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Abstract. A flip-swap language is a set S of binary strings of length n such
that S ∪ {0n} is closed under two operations (when applicable): (1) Flip the
leftmost 1; and (2) Swap the leftmost 1 with the bit to its right. Flip-swap lan-
guages model many combinatorial objects including necklaces, Lyndon words,
prefix normal words, left factors of k-ary Dyck words, lattice paths with at most
k flaws, and feasible solutions to 0-1 knapsack problems. We prove that any flip-
swap language forms a cyclic 2-Gray code when listed in binary reflected Gray
code (BRGC) order. Furthermore, a generic successor rule computes the next
string when provided with a membership tester. The rule generates each string in
the aforementioned flip-swap languages in O(n)-amortized per string, except for
prefix normal words of length n which require O(n1.864)-amortized per string.
Our work generalizes results on necklaces and Lyndon words by Vajnovszki [Inf.
Process. Lett. 106(3):96−99, 2008].

1 Introduction

Combinatorial generation studies the efficient generation of each instance of a combi-
natorial object, such as the n! permutations of {1, 2, . . . , n} or the 1

n+1

(
2n
n

)
binary trees

with n nodes. The research area is fundamental to computer science and it has been cov-
ered by textbooks such as Combinatorial Algorithms for Computers and Calculators by
Nijenhuis and Wilf [36], Concrete Mathematics: A Foundation for Computer Science
by Graham, Knuth, and Patashnik [10], and The Art of Computer Programming, Vol-
ume 4A, Combinatorial Algorithms by Knuth [13]. The subject is important to every day
programmers, and Arndt’s Matters Computational: Ideas, Algorithms, Source Code is
an excellent practical resource [1]. A primary consideration is listing the instances of a
combinatorial object so that consecutive instances differ by a specified closeness condi-
tion. Lists of this type are called Gray codes. This terminology is due to the eponymous
binary reflected Gray code (BRGC) by Frank Gray, which orders the 2n binary strings
of length n so that consecutive strings differ in one bit. The BRGC was patented for a
pulse code communication system in 1953 [11]. For example, the order for n = 4 is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,

0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.
(1)
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Variations that reverse the entire order of the individual strings are also commonly used
in practice and in the literature. We note that the order in (1) is cyclic because the last
and first strings also differ by the closeness condition, and this property holds for all n.
One challenge facing combinatorial generation is its relative surplus of breadth and lack
of depth1. For example, [1], [13], [16] and [36] have separate subsections for different
combinatorial objects, and the majority of the Gray codes are developed from first prin-
ciples. Thus, it is important to encourage simple frameworks that can be applied to a
variety of combinatorial objects. Previous work in this direction includes the following:

1. the ECO framework developed by Bacchelli, Barcucci, Grazzini, and Pergola [2]
that generates Gray codes for a variety of combinatorial objects such as Dyck words
in constant amortized time per instance;

2. the twisted lexico computation tree by Takaoka [29] that generates Gray codes for
multiple combinatorial objects in constant amortized time per instance;

3. loopless algorithms developed by Walsh [34] to generate Gray codes for multiple
combinatorial objects, which extend algorithms initially given by Ehrlich in [9];

4. greedy algorithms observed by Williams [38] that provide a uniform understanding
for many previous published results;

5. the reflectable language framework by Li and Sawada [14] for generating Gray
codes of k-ary strings, restricted growth strings, and k-ary trees with n nodes;

6. the permutation language framework developed by Hartung, Hoang, Mütze and
Williams [12] that provides algorithms to generate Gray codes for a variety of com-
binatorial objects based on encoding them as permutations.

We focus on an approach that is arguably simpler than all of the above: Start with a
known Gray code and then filter or induce the list based on a subset of interest. In other
words, the subset is listed in the relative order given by a larger Gray code, and the
resulting order is a sublist (Gray code) with respect to it. Historically, the first sublist
Gray code appears to be the revolving door Gray code for combinations [35]. A combi-
nation is a length n binary string with weight (i.e. number of ones) k. The Gray code is
created by filtering the BRGC, as shown below for n = 4 and k = 2 (cf. (1))

���0000,���1000,1100,���0100,0110,���1110,1010,���0010,

0011,���1011,���1111,���0111,0101,���1101,1001,���0001.
(2)

This order is a transposition Gray code as consecutive strings differ by transposing
at most two bits2. It can be generated directly (i.e. without filtering) by an efficient
algorithm [35].
The sublist or filtering approach to constructing Gray codes has also been achieved by
using cool-lex order [21] and Steinhaus-Johnson-Trotter order [22,32]. In particular, the
bubble language framework developed by Ruskey, Sawada and Williams [19] provides

1 This is not to say that combinatorial generation is always easy. For example, the ‘middle levels‘
conjecture was confirmed by Mütze [15] after 30 years and effort by hundreds of researchers.

2 When each string is viewed as the incidence vector of a k-subset of {1, 2, . . . , n}, then con-
secutive k-subsets change via a “revolving door” (i.e. one value enters and one value exits).
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algorithms to generate shift Gray codes for fixed-weight necklaces and Lyndon words,
k-ary Dyck words, and representations of interval graphs, and in each case the relative
orders from [21] (or more broadly [28]) provide the Gray code in cool-lex order. More
recently, a Gray code of fixed-content necklaces in cool-lex order [25] was obtained by
filtering the Gray code in [37].
A t-Gray code is a generalization of Gray code, which is a listing of a combinato-
rial object so that consecutive instances differ by at most t bits. As an example, the
revolving door Gray code in (2) is a 2-Gray code, where each consecutive strings dif-
fer by at most two bits. Vajnovszki [30] first proved that necklaces and Lyndon words
form a cyclic 3-Gray code in dual reflected order and provided a recursive algorithm
to efficiently generate these sublist Gray codes. Later, Vajnovszki [31] provided a more
restricted Gray code by proving that necklaces and Lyndon words form a cyclic 2-Gray
code in BRGC order, and efficient algorithms can generate these sublist Gray codes
directly [26]. Our goal is to expand upon the known languages that are 2-Gray codes
in BRGC order, and which can be efficiently generated. To do this, we introduce a new
class of languages.
A flip-swap language (with respect to 1) is a set S of length n binary strings such that
S ∪ {0n} is closed under two operations (when applicable):

1. Flip the leftmost 1 (flip-first); and
2. Swap the leftmost 1 with the bit to its right (swap-first).

A flip-swap language with respect to 0 is defined similarly. Flip-swap languages encode
a wide variety of combinatorial objects. The formal definitions of these languages are
given in Section 3.

Theorem 1. The following sets of length n binary strings are flip-swap languages.
Flip-Swap languages (with respect to 1)

i. all strings
ii. strings with weight ≤ k

iii. strings ≤ γ
iv. strings with ≤ k inversions re: 0∗1∗

v. strings with ≤ k transpositions re: 0∗1∗

vi. strings < their reversal
vii. strings ≤ their reversal (neckties)
viii. strings < their complemented reversal

ix. strings ≤ their complemented reversal
x. strings with forbidden 10t

xi. strings with forbidden prefix 1γ
xii. 0-prefix normal words
xiii. necklaces (smallest rotation)
xiv. Lyndon words
xv. prenecklaces (smallest rotation)

xvi. pseudo-necklaces with respect to 0∗1∗

xvii. left factors of k-ary Dyck words
xviii. lattice paths with ≤ k flaws
xix. feasible solutions to 0-1 knapsack problems

Flip-Swap languages (with respect to 0)
i. all strings

ii. strings with weight ≥ k
iii. strings ≥ γ
iv. strings with ≤ k inversions re: 1∗0∗

v. strings with ≤ k transpositions re: 1∗0∗

vi. strings > their reversal
vii. strings ≥ their reversal

viii. strings > their complemented reversal
ix. strings ≥ their complemented reversal
x. strings with forbidden 01t

xi. strings with forbidden prefix 0γ
xii. 1-prefix normal words

xiii. necklaces (largest rotation)
xiv. aperiodic necklaces (largest rotation)
xv. prenecklaces (largest rotation)

xvi. pseudo-necklaces with respect to 1∗0∗

xvii. right factors of k-ary Dyck words
xviii. lattice paths with ≥ k flaws
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Our second result is that every flip-swap language forms a cyclic 2-Gray code when
listed in BRGC order. This generalizes the previous sublist BRGC results [26,31]. Our
Gray codes are also suffix partitioned Gray codes, where strings with the same suffix
are contiguous.

Theorem 2. When a flip-swap language S is listed in BRGC order the resulting listing
is a 2-Gray code. If S includes 0n then the listing is cyclic.

Our third result is a generic successor rule that efficiently computes the next string in
the 2-Gray code of a flip-swap language as long as a fast membership test is given.

Theorem 3. The languages in Theorem 1 can be generated in O(n)-amortized time
per string, with the exception of prefix normal words which require O(n1.864)-time.

A preliminary version of this paper appeared at the WORDS 2021 conference [27]. This
extended version includes a full proof of Theorem 1 which additionally showing that
the following sets of length n binary strings are flip-swap languages:
. strings with weight ≤ k;
. strings ≤ γ;
. strings with ≤ k inversions;
. strings with ≤ k transpositions;
. strings < their reversal;
. strings ≤ their reversal (neckties);
. strings < their complemented reversal;
. strings ≤ their complemented reversal;
. strings with forbidden 10t;
. strings with forbidden prefix 1γ;
. prenecklaces;
. pseudo-necklaces; and
. left factors of k-ary Dyck words.

We also introduce additional flip-swap languages including right factors of k-ary Dyck
words and lattice paths with at most k flaws.
The remainder of this paper is outlined as follows. In Section 2, we formally define
our version of the BRGC. In Section 3, we prove Theorem 1, and define the flip-swap
partially ordered set. In Section 4, we give our generic successor rule and prove Theo-
rem 2. In Section 5, we present a generic generation algorithm that list out each string
of a flip-swap language, and we prove Theorem 3.

2 The binary reflected Gray code

Let B(n) denote the set of length n binary strings. Let BRGC(n) denote the listing
of B(n) in BRGC order. Let BRGC(n) denote the listing BRGC(n) in reverse order.
Then BRGC(n) can be defined recursively as follows, where L · x denotes the listing
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n = 4 all necklaces 0-PNW ≤ 1001 k ≤ 2 neckties
BRGC i. xiii. xii. iii. ii. vii.
0000 X X X X X X
1000 X X X
1100 X X
0100 X X X
0110 X X X X X
1110 X
1010 X X
0010 X X X X X
0011 X X X X X X
1011 X X
1111 X X X
0111 X X X X X
0101 X X X X X X
1101 X
1001 X X X X
0001 X X X X X X

(a) String membership in 6 flip-swap languages.

i. xiii. xii. iii. ii. vii.

(b) Visualizing the 2-Gray codes in (a).

Table 1: Flip-swap languages ordered as sublists of the binary reflected Gray code. The-
orem 1 covers each language, so the resulting orders are 2-Gray codes.

L with the character x appended to the end of each string:

BRGC(n) =

{
0, 1 if n = 1;

BRGC(n− 1) · 0, BRGC(n− 1) · 1 if n > 1.

For example, BRGC(2) = 00, 10, 11, 01 and BRGC(2) = 01, 11, 10, 00, thus

BRGC(3) = 000, 100, 110, 010, 011, 111, 101, 001.

This definition of BRGC order is the same as the one used by Vajnovzski [31]. When the
strings are read from right-to-left, we obtain the classic definition of BRGC order [11].
For flip-swap languages with respect to 0, we interchange the roles of the 0s and 1s;
however, for our discussions we will focus on flip-swap languages with respect to 1.
Table 1 illustrates BRGC(4) and six flip-swap languages listed in Theorem 1.

3 Flip-swap languages

In this section, we formalize the flip-swap languages stated in Theorem 1. We also prove
Theorem 1 of the listed languages with respect to 1.
Consider a binary string α = b1b2 · · · bn. Let flipα(i) be the string obtained by com-
plementing bi. Let swapα(i, j) be the string obtained by swapping bi and bj . When
the context is clear we use flip(i) and swap(i, j) instead of flipα(i) and swapα(i, j).
Also, let `0(α) denote the position of the leftmost 0 of α or n + 1 if no such position
exists. Similarly, let `1(α) denote the position of the leftmost 1 of α or n+1 if no such
position exists. To simplify the notation, we define `α = `1(α).
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Binary strings: Obviously the set B(n) satisfies the two closure properties of a flip-
swap language and thus is a flip-swap language. In fact, the BRGC order induces a
cyclic 1-Gray code for B(n) [13,17].
Binary strings with weight ≤ k: The weight of a binary string is the number of 1s it
contains. Let S be the set of binary strings of length n having weight less than or equal
to some k. Observe that S satisfies the two closure properties of a flip-swap language
as the flip-first and swap-first operations either decrease or maintain the weight. Thus,
S is a flip-swap language.
Binary strings ≤ γ: Let S be the set of binary strings of length n with each string
lexicographically smaller or equal to some string γ. Observe that S satisfies the two
closure properties of a flip-swap language as the flip-first and swap-first operations
either make the resulting string lexicographically smaller or produce the same string.
Thus, S is a flip-swap language.
Binary strings with ≤ k inversions: An inversion with respect to 0∗1∗ in a binary
string α = b1b2 · · · bn is any bi = 1 and bj = 0 such that i < j. For example α =
100101 has four inversions: (b1, b2), (b1, b3), (b1, b5), (b4, b5). Let S be the set of binary
strings of length n with less than or equal to k inversions with respect to 0∗1∗. Observe
that S satisfies the two closure properties of a flip-swap language as the flip-first and
swap-first operations either decrease or maintain the number of inversions. Thus, S is a
flip-swap language.
Binary strings with ≤ k transpositions: The number of transpositions of a binary
string α = b1b1 · · · bn with respect to 0∗1∗ is the minimum number of swap(i, j) oper-
ations required to change α into the form 0∗1∗. For example, the number of transposi-
tions of the string 100101 is 1. Let S be the set of binary strings of length n with less
than or equal to k transpositions with respect to 0∗1∗. Observe that S satisfies the two
closure properties of a flip-swap language as the flip-first and swap-first operations ei-
ther decrease or maintain the number of transpositions.Thus, S is a flip-swap language.
Binary strings < or ≤ their reversal: Let S be the set of binary strings of length
n with each string lexicographically smaller than (or equal to) their reversal. Observe
that S satisfies the swap-first property as the swap-first operation either produces the
same string, or makes the resulting sting lexicographically smaller while its reversal
lexicographically larger. Furthermore, S ∪ {0n} satisfies the flip-first property as the
flip-first operation complements the most significant bit of α but the least significant bit
of its reversal when the weight of the string is larger than one; or otherwise produces the
string 0n when the weight of the string is equal to one. Thus, S is a flip-swap language.
Equivalence class of strings under reversal has also been called neckties [23].
Binary strings< or ≤ their complemented reversal: Let S be the set of binary strings
of length n with each string lexicographically smaller than (or equal to) its comple-
mented reversal. Observe that S satisfies the flip-first property as the flip-first operation
makes the resulting string lexicographically smaller while its complemented reversal
lexicographically larger. Furthermore, S satisfies the swap-first property as the swap-
first operation either produces the same string, or complements the most significant bit
of α and also a 1 of its complemented reversal. Thus, the resulting string must also be
less than its complemented reversal. Thus, S is a flip-swap language.
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Binary strings with forbidden 10t: Observe that the set of binary strings of length n
without the substring 10t satisfies the two closure properties of a flip-swap language as
the flip-first and swap-first operations do not create the substring 10t. Thus, the set of
binary strings of length n without the substring 10t is a flip-swap language.
Sublists of BRGC for constructing Gray codes for strings with forbidden 10t have also
been studied in [3].
Binary strings with forbidden prefix 1γ: Observe that the set of binary strings of
length n without the prefix 1γ satisfies the two closure properties of a flip-swap lan-
guage as the flip-first and swap-first operations either create a string with the prefix 0 or
produce the same string. Thus, the set of binary strings of length n without the prefix
1γ is a flip-swap language.
Prefix normal words: A binary string α is prefix normal with respect to 0 (also known
as 0-prefix normal word) if no substring of α has more 0s than its prefix of the same
length. For example, the string 001010010111011 is a 0-prefix normal word but the
string 001010010011011 is not because it has a substring of length 5 with four 0s while
the prefix of length 5 has only three 0s. Observe that the set of 0-prefix normal words of
length n satisfies the two closure properties of a flip-swap language as the flip-first and
swap-first operations either increase or maintain the number of 0s in its prefix. Thus,
the set of 0-prefix normal words of length n is a flip-swap language.
Necklaces: A necklace is the lexicographically smallest (largest) string in an equiv-
alence class under rotation. Let N(n) be the set of necklaces of length n and α =
0j1bj+2bj+3 · · · bn be a necklace in N(n). By the definition of necklace, it is easy to
see that flipα(`α) = 0j+1bj+2bj+3 · · · bn ∈ N(n) and thus N(n) satisfies the flip-
first property. For the swap-first operation, observe that if α 6= 0n−11 and bj+2 = 1,
then the swap-first operation produces the same necklace. Otherwise if α 6= 0n−11 and
bj+2 = 0, then the swap-first operation produces the string 0j+11bj+3bj+4 · · · bn which
is clearly a necklace. Thus, the set of necklaces is a flip-swap language.
Lyndon words: An aperiodic necklace is a necklace that cannot be written in the form
βj for some j < n. A Lyndon word is an aperiodic necklace when using the lexico-
graphically smallest string as the representative. Let L(n) denote the set of Lyndon
words of length n. Since N(n) is a flip-swap language and L(n) ∪ {0n} ⊆ N(n), it
suffices to show that applying the flip-first or the swap-first operation on a Lyndon word
either yields an aperiodic string or the string 0n.
Clearly L(n) ∪ {0n} satisfies the two closure properties when α ∈ {0n, 0n−11}. Thus
in the remaining of the proof, α /∈ {0n, 0n−11}. We first prove by contradiction that
L(n) ∪ {0n} satisfies the flip-first property. Let α = 0j1bj+2bj+3 · · · bn be a string
in L(n) ∪ {0n}. Suppose that L(n) ∪ {0n} does not satisfy the flip-first property and
flipα(`α) is periodic. Thus flipα(`α) = (0j+1β)t for some string β and t ≥ 2. Ob-
serve that α = 0j1β(0j+1β)t−1 which is clearly not a Lyndon word, a contradiction.
Therefore L(n)∪ {0n} satisfies the flip-first property. Then similarly we prove by con-
tradiction that L(n) ∪ {0n} satisfies the swap-first property. If bj+2 = 1, then applying
the swap-first operation on α produces the same Lyndon word. Thus in the remain-
ing of the proof, bj+2 = 0. Suppose that L(n) ∪ {0n} does not satisfy the swap-
first property such that α ∈ L(n) ∪ {0n} but swapα(`α, `α + 1) is periodic. Thus
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swapα(`α, `α + 1) = (0j+11β)t for some string β and t ≥ 2. Thus α contains the
prefix 0j1 but also the substring 0j+11 in its suffix which is clearly not a Lyndon word,
a contradiction. Thus, L(n) is a flip-swap language.
Prenecklaces: A prenecklace is a prefix of a necklace. Since N(n) is a flip-swap lan-
guage, applying the flip-first or the swap-first operation on a prenecklace also creates
a string that is a prefix of a necklace. Thus, the set of prenecklaces of length n is a
flip-swap language.
Pseudo-necklaces: A block with respect to 0∗1∗ is a maximal substring of the form
0∗1∗. Each block Bi with respect to 0∗1∗ can be represented by two integers (si, ti)
corresponding to the number of 0s and 1s respectively. For example, the string α =
000110100011001 can be represented by B4B3B2B1 = (3, 2)(1, 1)(3, 2)(2, 1). A
block Bi = (si, ti) is said to be lexicographically smaller than a block Bj = (sj , tj)
(denoted by Bi < Bj) if si < sj or si = sj with ti < tj . A string α = b1b2 · · · bn =
BbBb−1 · · ·B1 is a pseudo-necklace with respect to 0∗1∗ if Bb ≤ Bi for all 1 ≤ i < b.
Observe that the set of pseudo-necklaces of length n satisfies the two closure properties
of a flip-swap language as the flip-first and swap-first operations do not make the first
block Bb lexicographically larger, while the remaining blocks either remain the same
or become lexicographically larger. Thus, the set of pseudo-necklaces of length n is a
flip-swap language.
Left factors of k-ary Dyck words: A k-ary Dyck word is a binary string of length
n = tk with t copies of 1 and t(k − 1) copies of 0 such that every prefix has at least
k−1 copies of 0 for every 1. A string is said to be a left factor of a k-ary Dyck word if it
is the prefix of some k-ary Dyck word. Similarly, a string is said to be a right factor of a
k-ary Dyck word if it is the suffix of some k-ary Dyck word. It is well-known that k-ary
Dyck words are in one-to-one correspondence with k-ary trees with t internal nodes.
When k = 2, Dyck words are counted by the Catalan numbers and are equivalent to
balanced parentheses. As an example, 001011 is a 2-ary Dyck word while 011001 is
not. k-ary Dyck words and balanced parentheses strings are well studied and have lots
of applications including trees and stack-sortable permutations [5,18,20,33].
The set of k-ary Dyck words of length n is not a flip-swap language since 001011 is a
2-ary Dyck word but 000011 is not. The set of length n prefixes of k-ary Dyck words is,
however, a flip-swap language. This set is also called ballot sequences. Observe that the
set of left factors of k-ary Dyck words satisfies the two closure properties of a flip-swap
language as the flip-first and swap-first operations do not increase the number 1s in the
prefix. Thus, the set of left factors of k-ary Dyck words is a flip-swap language.
Efficient generation of left factors of k-ary Dyck words or ballot sequences of length n
in BRGC order has been studied in [39].
Lattice paths with ≤ k flaws: A lattice path is a path in the two-dimensional integer
grid Z2 that starts at the origin (0, 0) and consists of steps that change the current
position by upsteps (+1,+1) or by downsteps (+1,−1). A flaw of a lattice path is a
downstep below the line y = 0. A Dyck path (2-ary Dyck word) is thus a lattice path
with no flaws.
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A lattice path can be encoded as a binary string with an upstep represented by a 0 and a
downstep represented by a 1. For example, the below lattice path can be represented by
the binary string 011011000011 and has three flaws (highlighted in bold).

Let S be the set of binary strings of length n representing lattice paths with at most k
flaws. Observe that S satisfies the flip-first property as the flip-first operation changes a
downstep to an upstep and thus produces a lattice path with the same or less number of
flaws. Furthermore, S satisfies the swap-first property as the swap-first operation either
produces the same string, or replaces a downstep-upstep (10) with an upstep-downstep
(01) and thus produces a lattice path with the same or less number of flaws. Thus, the
set of binary strings of length n representing lattice paths with at most k flaws is a
flip-swap language.
Feasible solutions to 0-1 knapsack problems: The input to a 0-1 knapsack problem is
a knapsack capacity W , and a set of n items each of which has a non-negative weight
wi ≥ 0 and a value vi. A subset of items is feasible if the total weight of the items in
the subset is less than or equal to the capacity W . Typically, the goal of the problem is
to find a feasible subset with the maximum value, or to decide if a feasible subset exists
with value ≥ c. Given the input to a 0-1 knapsack problem, we reorder the items by
non-increasing weight. That is, wi ≥ wi+1 for 1 ≤ i ≤ n−1. Notice that the incidence
vectors of feasible subsets are now a flip-swap language. More specifically, flipping any
1 to 0 causes the subset sum to decrease, and so does swapping any 1 with the bit to
its right. Hence, the language satisfies the flip-first and the swap-first closure properties
and is a flip-swap language.

3.1 Flip-Swap poset

In this section we introduce a poset whose ideals correspond to a flip-swap language
which includes the string 0n.
Let α = b1b2 · · · bn be a length n binary string. We define τ(α) as follows:

τ(α) =


α if α = 0n,
flipα(`α) if α 6= 0n and (`α = n or b`α+1 = 1)
swapα(`α, `α + 1) otherwise.

Let τ t(α) denote the string that results from applying the τ operation t times to α. We
define the binary relation <R on B(n) to be the transitive closure of the cover relation
τ , that is β <R α if β 6= α and β = τ t(α) for some t > 0. It is easy to see that
the binary relation <R is irreflexive, anti-symmetric and transitive. Thus <R is a strict
partial order. The relation <R on binary strings defines our flip-swap poset.
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1000 1100 1010 1110 1001 1101 1011 1111

0100 0110 0101 0111

0010 0011

0001

0000

(a) The flip-swap poset P(4).

1000 1001

0100 0110 0101 0111

0010 0011

0001

0000

(b) An ideal of P(4).

Fig. 1: Flip-swap languages are the ideals of the flip-swap poset. The ideal in (b) con-
tains the 4-bit binary strings that are ≤ 1001 with respect to lexicographic order.

Definition 1. The flip-swap poset P(n) is a strict poset with B(n) as the ground set
and <R as the strict partial order.

Figure 1 shows the Hasse diagram of P(4) with the ideal for binary strings of length 4
that are lexicographically smaller or equal to 1001 in (b). Observe that P(n) is always
a tree with 0n as the unique minimum element, and that its ideals are the subtrees that
contain this minimum.

Lemma 1. A set S over B(n) that includes 0n is a flip-swap language if and only if S
is an ideal of P(n).

Proof. Let S be a flip-swap language and α be a string in S. Since S is a flip-swap
language, S satisfies the flip-first and swap-first properties and thus τ(α) is a string in
S. Therefore every string γ <R α is in S and hence S is an ideal of P(n). The other
direction is similar.

If S is a set of binary strings and γ is a binary string, then the quotient of S and γ is
S/γ = {α | αγ ∈ S}.

Lemma 2. If S1 and S2 are flip-swap languages and γ is a binary string, then S1∩S2,
S1 ∪ S2 and S1/γ are flip-swap languages.

Proof. Let S1 and S2 be two flip-swap languages and let γ be a binary string. The
intersection and union of ideals of any poset are also ideals of that poset, so S1 ∩ S2

and S1 ∪ S2 are flip-swap languages. Now consider α ∈ S1/γ.
Suppose α ∈ S1/γ for some non-empty γ where j = |α|. This means that αγ ∈ S1.
Consider three cases depending `αγ . If `αγ < j, then clearly τ(αγ) = τ(α)γ. From
Lemma 1, τ(α)γ ∈ S1 and thus τ(α) ∈ S1/γ. If `αγ = j, then α = 0j−11 and τ(α) =
0j . Since S1 is a flip-swap language 0jγ ∈ S1. Again this implies that τ(α) ∈ S1/γ.
If `αγ > j then α = 0j and τ(α) = α in this case. For each case we have shown that
τ(α) ∈ S1/γ and thus S1/γ is a flip-swap language by Lemma 1.

Corollary 1. Flip-swap languages are closed under union, intersection, and quotient.
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Proof. Let S1 and S2 be flip-swap languages and γ be a binary string. Since S1 and S2

can be represented by ideals of the flip-swap poset, possibly excluding 0n, by Lemma 2
the sets S1 ∩ S2, S1 ∪ S2 and S1/γ are flip-swap languages.

Lemma 3. If αγ is a binary string in a flip-swap language S, then 0|α|γ ∈ S.

Proof. This result follows from the flip-first property of flip-swap languages.

4 A generic successor rule for flip-swap languages

Consider any flip-swap language S that includes the string 0n. Let BRGC(S) denote
the listing of S in BRGC order. Given a string α ∈ S, we define a generic successor
rule that computes the string following α in the cyclic listing BRGC(S).
Let α = b1b2 · · · bn be a string in S. Let tα be the leftmost position of α such that
flipα(tα) ∈ S when |S| > 1. Such a tα exists since S satisfies the flip-first property
and |S| > 1. Recall that `α is the position of the leftmost 1 of α (or |α| + 1 if no such
position exists). Notice that tα ≤ `α when |S| > 1 since S is a flip-swap language.
Let flip2α(i, j) be the string obtained by complementing both bi and bj . When the
context is clear we use flip2(i, j) instead of flip2α(i, j). Also, let w(α) denote the
number of 1s of α. We claim that the following function f computes the next string in
the cyclic ordering BRGC(S):

f(α) =



0n if α = 0n−11; (4a)

flipα(tα) if w(α) is even and (tα = 1 or flip2α(tα − 1, tα) /∈ S);(4b)

flip2α(tα − 1, tα) if w(α) is even and flip2α(tα − 1, tα) ∈ S; (4c)

flip2α(`α, `α + 1) if w(α) is odd and flipα(`α + 1) /∈ S; (4d)

flipα(`α + 1) if w(α) is odd and flipα(`α + 1) ∈ S. (4e)

Thus, successive applications of the function f on a flip-swap language S, starting with
the string 0n, list out each string in S in BRGC order. As an illustration of the function
f , successive applications of this rule for the set of necklaces of length 6 starting with
the necklace 000000 produce the listing in Table 2.

Theorem 4. If S is a flip-swap language including the string 0n and |S| > 1, then f(α)
is the string immediately following the string α in S in the cyclic ordering BRGC(S).

We will provide a detailed proof of this theorem in the next subsection. Observe that
each rule in f complements at most two bits and thus successive strings in S differ by
at most two bit positions. Furthermore, BRGC(S) is still a 2-Gray code (although not
necessarily cyclic) when 0n is excluded from S. This proves Theorem 2.

4.1 Proof of Theorem 4

This section proves Theorem 4. We begin with a lemma by Vajnovszki [31], and a
remark that is due to the fact that 0n−11 is in a flip-swap language S when |S| > 1.
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Necklaces Parity of w(α) tα `α Successor Case
000000 even 6 flip2(5, 6) (4c)
000011 even 3 flip2(2, 3) (4c)
011011 even 2 flip(2) (4b)
001011 odd 3 flip(4) (4e)
001111 even 2 flip2(1, 2) (4c)
111111 even 1 flip(1) (4b)
011111 odd 2 flip(3) (4e)
010111 even 3 flip(2) (4b)
000111 odd 4 flip(5) (4e)
000101 even 2 flip(2) (4b)
010101 odd 2 flip2(2, 3) (4d)
001101 odd 3 flip(4) (4e)
001001 even 3 flip(3) (4b)
000001 odd flip(6) (4a)

Table 2: The necklaces of length 6 induced by successive applications the function f
starting from 000000. The sixth column of the table lists out the corresponding
rules in f that apply to each necklace to obtain the next necklace.

Lemma 4. Let α = b1b2 · · · bn and β be length n binary strings such that α 6= β. Let
r be the rightmost position in which α and β differ. Then α comes before β in BRGC
order (denoted by α ≺ β) if and only if w(brbr+1 · · · bn) is even.

Remark 1. A flip-swap language S in BRGC order ends with 0n−11 when |S| > 1.

Let succ(S, α) be the successor of α in S in BRGC order (i.e. the string after α in the
cyclic ordering BRGC(S)). Next we provide two lemmas, and then prove Theorem 4.

Lemma 5. Let S be a flip-swap language with |S| > 1 and α be a string in S. Let tα be
the leftmost position such that flipα(tα) ∈ S. If w(α) is even, then tα is the rightmost
position in which α and succ(S, α) differ.

Proof. By contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r be the right-
most position in which α and β differ with r 6= tα. If tα > r, then β has the suffix
1br+1br+2 · · · bn since br = 0 because r < tα ≤ `α. Thus by the flip-first property,
0r−11br+1br+2 = flipα(r) ∈ S and r < tα, a contradiction.
Otherwise if tα < r, then let γ = flipα(tα). Clearly γ 6= α. Now observe that
w(btbt+1 · · · bn) is even because tα ≤ `α and w(α) is even, and thus by Lemma 4,
α ≺ γ. Also, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β
and r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = tα.

Lemma 6. Let S be a flip-swap language with |S| > 1 and α 6= 0n−11 be a string in
S. If w(α) is odd, then `α+1 is the rightmost position in which α and succ(S, α) differ.
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Proof. Since α 6= 0n−11 and w(α) is odd, `α < n − 1. We now prove the lemma by
contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r 6= `α+1 be the rightmost
position in which α and β differ. If r < `α+1, then w(brbr+1 · · · bn) is odd but α ≺ β,
a contradiction by Lemma 4. Otherwise if r > `α+1, then let γ = flip2α(`α, `α+1).
Clearly γ 6= α, and by the flip-first and swap-first properties, γ ∈ S. Also, observe
that w(b`α+1b`α+2 · · · bn) is even because w(α) is odd, and thus by Lemma 4, α ≺ γ.
Further, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β and
r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = `α + 1.

Proof of Theorem 4. Let α = a1a2 · · · an and β = succ(S, α) = b1b2 · · · bn. Let tα
be the leftmost position such that flipα(tα) ∈ S. First we consider the case when
α = 0n−11. Recall that the first string in B(n) in BRGC order is 0n [17] and 0n is a
string in S by Lemma 3. Also, the last string in S in BRGC order is 0n−11 by Remark 1
when |S| > 1. Thus the string that appears immediately after α in the cyclic ordering
BRGC(S) is f(α) when α = 0n−11. In the remainder of the proof, α 6= 0n−11 and we
consider the following two cases.

Case 1: w(α) is even: If tα = 1, then clearly β = flipα(tα) = f(α). For the remain-
der of the proof, tα > 1.
Since tα ≤ `α, flip2α(tα − 1, tα) has the prefix 0tα−21. We now consider the
following two cases. If flip2α(tα − 1, tα) /∈ S, then flipα(tα) is the only string
in S that has tα as the rightmost position that differ with α and has the prefix 0t−2.
Therefore, β = flipα(tα) = f(α). Otherwise, flip2α(tα − 1, tα) and flipα(tα)
are the only strings in S that have tα as the rightmost position that differ with α
and have the prefix 0tα−2. By Lemma 4, flip2α(tα − 1, tα) ≺ flipα(tα) since
w(1atαatα+1atα+2 · · · an) is even. Thus, β = flip2α(tα − 1, tα) = f(α).

Case 2: w(α) is odd: By Lemma 6, β has the suffix a`α+1a`α+2a`α+3 · · · an. Ob-
serve that if flipα(`α + 1) /∈ S, then by the flip-first and swap-first properties,
flip2α(`α, `α + 1) is the only string in S that has `α + 1 as the rightmost position
that differ with β. Thus, β = flip2α(`α, `α + 1) = f(α). Otherwise by Lemma 4,
any string γ ∈ S with the suffix a`α+1a`α+2a`α+3 · · · an and γ 6= flipα(`α + 1)
has flipα(`α + 1) ≺ γ because w(1a`α+1a`α+2a`α+3 · · · an) is even. Thus, β =
flipα(`α + 1) = f(α).

Therefore, the string immediately after α in the cyclic ordering BRGC(S) is f(α).

5 Generation algorithm for flip-swap languages

In this section we present a generic algorithm to generate 2-Gray codes for flip-swap
languages via the function f .
A naı̈ve approach to implement f is to find tα by test flipping each bit in α to see if
the result is also in the set when w(α) is even; or test flipping the (`α + 1)-th bit of α
to see if the result is also in the set when w(α) is odd. Since tα ≤ `α, we only need
to examine the length `α − 1 prefix of α to find tα. Such a test can be done in O(nm)
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Algorithm 1 Pseudocode of the implementation of the function f .

1: function f (α)
2: if α = 0n−11 then return flipα(n)
3: else if w(α) is even then
4: tα ← `α
5: while tα > 1 and flipα(tα − 1) ∈ S do tα ← tα − 1

6: if tα 6= 1 and flip2α(tα − 1, tα) ∈ S then return flip2α(tα − 1, tα)
7: else return flipα(tα)
8: else
9: if flipα(`α + 1) /∈ S then return flip2α(`α, `α + 1)

10: else return flipα(`α + 1)

Algorithm 2 Algorithm to list out each string of a flip-swap language S in BRGC order.

1: procedure BRGC
2: α← 0n

3: do
4: if 0n ∈ S or w(α) > 0 then PRINT(α)

5: α← f(α)
6: while α 6= 0n

time, whereO(m) is the time required to complete the membership test of the set under
consideration. Pseudocode of the function f is given in Algorithm 1.
To list out each string of a flip-swap language S in BRGC order, we can repeatedly apply
the function f until it reaches the starting string. We maintain the variable `α which can
be easily maintained in O(n) time for each string generated. We also add a condition
such that the algorithm prints the string 0n only if 0n is a string in S. Pseudocode for
this algorithm, starting with the string 0n, is given in Algorithm 2. The algorithm can
easily be modified to generate the corresponding counterpart of S with respect to 0.
A simple analysis shows that the algorithm generates S in O(nm)-time per string. A
more thorough analysis improves this to O(n+m)-amortized time per string.

Theorem 5. If S is a flip-swap language, then the algorithm BRGC producesBRGC(S)
in O(n +m)-amortized time per string, where O(m) is the time required to complete
the membership tester for S.

Proof. Let α = a1a2 · · · an be a string in S. Clearly f can be computed in O(n)
time when w(α) is odd. Otherwise when w(α) is even, the while loop in line 5 of
Algorithm 1 performs a membership tester on each string β = b1b2 · · · bn in S with
b`αb`α+1 · · · bn = a`αa`α+1 · · · an and w(b1b2 · · · b`α−1) = 1. Observe that each of
these strings can only be examined by the membership tester once, or otherwise the
while loop in line 5 of Algorithm 1 produces the same tα which results in a duplicated
string, a contradiction. Thus, the total number of membership testers performed by the
algorithm is bound by |S|, and therefore f runs in O(m)-amortized time per string. Fi-
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nally, since the other part of the algorithm runs in O(n) time per string, the algorithm
BRGC runs in O(n+m)-amortized time per string.

The membership tests in this paper can be implemented in O(n) time and O(n) space;
see [4,8,24] for necklaces, Lyndon words, prenecklaces and pseudo-necklaces of length
n. One exception is the test for prefix normal words of length n requiresO(n1.864) time
and O(n) space [6]. Together with the above theorem, this proves Theorem 3.
Visit the Combinatorial Object Server [7] for a C implementation of our algorithms.
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