
AN EFFICIENT ALGORITHM FOR GENERATING NECKLACES

WITH FIXED DENSITY∗

FRANK RUSKEY† AND JOE SAWADA†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 671–684

Abstract. A k-ary necklace is an equivalence class of k-ary strings under rotation. A necklace
of fixed density is a necklace where the number of zeros is fixed. We present a fast, simple, recursive
algorithm for generating (i.e., listing) fixed-density k-ary necklaces or aperiodic necklaces. The
algorithm is optimal in the sense that it runs in time proportional to the number of necklaces
produced.

Key words. necklaces, Lyndon words, fixed density, CAT algorithm, generate, difference covers

AMS subject classifications. 05-04, 68R05, 68R15

PII. S0097539798344112

1. Introduction. There are many reasons to develop algorithms for produc-
ing lists of basic combinatorial objects. First, the algorithms are truly useful and
find many applications in diverse areas such as hardware and software testing, non-
parametric statistics, and combinatorial chemistry. Second, the development of these
algorithms can lead to mathematical discoveries about the objects themselves, either
experimentally or through insights gained in the development of the algorithms.

The primary performance goal in an algorithm for listing a combinatorial family
is an algorithm whose running time is proportional to the number of objects pro-
duced. In this paper an efficient algorithm is one that uses only a constant amount
of computation per object, in an amortized sense. Such algorithms are also said to
be constant amortized time (CAT) algorithms.

Necklaces are a fundamental type of combinatorial object, arising naturally, for
example, in the construction of single-track Gray codes, in the enumeration of irre-
ducible polynomials over finite fields, and in the theory of free Lie algebras. Efficient
algorithms for exhaustively generating necklaces were first developed by Fredricksen
and Kessler [4] and Fredricksen and Maiorana [5], although they did not prove that
they were efficient. They were proven to be efficient by Ruskey, Savage, and Wang
[8]. Closely related algorithms for generating Lyndon words (aperiodic necklaces)
were developed by Duval [3] and shown to be efficient by Berstel and Pocchiola [1].
Subsequently, a recursive algorithm was developed that was more flexible and easier
to analyze than the earlier algorithms, which were all iterative [2]. In many appli-
cations not all necklaces are required, but rather only those of fixed density (the
number of zeros is fixed). Previous to this paper, no efficient generation algorithm for
fixed-density necklaces was known.

Previous fixed-density necklace algorithms had running times of O(n · N(n, d))
(Wang and Savage [9]) and O(N(n)) (Fredricksen and Kessler [4]), where N(n, d)
denotes the number of necklaces with length n and density d and N(n) denotes the
number of necklaces with length n. Wang and Savage base their algorithm on find-
ing a Hamilton cycle in a graph related to a tree of necklaces. The main feature

∗Received by the editors August 31, 1998; accepted for publication (in revised form) December
23, 1998; published electronically November 23, 1999. This research was supported by the NSERC.

http://www.siam.org/journals/sicomp/29-2/34411.html
† Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada

(fruskey@csr.uvic.ca, jsawada@csr.uvic.ca).

671

672 FRANK RUSKEY AND JOE SAWADA

of their algorithm is that it also generates the strings in Gray code order. The ba-
sis of Fredricksen and Kessler’s algorithm is a mapping of lexicographically ordered
compositions to necklaces. Both algorithms consider only binary necklaces, but our
results apply over a general alphabet. We take a new approach by first modifying
Ruskey’s recursive algorithm for generating necklaces [2] and then optimizing it for
the fixed-density case. Recursive algorithms have several advantages over their itera-
tive counterparts. They are generally simpler and easier to analyze. They are more
suitable to conversion to backtracking algorithms, since subtrees are easily pruned
from the computation tree. In fact, we have used just such a backtracking to discover
new minimal difference covers (sets of numbers achieving all possible differences, mod
n).

In the following section we will give some definitions related to necklaces. In sec-
tion 3 we will introduce a fast algorithm for generating fixed-density k-ary necklaces.
In section 4 we analyze the algorithm, proving the algorithm is CAT for any density.
In section 5 we conclude by outlining an application and some future work.

2. Background and definitions. A k-ary necklace is an equivalence class of
k-ary strings under rotation. We identify each necklace with the lexicographically
least representative in its equivalence class. The set of all k-ary necklaces with length
n is denoted Nk(n). For example, N2(4) = {0000, 0001, 0011, 0101, 0111, 1111}.
The cardinality of Nk(n) is denoted Nk(n).

An important class of necklaces are those that are aperiodic. An aperiodic neck-
lace is called a Lyndon word. Let Lk(n) denote the set of all k-ary Lyndon words
with length n. For example, L2(4) = {0001, 0011, 0111}. The cardinality of Lk(n) is
denoted Lk(n).

A string α is a prenecklace if it is a prefix of some necklace. The set of all k-ary
prenecklaces with length n is denoted Pk(n). For example, P2(4) = N2(4) ∪ {0010,
0110}. The cardinality of Pk(n) is Pk(n).

We denote fixed-density necklaces, Lyndon words, and prenecklaces in a similar
manner by adding the additional parameter d to represent the number of nonzero
characters in the strings. We refer to the number d as the density of the string.
Thus the set of k-ary necklaces with density d is represented by Nk(n, d) and has
cardinality Nk(n, d). For example, N3(4, 2) = {0011, 0012, 0021, 0022, 0101, 0102,
0202}. Similarly, the set of fixed-density Lyndon words is represented by Lk(n, d) with
cardinality Lk(n, d). The set of fixed-density prenecklaces is denoted by Pk(n, d)
and has cardinality Pk(n, d). In addition to these familiar terms we introduce the
set P′

k(n, d), which is the elements of Pk(n, d) whose last character is nonzero. Its
cardinality is denoted P ′

k(n, d).
To count fixed-density necklaces we let N(n0, n1, . . . , nk−1) denote the number of

necklaces composed of ni occurrences of the symbol i for i = 0, 1, . . . , k − 1. Let the
density of the necklace d = n1 + · · ·+ nk−1 and n0 = n− d. It is known from Gilbert
and Riordan [6] that

N(n0, n1, . . . , nk−1) =
1

n

∑

j\gcd(n0,...,nk−1)

φ(j)
(n/j)!

(n0/j)! · · · (nk−1/j)!
.(2.1)

To get the number of fixed-density necklaces with length n and density d, we sum
over all possible values of n1, n2, . . . , nk−1:

Nk(n, d) =
∑

n1+···+nk−1=d

N(n− d, n1, . . . , nk−1).

GENERATING NECKLACES WITH FIXED DENSITY 673

The number of fixed-density Lyndon words is defined similarly:

L(n0, n1, . . . , nk−1) =
1

n

∑

j\gcd(n0,n1,...,nk−1)

µ(j)
(n/j)!

(n0/j)!(n1/j)! · · · (nk−1/j)!
,

Lk(n, d) =
∑

n1+···+nk−1=d

L(n− d, n1, . . . , nk−1).

In the binary case these expressions simplify as follows:

N2(n, d) =
1

n

∑

j\gcd(n,d)

φ(j)

(

n/j

d/j

)

,

L2(n, d) =
1

n

∑

j\gcd(n,d)

µ(j)

(

n/j

d/j

)

.

Currently, it is not known how to count fixed-density prenecklaces.
In the following section we will introduce a CAT algorithm to generate fixed-

density necklaces. When analyzing the performance of our algorithm we make use of
the following lemmas about prenecklaces and Lyndon words.

Cattell et al. [2] give a lemma that characterizes prenecklaces by making use of a
function lyn on strings, which is the length of the longest Lyndon prefix of the string:

lyn(a1a2 · · · an) = max{1 ≤ p ≤ n|a1a2 · · · ap ∈ Lk(p)}.

Lemma 2.1. Let k-ary string α = a1 · · · an and p = lyn(α). Then α ∈ Pk(n) if

and only if aj−p = aj for j = p + 1, . . . , n.

Reutenauer [7] gives a useful lemma about Lyndon words. Inequalities between
words are always with respect to lexicographic order.

Lemma 2.2. If α and β are Lyndon words with α < β, then αβ is a Lyndon

word.

3. Generating fixed-density necklaces. We use a two-step approach to de-
velop a fast algorithm for generating fixed-density necklaces. First we create a new
necklace algorithm based on the recursive necklace-generation algorithm Gen(t, p)
(Figure 3.1) [2]. We then optimize this new necklace algorithm for the fixed-density
case by making a few key observations about fixed-density necklaces.

To begin we give a brief overview of Gen(t, p). The general approach of this
algorithm is to generate all length n prenecklaces. The prenecklace being generated is
stored in the array a with one position for each character. We assume that a0 = 0. The
initial call is Gen(1,1) and each recursive call appends a character to the prenecklace to
get a new prenecklace. At the beginning of each recursive call to Gen(t, p), the length
of the prenecklace being generated is t − 1 and the length of the longest Lyndon
prefix is p. As long as the length of the current prenecklace is less than n, each call
to Gen(t, p) makes one recursive call for each valid value for the next character in
the string, updating the values of both t and p in the process. This algorithm can
generate necklaces, Lyndon words, or prenecklaces of length n in lexicographic order
by specifying which object we want to generate. The function PrintIt(p) allows us to
differentiate between these various objects as shown in Figure 3.2.

The computation tree for Gen(t, p) consists of all prenecklaces of length less than
or equal to n. As an example, we show a computation tree for N2(4) in Figure 3.3.
By comparing the number of nodes in the computation tree to the number of objects
generated it was shown that this algorithm is CAT [2].

674 FRANK RUSKEY AND JOE SAWADA

procedure Gen (t, p : integer);
local j : integer;
begin

if t > n then PrintIt(p)
else begin

at := at−p; Gen(t + 1, p);
for j ∈ {at−p + 1, . . . , k − 2, k − 1} do begin

at := j; Gen(t + 1, t);
end;

end;
end {of Gen};

Fig. 3.1. The recursive necklace algorithm.

Sequence type PrintIt(p)
Prenecklaces (Pk(n)) Println(a[1..n])
Lyndon words (Lk(n)) if p = n then Println(a[1..n])
Necklaces (Nk(n)) if n mod p = 0 then Println(a[1..n])

Fig. 3.2. Different objects output by different versions of PrintIt(p).

3.1. Modified necklace algorithm. For every necklace of positive density,
the last character of the string must be nonzero. Thus, if we are concerned only with
generating necklaces or Lyndon words we can reduce the size of the computation tree
by compressing all the prenecklaces whose last character is 0. Looking at Figure 3.3,
we want to generate only the nodes in bold. This results in the modified computation
tree shown in Figure 3.4. Notice that at each successive level in this tree we are
incrementing the density of the prenecklace rather than the length. To generate this
modified tree we create a recursive routine based on the original necklace algorithm
in Figure 3.1; however, rather than determining the valid values for the next position
in the string, we need to determine both the valid positions and the values for the
next nonzero character.

To make this change we use the array a to hold the positions of the nonzero char-
acters and maintain another array b to indicate the values of the nonzero characters.
The ith element of the array a represents the position of the ith nonzero character,
and the ith element of the array b represents the value of the ith nonzero character.
Thus if we generate a necklace with length 7 with a = [3, 4, 5, 7] and b = [1, 3, 2, 1],
the corresponding necklace is 0013201. (We can also maintain the original necklace
structure by performing some extra constant-time operations.) Note that in the bi-
nary case, the second array b is not necessary since all nonzero characters must be 1.
We use the parameter t to indicate the current density of the string. The length of
the current string is at. Since all Lyndon prefixes end in a nonzero character, we let
ap indicate the length of the longest Lyndon prefix. Using these two parameters, we
can compute all valid positions and values for the next nonzero character.

To determine the valid positions and values for the next nonzero character and
to maintain the lexicographic ordering we compute the maximum position and the
minimum value for that position so that the new string still has the prenecklace
property. We compute this maximal position for the next character using the following

GENERATING NECKLACES WITH FIXED DENSITY 675

0000 0001 0010 0011 0101 0110 0111 1111

111011010001000

110100

0 1

Fig. 3.3. Computation tree for N2(4) from Gen(t, p).

0011 0101

0001 01 1

011 11

1111

1110111

001

Fig. 3.4. Computation tree for N2(4) from Gen2(t, p).

expression:

b(t + 1)/pcap + a(t+1) mod p.

The minimal value for this position is bt+1−p. By the properties of prenecklaces all
larger values at the maximal position are also valid [8]. Also, all positions before the
maximum position and greater than the position of the last assigned nonzero character
(at) can hold all values ranging from 1 to k− 1. (Note that since we want to generate
all necklaces with length n, we restrict the position to be less than or equal to n.) For
each of these valid combinations of position and value, we lexicographically assign the
position to at+1 and the value to bt+1, followed by a recursive call updating both t
and p. Finally, if the position of the last nonzero element is greater than or equal to
n, we call the PrintIt(p) function to print out either the Lyndon words or necklaces in
a similar manner to the original algorithm Gen(t, p).

676 FRANK RUSKEY AND JOE SAWADA

procedure Gen2 (t, p : integer);
local i, j,max : integer;
begin

if at ≥ n then PrintIt(p)
else begin

max = at+1−p + ap;
if max ≤ n then begin

at+1 := max;
bt+1 := bt+1−p;
Gen2 (t + 1, p);

end else begin

max := n; at+1 := n; bt+1 := 1;
Gen2 (t + 1, t + 1);

end;
for i ∈ {bt+1 + 1, . . . , k − 2, k − 1} do begin

bt+1 := i;
Gen2 (t + 1, t + 1);

end;
for j ∈ {max− 1,max− 2, . . . , at + 1} do begin

at+1 := j;
for i ∈ {1, . . . , k − 2, k − 1} do begin

bt+1 := i;
Gen2 (t + 1, t + 1);

end; end; end;
end {of Gen2};

Fig. 3.5. Modified recursive necklace algorithm.

This modified algorithm, Gen2(t, p), for generating necklaces is given in Figure
3.5. Each initial branch of the computation tree is a result of a separate call to
Gen2(t, p), each call specifying a different combination for the position and value of
the first nonzero character. Note that the zero string is not generated by Gen2(t,p)
and must be generated separately. The nodes of the resulting computation tree for
Gen2(t, p) are all prenecklaces with length less than or equal to n whose last character
is nonzero.

A complete C program for this modified necklace algorithm is available from the
authors. A simplified program for the binary case is also available. Observe that we
are not restricted to generating the necklaces in lexicographic order. Many orders are
possible by reordering the recursive calls.

3.2. Fixed-density necklace algorithm. We now optimize our modified al-
gorithm for the fixed-density case by making several observations. First, we restrict
the position of the first nonzero character depending on the density. In particular,
there are no necklaces with density d that can have the first nonzero character in a
position after n− d + 1 or before b(n− 1)/d + 1c. Also, if we are generating a string
with length n and density d and have just placed the ith nonzero character, then the
(i+ 1)st nonzero character must come before the position n− (d− i) + 2. If we place
the next character at or after this position, then any resulting string with length n will
have density less than d. Also, because the last nonzero character must be in the nth
position, we stop the string generation after placing the (d− 1)st nonzero character.

GENERATING NECKLACES WITH FIXED DENSITY 677

000001 00001 0001 001 01 1

000011 000101 00011 001001 00101 0011

0001101 00100110001011 00101010000111 0011001

Fig. 3.6. Computation tree (solid edges only) for N2(7, 3) from GenFix(t, p).

Thus, the strings generated by following this last restriction are strings with length
less than n and density d − 1. By following this approach, we may generate up to
k − 1 strings for each call to PrintIt(p), since we can place up to k − 1 characters in
the nth position. However, it is not always the case that we will generate all k − 1
strings or even any strings with each call to PrintIt(p). Thus we add an additional
constant-time test to see which values can be placed in the nth position. This test is
similar to the test for finding the maximal valid position and minimum value for the
next nonzero character as outlined in the previous subsection. Once a minimum value
is determined (if there is one at all), we perform the usual tests to determine if the
string is a necklace or a Lyndon word. All larger values for the nth position will result
in a string that is a Lyndon word [8]. Thus the overall work done in the PrintIt(p)
function to determine the valid strings remains constant for each string generated.

In summary, we use our modified necklace algorithm outlined in Figure 3.5 with
the following optimizations:

1. The first nonzero character must be between n − d + 1 and (n − 1)/d + 1
inclusive.

2. The ith nonzero character must be placed at or before the (n − d + i)th
position.

3. Stop generating when we have assigned d− 1 nonzero characters.
4. Determine valid values for the nth position in the PrintIt(p) function.

The computation tree for generating N2(7, 3) is given in Figure 3.6. The dotted
lines indicate the initial branches we do not need to follow by modification 1. The
arrows indicate the strings produced by adding the final character to the nth position.
The bold strings indicate the actual necklaces produced by the PrintIt(p) function. The
remaining string (0011001) is rejected since it is not a necklace.

The algorithm for generating fixed-density necklaces and Lyndon words in lex-
icographic order is given in Figure 3.7. To generate fixed-density prenecklaces, we
generate N(n+ 1, d+ 1) and print out only the first n characters, making sure we do
not print the same string twice. A complete C program for this fixed-density necklace
algorithm is available from the authors. A simplified program for the binary case is
also available. In the latter program we make use of the fact that we can generate
binary necklaces with density d > n/2 by complementing the output from generating
necklaces with density n − d. In this case, however, the strings generated are not in
lexicographic order and are not necessarily the lexicographic representatives for their
respective equivalence classes.

678 FRANK RUSKEY AND JOE SAWADA

procedure GenFix (t, p : integer);
local i, j,max, tail : integer;
begin

if t ≥ d− 1 then PrintIt(p);
else begin

tail := n− (d− t) + 1;
max := at+1−p + ap;
if max ≤ tail then begin

at+1 := max;
bt+1 := bt+1−p;
GenFix(t + 1, p);
for i ∈ {bt+1 + 1, . . . , k − 2, k − 1} do begin

bt+1 := i;
GenFix(t + 1, t + 1);

end;
tail := max− 1;

end;
for j ∈ {tail, tail − 1, . . . , at + 1} do begin

at+1 := j;
for i ∈ {1, . . . , k − 2, k − 1} do begin

bt+1 := i;
GenFix(t + 1, t + 1);

end; end; end;
end {of GenFix};

Fig. 3.7. Fixed-density necklace algorithm.

4. Analysis of algorithm. In this section we show that GenFix(t, p) is CAT.
We start the analysis by analyzing several trivial cases. When the desired density
of the string is n the computation tree and strings produced are equivalent to the
generation of Nk−1(n), which we already know is CAT. When the density is zero we
simply generate the zero string, and when d = 1 we generate the k − 1 strings where
the last bit ranges from 1 to k − 1 and the rest of the string is all zeros. In each case
where the density is greater than zero the resulting strings are generated in CAT.

For the nontrivial cases we examine the number of nodes in the computation tree,
noting that the amount of work to generate each node is constant. When 1 < d < n,
the nodes in the computation tree consist only of prenecklaces that end in a nonzero
bit with density i ranging from 1 to d − 1 and length ranging from (n − 1)/d + i to
n − d + i. Recall that P′

k(n, d) is the set of prenecklaces with length n and density
d, where the last bit is nonzero. Thus, the size of the computation tree for our
fixed-density algorithm (1 < d < n) is bounded by the expression

CompTreek(n, d) ≤

d−1
∑

i=1

n−d+i
∑

j=n−1

d
+i

P ′
k(j, i).

Recall that we generate binary fixed-density necklaces with density greater than n/2
by generating N(n, n − d) and complementing the output. Therefore, in the case
where k = 2 (and only in this case), we have the restriction that d is less than or
equal to n/2.

To prove that our algorithm is efficient we will show that the ratio between the

GENERATING NECKLACES WITH FIXED DENSITY 679

size of the computation tree and the number of strings produced is bounded by a
constant. Since there does not appear to be a simple explicit formula for P ′

k(n, d),
our approach will be to derive an upper bound in terms of Nk(n, d) and Lk(n, d).

Lemma 4.1. P ′
k(n, d) ≤ Nk(n, d) + Lk(n, d).

Proof. We partition P′
k(n, d) into two categories: necklaces and nonnecklaces.

Let the elements of P′
k(n, d) that are not necklaces be Q′

k(n, d).
We show that Q′

k(n, d) ≤ Lk(n, d) by providing an injective mapping of Q′
k(n, d)

to Lk(n, d). By Lemma 2.1 each element of the set Q′
k(n, d) must have the form

α = (a1 · · · ap)
ja1 · · · am, where p = lyn(α), j ≥ 1, and 0 < m < p. Let ni be

the number of occurrences of the symbol i in a1 · · · am and define the string γ =
0n01n1 · · · (k − 1)nk−1 . We define a function f on the set Q′

k(n, d) as follows:

f(α) = γ(a1 · · · ap)
j .

For example, f((002101303)70021013) = 0001123(002101303)7. This mapping pre-
serves both length and density. Since γ and a1 · · · ap are both Lyndon words and
γ < a1 · · · ap, it follows from repeated use of Lemma 2.2 that f(α) ∈ Lk(n, d).

To show that f is injective consider two unique elements of Q′
k(n, d): α =

(a1 · · · ap)
sa1 · · · ai and β = (b1 · · · bq)

tb1 · · · bj . If i = j, then f(α) 6= f(β), since
a1 · · · ap and b1 · · · bq are both Lyndon words and a1 · · · ap 6= b1 · · · bq. Otherwise as-
sume that i < j. Since ai and bj are both nonzero, the ith element of f(α) is nonzero
and the jth element of f(β) is nonzero. Now if the ith element of f(β) is nonzero
then the (i+1)st element must also be nonzero if f(α) = f(β). However the (i+1)st
element of f(α) = a1, which is 0. Thus f(α) 6= f(β) for unique α, β ∈ Q′

k(n, d). Thus
f is an injection from Q′

k(n, d) to Lk(n, d).
Now since there exists an injective mapping from Q′

k(n, d) to Lk(n, d) we have
Q′

k(n, d) ≤ Lk(n, d). From earlier discussion we know that P ′
k(n, d) = Nk(n, d) +

Q′
k(n, d) and thus P ′

k(n, d) ≤ Nk(n, d) + Lk(n, d).
We observe in the binary case that by taking each element from P2(n, d) and

adding a 1 to the end of the string we get the set P′
2(n + 1, d + 1). Thus from the

previous lemma we also get an upper bound on P2(n, d).
Corollary 4.2. P2(n, d) ≤ N2(n + 1, d + 1) + L2(n + 1, d + 1).
We can now bound our computation tree as the sum of fixed-density necklaces

and fixed-density Lyndon words:

CompTreek(n, d) ≤

d−1
∑

i=1

n−d+i
∑

j=n−1

d
+i

Nk(j, i) + Lk(j, i).

However, by plugging the formulas for fixed-density necklaces and Lyndon words into
the above expression we end up with a complicated quadruple sum. Therefore we
will prove two lemmas, which give simple bounds for fixed-density Lyndon words and
necklaces.

Lemma 4.3. The following inequality is valid for all 0 ≤ d ≤ n:

Lk(n, d) ≤
1

n

(

n

d

)

(k − 1)d.

Proof. Each element of Lk(n, d) is a representative of an equivalence class of k-ary
strings, each with n elements. If we add up the elements from each equivalence class
we will get nLk(n, d) unique strings each of length n and density d. The expression

680 FRANK RUSKEY AND JOE SAWADA

(

n

d

)

(k − 1)d counts the total number of k-ary strings with length n and density d.

Therefore Lk(n, d) ≤
1
n

(

n

d

)

(k − 1)d.
A similar bound for Nk(n, d) is more difficult to obtain. Here we bound Nk(n, d)

by Lk(n, d).
Lemma 4.4. The following inequality is valid for all 0 < d < n:

1

n

(

n

d

)

(k − 1)d ≤ Nk(n, d) ≤ 2Lk(n, d).

Proof. By considering the case when j = 1 in (2.1) and noting that the remaining
terms are all nonnegative, we have

Nk(n, d) ≥
1

n

∑

n1+···+nk−1=d

n!

(n0!)(n1!) · · · (nk−1!)

=
1

n

(

n

d

)

∑

n1+···+nk−1=d

d!

(n1!) · · · (nk−1!)

=
1

n

(

n

d

)

(k − 1)d.

The final equality is a result of the basic multinomial expansion.
To show that Nk(n, d) ≤ 2Lk(n, d), we provide an injective mapping of the pe-

riodic necklaces to Lyndon words. If α is a periodic necklace, then α = (a1 · · · ap)
j ,

where p = lyn(α) and j > 1. Since d < n we know that a1 = 0. We define a function
g on all periodic necklaces with length n and density d as follows:

g(α) = 0(a1 · · · ap)
j−1a2 · · · ap.

This function simply moves the bit ap(j−1)+1 = a1 = 0 to the front of the string. This
operation preserves both length and density. Since (a1 · · · ap)

j−1a2 · · · ap is a Lyndon
word, by Lemma 2.2 g(α) is a Lyndon word.

To show that g is an injection we consider two unique periodic necklaces: α =
(a1 · · · ap)

i and β = (b1 · · · bq)
j . If p = q and g(α) = g(β), then a1 · · · ap = b1 · · · bq,

contradicting the fact that α 6= β. If p 6= q, then assume that p < q. This implies
that i > j > 1. Now comparing the characters in positions 2, 3, . . . , q + 1 of g(α) and
g(β) we observe that if g(α) = g(β) then b1 · · · bq = (a1 · · · ap)

ta1 · · · as for some t ≥ 1
and 1 ≤ s ≤ p. However, since a1 · · · ap is a Lyndon word, then (a1 · · · ap)

ta1 · · · as
is periodic if s = p and is not a necklace if s < p. This contradicts the fact that
b1 · · · bq is a Lyndon word. Thus g(α) 6= g(β) for unique periodic necklaces α and β.
Therefore g is an injective mapping from the periodic necklaces to Lyndon words.

Since there exists an injective mapping from the periodic strings of Nk(n, d) to
Lk(n, d) we get the result Nk(n, d) ≤ 2Lk(n, d).

Using the previous lemmas we can simplify our upper bound on the size of the
computation tree:

CompTreek(n, d) =

d−1
∑

i=1

n−d+i
∑

j=n−1

d
+i

P ′
k(j, i)

≤

d−1
∑

i=1

n−d+i
∑

j=n−1

d
+i

Nk(j, i) + Lk(j, i)

GENERATING NECKLACES WITH FIXED DENSITY 681

≤ 3

d−1
∑

i=1

n−d+i
∑

j=1

Lk(j, i)

≤ 3

d−1
∑

i=1

n−d+i
∑

j=1

1

j

(

j

i

)

(k − 1)i

= 3

d−1
∑

i=1

1

i
(k − 1)i

n−d+i
∑

j=1

(

j − 1

i− 1

)

= 3

d−1
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i.(4.1)

To get the last two equalities we use some basic binomial coefficient identities.
To simplify this bound for the computation tree even more, we inductively prove

yet another upper bound for the remaining sum in (4.1). We first prove an upper
bound for the case when k > 2 and 1 < d < n. We then provide a similar proof for
the case when k = 2. In the latter case we take advantage of the fact that we can
generate binary necklaces with d > n/2 by generating necklaces with density n−d and
then complementing the output of each generated necklace to get all necklaces with
density d. Once again, this is the only situation where the strings are not generated in
lexicographic order. Thus when k = 2, we only consider the case when 1 < d ≤ n/2.

Lemma 4.5. For 2 ≤ d < n and k > 2,

d−2
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i <
2

d− 1

(

n− 1

d− 1

)

(k − 1)d−1.

Proof. We prove the lemma by induction on d. Let

Sk(n, d) =

d−2
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i.

Basis: d = 2 or 3, n ≥ 3. Observe that this covers all cases for n = 3, 4:

d = 2: Sk(n, 2) = 0 < 2(n− 1)(k − 1),

d = 3: Sk(n, 3) = (n− 2)(k − 1) <

(

n− 1

2

)

(k − 1)2.

Assume: Sk(n, d) <
2

d−1

(

n−1
d−1

)

(k−1)d−1 for 1 < d < n−1, k > 2, and n ≥ 5. Consider
Sk(n, d + 1):

Sk(n, d + 1) =

d−1
∑

i=1

1

i

(

n− d− 1 + i

i

)

(k − 1)i

=

d−2
∑

i=1

1

i

(

(n− 1) − d + i

i

)

(k − 1)i +
1

d− 1

(

n− 2

d− 1

)

(k − 1)d−1

<
2

d− 1

(

(n− 1) − 1

d− 1

)

(k − 1)d−1 +
1

d− 1

(

n− 2

d− 1

)

(k − 1)d−1

=
3

d− 1

(

n− 2

d− 1

)

(k − 1)d−1

682 FRANK RUSKEY AND JOE SAWADA

=
3d

(d− 1)(n− 1)

(

n− 1

d

)

(k − 1)d−1

≤
2

d

(

n− 1

d

)

(k − 1)d.

To show that the last inequality is correct we prove that 3d
(d−1)(n−1) ≤ 2

d
(k − 1) for

n ≥ 5. By multiplying both sides by d
k−1 we get 3d2

(d−1)(n−1)(k−1) ≤ 2. The LHS of

this inequality is maximized when we maximize d = n − 2 and minimize k = 3. By
substituting these values and rearranging we get

3(n− 2)(n− 2) ≤ 4(n− 1)(n− 3),

0 ≤ 4(n2 − 4n + 3) − 3(n2 − 4n + 4),

0 ≤ n(n− 4).

This equality is true for n ≥ 4.
Lemma 4.6. For 2 ≤ d ≤ n/2 and k = 2,

d−2
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i <
2

d− 1

(

n− 1

d− 1

)

(k − 1)d−1.

Proof. We prove the lemma by induction on d. Let

Sk(n, d) =

d−2
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i.

Basis: d = 2 or 3, n ≥ 3. Observe that this covers all cases for n = 3, 4, 5, 6, 7:

d = 2: Sk(n, 2) = 0 < 2(n− 1)(k − 1),

d = 3: Sk(n, 3) = (n− 2)(k − 1) <

(

n− 1

2

)

(k − 1)2.

Assume: Sk(n, d) <
2

d−1

(

n−1
d−1

)

(k − 1)d−1 for 1 < d < n/2 and n ≥ 5. From the proof
of the previous lemma we know

Sk(n, d + 1) <
3d

(d− 1)(n− 1)

(

n− 1

d

)

(k − 1)d−1

≤
2

d

(

n− 1

d

)

(k − 1)d.

To show that the last inequality is correct we prove that 3d
(d−1)(n−1) ≤ 2

d
(k − 1)

for n ≥ 8. By substituting the value 2 for k and multiplying both sides by d we get
3d2

(d−1)(n−1) ≤ 2. The LHS of this inequality is maximized when we maximize d = n
2 −1.

By substituting this value for d and rearranging the terms we get

3
(n

2
− 1

)2

≤ 2
(n

2
− 2

)

(n− 1),

0 ≤ 2
(n

2
− 2

)

(n− 1) − 3
(n

2
− 1

)2

,

0 ≤ 2

(

n2

2
−

5n

2
+ 2

)

− 3

(

n2

4
− n + 1

)

,

0 ≤
n2

4
− 2n + 1.

GENERATING NECKLACES WITH FIXED DENSITY 683

By solving this quadratic we see that the inequality holds for n ≥ 8.
We now use the previous lemmas to get a simple upper bound on the size of the

computation tree:

CompTreek(n, d) ≤ 3

d−1
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i

= 3

d−2
∑

i=1

1

i

(

n− d + i

i

)

(k − 1)i +
3

d− 1

(

n− 1

d− 1

)

(k − 1)d−1

<
6

d− 1

(

n− 1

d− 1

)

(k − 1)d−1 +
3

d− 1

(

n− 1

d− 1

)

(k − 1)d−1

=
9

d− 1

(

n− 1

d− 1

)

(k − 1)d−1.

Recall that our goal is to prove that the ratio of nodes in the computation tree to
the number of strings produced is bounded by a constant. From Lemma 4.4 we have
a lower bound on the number of strings produced:

Nk(n, d) >
1

n

(

n

d

)

(k − 1)d =
1

d

(

n− 1

d− 1

)

(k − 1)d.

Thus the ratio of our computation tree to necklaces produced is

CompTreek(n, d)

Nk(n, d)
< 9

d

(d− 1)(k − 1)
≤ 18.

Experimentally, this constant is less than 3.
Theorem 4.7. Algorithm GenFix for generating fixed-density k-ary necklaces is

CAT.

5. Future work and an application. In this paper we have presented a CAT
algorithm for generating fixed-density k-ary necklaces. This algorithm is used when
we want to generate necklaces where the number of zeros is fixed; however, if we want
all necklaces where the number of occurrences for every character is fixed, then our
algorithm works only for the binary case. An efficient algorithm for the k-ary case
would be very interesting, but currently does not exist. Another open problem is to
count the number of fixed-density prenecklaces; the number of fixed-density necklaces
and Lyndon words is known and was given in this paper.

5.1. Generating difference covers. As an application, we embed our fixed-
density necklace algorithm into a program that generates difference covers. A set D =
{a1, . . . , ak}, 1 < ai < n, is called an (n, k) difference cover if for every d 6= 0 mod n
there exists an ordered pair (ai, aj) in D such that ai − aj = d mod n. For example,
the set {1, 2, 3, 6} is a (10, 4) difference cover. An (n, k) difference cover is minimal
if an (n, k − 1) difference cover does not exist.

To generate all difference covers (n, k) we generate all fixed-density necklaces
N2(n, k) where the position of each one in the necklace represents a number in the
set D. To determine whether the necklace represents a difference cover, we keep track
of information about each ordered pair. This additional work takes at worst case
O(k) time for every node in the computation tree. Thus the overall running time for
generating all the (n, k) difference covers is O(kN2(n, k)).

684 FRANK RUSKEY AND JOE SAWADA

In practice, it is useful to know whether or not an (n, k) difference cover exists.
When n gets large the search space may become infeasible to work with; however, if
we have some intuition about what the first few numbers may be in the set D, we can
customize our algorithm to drastically reduce the search space. Using this strategy
we were able to prove the existence of a (131, 13) difference cover, namely

{1, 8, 27, 33, 34, 44, 57, 71, 73, 79, 88, 91}.

A complete C program for generating difference covers with equivalence under
rotation is available from the authors.

REFERENCES

[1] J. Berstel and M. Pocchiola, Average cost of Duval’s algorithm for generating Lyndon
words, Theoret. Comput. Sci., 132 (1994), pp. 415–425.

[2] K. Cattell, F. Ruskey, J. Sawada, C. R. Miers, and M. Serra, Fast Algorithms to Generate
Unlabeled Necklaces and Irreducible Polynomials over GF(2), manuscript, 1998.

[3] J.-P. Duval, Génération d’une section des classes de conjugaison et arbre des mots de Lyndon
de longueur bornée, Theoret. Comput. Sci., 60 (1988), pp. 255–283.

[4] H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two
colors, Discrete Math., 61 (1986), pp. 181–188.

[5] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn se-
quences, Discrete Math., 23 (1978), pp. 207–210.

[6] E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5
(1961), pp. 657–665.

[7] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford, England, 1993.
[8] F. Ruskey, C. D. Savage, and T. Wang, Generating necklaces, J. Algorithms, 13 (1992),

pp. 414–430.
[9] T. M. Y. Wang and C. D. Savage, A Gray code for necklaces of fixed density, SIAM J.

Discrete Math., 9 (1996), pp. 654–673.

