysis. We do however, need one lemma
from that analysis.

Lemma 1. If |f| > 2, then 3°7_, It(j, f) < 3Ix(n, f).

4.1 Circular strings

In the circular string algorithm, the size of the computation tree is the same as
the previous algorithm, where it was shown to be proportional to Iy (n, f). In
this case, however, there is some extra work required to test the wrap-around
of the string. Recall that this extra work is proportional to ExtraW orky(n, f)
which is bounded as follows.

m—1 m—1
ExtraWorky(n, f) < Z (m =I5, f) + Z Iy(n =3, f)
=1 =1
n J n
DA IED P AL
Jj=1t=1 7j=1

We now use Lemma ?? to simplify the above bound.
ExtraWorky(n, f) <3 L(G, )+ Y_I(j, f) < 12I(n, f).
j=1 j=1

We have now shown that the total work done by the circular string algo-
rithm is proportional to It (n, f). Since the total number of strings generated is
Cr(n, f), we must show that Cy(n, f) is proportional to Ij(n, f).

Theorem 4. If |f| > 2, then 3Ck(n, f) > I (n, f).

These lemmas and Theorem 4 prove Theorem 2.

4.2 Necklaces

To prove Theorem 3, we must show that the computation tree along with the
extra work done by the necklace generation algorithm is proportional to N (n, f).
To get a good bound on NeckCompTree(n, f) we need three additional lemmas;
the bound of the first lemma does not necessarily hold if f is not a Lyndon word.

Lemma 2. If f is Lyndon word where |f| > 2, then Py (n, f) < 2?21 Li(4, ).
Lemma 3. If |f| > 2, then Li(n, f) < 1Ci(n, f).
Lemma 4. If || > 2, then 7, Li(j, ) < ELu(n, ).



Applying the previous three lemmas, we show that the computation tree is
proportional to Iy (n, f).

NeckCompTreer(n, f) = > _ Pu(j, f) < D> Li(t, f)

This inequality is now used to show that the extra work done by the necklace
algorithm is also proportional to %Ik (n, f). Recall that the extra work is given
by:

m—1 m—1
NeckExtraWorkg(n, f) < (m —3)Pi(j, f) + Z Py(n—3j,f)
= =1

ZPk )+ Pl f)-

1t=1 j=1

M:

~.
Il

Further simplification of this bound follows from the bound on NeckCompT'reey(n, f)
along with Lemma 3.

"1 144
NeckExtraWorky(n, f) < 1442 ;Ik(j,f) + TIk(n,f)
j=1
123 + 122
< ——1Ii(n, f).
n
We have now shown that the total computation performed by the necklace

generation algorithm is proportional to %Ik (n, f). From equation (1), Ng(n, f) >
LCk(n, f), and since Cy(n, f) > $Ix(n, f), Theorem 3 is proved.
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