
Generating Bracelets with Fixed Content

S. Karim∗ J. Sawada† Z. Alamgir‡ S. M. Husnine§

December 13, 2011

Abstract

We present an algorithm to generate bracelets with fixed content. An analysis shows that the algo-
rithm runs in constant amortized time. The algorithm can be applied to efficiently list all non-isomorphic
unicyclic graphs with n vertices.

Keywords: Necklace, bracelet, fixed-content, unicyclic graphs, CAT algorithm

1 Introduction

The exhaustive generation of combinatorial objects has become a popular area of algorithmic research and
is a major theme in Knuth’s latest volume of The Art of Computer Programming [5, 6, 7]. Such algorithms
are often analyzed with an amortized analysis where the ultimate goal is to develop an algorithm that runs in
Constant Amortized Time: each successive object is generated in constant time on average. An algorithm that
attains this goal is said to be CAT.

One of the most fundamental of combinatorial objects is the necklace. A necklace is defined to be the lexico-
graphically minimal string in an equivalence class of k-ary strings under rotation. An aperiodic necklace is a
Lyndon word and any prefix of a necklace is said to be a prenecklace. CAT algorithms to generate necklaces,
Lyndon words, and prenecklaces of length n are well known [3, 2, 1]. If the number of occurrences of each
character i is given by ni where n0 + n1 + · · · + nk−1 = n, then such strings are said to have fixed content.
CAT algorithms are also known for necklaces and Lyndon words with fixed content [10].

If we consider equivalence under reversal in addition to rotation, we obtain a bracelet. Specifically, a bracelet
is defined to be the lexicographically minimal string in an equivalence class of k-ary strings under rotation
and reversal. While a CAT algorithm is known for generating bracelets [9], no such algorithm is known for
bracelets with fixed content. A major contribution of this paper is to fill this void. While doing so, we also
provide a much simpler analysis that proves the bracelet algorithm in [9] is CAT.

The study of bracelets with fixed content is motivated by an application related to undirected graphs with
exactly one cycle. Exhaustively listing all non-isomorphic graphs on n vertices is well known to be a very
difficult problem. However, if we restrict such graphs to have exactly 1 cycle, then the crux of an efficient
algorithm is to be able to efficiently list bracelets with fixed content. A unicyclic graph G on n vertices can
∗Department of Computer Science, National University FAST-NU, Pakistan. E-mail: saira.karim@nu.edu.pk
†School of Computer Science, University of Guelph, Canada. Research supported by NSERC. E-mail:

jsawada@uoguelph.ca
‡Department of Computer Science, National University FAST-NU, Pakistan. E-mail: zareen.lamgir@nu.edu.pk
§Department of Mathematics, National University FAST-NU, Pakistan. E-mail: s.m.husnine@nu.edu.pk

1

2

0

2

1

3

0

Figure 1: A unicyclic graph with n=15 vertices. The specification for the sizes of the 6 subtrees is
〈1, 1, 3, 3, 3, 4〉. The content assigned to the trees is [0,0,1,2,2,3], and the bracelet corresponding to this
graph is 020213.

be represented by a sequence of m rooted trees T1, T2, . . . , Tm where the root of each tree is a vertex of the
unique cycle and the total number of vertices in the m trees is n. Figure 1 shows a unicyclic graph on n = 15
vertices from a sequence of m = 6 rooted trees. Equivalence classes are formed by considering rotations and
the reversal of the sequences, i.e., bracelets with fixed content. If we partition the unicyclic graphs with n
vertices by the size of the cycle m, then the following approach outlines how to exhaustively generate them:

A numerical partition 〈p1, p2, . . . , pm〉 of the integer n into m parts corresponds to a specifi-
cation for the sizes of the m rooted trees on the cycle. For each specification we consider all
combinations of rooted trees whose sizes match the specification. Then for each combination of
trees, we map each tree to a unique alphabet symbol in {0, 1, 2, . . . ,m− 1}: if two rooted trees
are the same, they will map to the same alphabet symbol. The resulting multi-set of m symbols
yields the content. To handle equivalence under rotation and reversal, the remaining problem is
to generate all bracelets with the given content. Figure 1 illustrates some of these steps.

A more detailed description of this algorithm is given in [4].

The remainder of the paper is outlined as follows. In Section 2, we describe a recursive algorithm to generate
necklaces and then describe some simple modifications to obtain a naı̈ve algorithm to generate bracelets with
fixed content. We then apply 5 optimizations to obtain a more efficient algorithm. In Section 3, we analyze
the optimized algorithm proving that it is CAT. In Section 4, we give a short summary. In the Appendix we
provide a complete C implementation of our algorithm.

2 Algorithms to generate bracelets with fixed content

In this section we present two algorithms to generate bracelets with fixed content. The first algorithm applies
straightforward modifications to a recursive necklace algorithm, but is unoptimized. The second algorithm is
also based on the recursive necklace algorithm, but applies the optimizations from CAT algorithms to generate
(i) necklaces with fixed content [10] and (ii) bracelets [9]. When merging the optimizations, one special case
must be handled in order to preserve the optimizations used in each approach. Additionally, in order to make
the merged algorithm slightly more optimized and easier to analyze, we maintain an additional representation
for the k-ary string being generated: its run-length encoding (detailed in Section 2.2.1).

2

procedure Necklace(t, p: int)
j, p′: int

if t > n then Print(p)
else

for j := at−p to k − 1 do

at := j
p′ := p
if j 6= at−p then p′ := t

Necklace(t+ 1, p′)

end.

(a)

procedure SimpleBFC(t, p, r: int)
c, j, p′: int

if t > n then if ar+1 · · · an ≤ an · · · ar+1 then Print(p)
else

for j := at−p to k − 1 do
nj := nj − 1
at := j
p′ := p
if j 6= at−p then p′ := t
c := CheckRev(t)
if c = 0 and nj ≥ 0 then SimpleBFC(t+ 1, p′, t)
if c = 1 and nj ≥ 0 then SimpleBFC(t+ 1, p′, r)
nj := nj + 1

end.

(b)

Figure 2: (a) A simple recursive algorithm Necklace(t, p) to list all necklaces, Lyndon words or prenecklaces depend-
ing on the restrictions given by the function Print(p). (b) A simple algorithm SimpleBFC(t, p, r) to list all bracelets
with fixed content.

2.1 A simple algorithm

In [1], the Fundamental Theorem of Necklaces specifies the exact conditions for a character to be appended
to a prenecklace and still remain a prenecklace. All that is required is the length of the current prenecklace α
and the length of its longest prefix that is a Lyndon word, given by lyn(α).

THEOREM 1 (Fundamental Theorem of Necklaces). Let α = a1a2 · · · at−1 be a k-ary prenecklace with
p = lyn(α). The string αb is a k-ary prenecklace if and only if at−p ≤ b ≤ k − 1. Furthermore,

lyn(αb) =

{
p if b = at−p
t if at−p < b ≤ k − 1.

Using this theorem, it is straightforward to produce a recursive algorithm to exhaustively list all prenecklaces
of length n in lexicographic order. A pseudocode is provided in Figure 2(a), where the parameter p represents
the longest Lyndon prefix of the current prenecklace. The function Print(p) is used to output each prenecklace
and it can easily be modified to output necklaces or Lyndon words. A prenecklace is a necklace if n mod p =
0; it is a Lyndon word if n = p. Each object can be generated in constant amortized time [1]. The initial call
is Necklace(1,1) with a0 initialized to 0.

Using this algorithm we now consider our two restrictions. First, we only want to generate bracelets. Second,
we want the strings to satisfy a pre-specified content: n0 + n1 + · · · + nk−1 = n where each ni denotes the
number of occurrences of the character i. To apply the first restriction, it is possible to apply a O(n) time
test to determine whether or not the necklace is a bracelet. This can be done by computing the necklace of
the reversed string and comparing it to the original necklace. However, this will not lead to a CAT algorithm.
Instead, we apply the following result which follows directly from Theorem 3.1 of [9]:

LEMMA 1. If α = a1a2 · · · an is a necklace where r denotes the length of its longest prefix such that
a1 · · · ar = ar · · · a1, then α is a bracelet iff ar+1 · · · an ≤ an · · · ar+1 and there is no index t such that
a1 · · · at > at · · · a1.

3

To apply this lemma, at each recursive call in the necklace algorithm we must compare a1 · · · at with its
reversal. If it is greater than its reversal, we terminate the branch since no extension of the prenecklace will
result in a bracelet; if they are equal, then we update the value for a new parameter r. When the prenecklace
has length n we compare ar+1 · · · an with its reversal to test if it is a bracelet.

To naı̈vely restrict the content of each bracelet, we only extend the prenecklaces with characters that do not
violate the restriction. This is easily handled by updating the number of occurrences ni for each character
i as it gets appended to a prenecklace. Applying these modifications, a pseudocode for a simple algorithm
SimpleBFC(t, p, r) to generate bracelets with fixed content is given in Figure 2(b). The initial call is Sim-
pleBFC(1, 1, 0) with a0 initialized to 0. The function CheckRev(t) compares the prefix a1 · · · at with its
reversal. Its return value is given by:

CheckRev(t) =


−1 if a1 · · · at > at · · · a1
0 if a1 · · · at = at · · · a1
1 if a1 · · · at < at · · · a1.

Observe that each call to CheckRev(t) requires O(t) time in the worst case; however when a1 6= at only one
comparison is required. In the next subsection, the run-length encoding of the string is maintained to make
this test more efficient.

2.2 An efficient algorithm

In this section we address three optimizations for fixed content necklaces from [10] and one optimization for
bracelets from [9]. Since there is a dependence between two of the optimizations, maintaining the run-length
encoding for the string being generated is critical to maintaining the efficiency. In total, the 5 optimizations
can be summarized as follows:

1. Maintain the run-length encoding, which optimizes the function CheckRev.

2. Use a linked list to maintain the characters remaining to be added

3. Truncate the current branch of computation when only 0’s remain to be added, since the string will not
result in a bracelet of length n.

4. Initialize the last nk−1 characters of α to k−1, which allows a branch of computation to be trimmed
when only k − 1’s remain to be added.

5. Incrementally compare ar+1 · · · an with its reversal an · · · ar+1 by making one character comparison
per recursive call and maintaining a parameter storing the current result.

For completeness, these 5 optimizations are discussed in more detail in the following subsections. To illustrate
the optimizations, a fragment of a computation tree is given in Figure 3. A pseudocode that applies all
the optimizations is provided in Figure 4. The initial call is BraceletFC(2, 1, 1, 2, 1,FALSE) where a1 is
initialized to 0 since all bracelets must start with 0. To apply the 4th optimization, the last nk−1 characters of
α = a1 · · · an are initialized to k−1.

2.2.1 Maintaining the run-length encoding

The run-length encoding of a k-ary string is a compact representation where the string is represented by a
sequence of pairs (si, vi) where si is a character element in the string and vi is the number of occurrences of

4

nodes terminated by optimization 3

001210

1

2 1 0 2

0 2

11

120

2 0

2 1 2 0 11 0 2

1

prenecklaces padded with 2’s by optimization 4

Figure 3: A fragment of the computation tree for BraceletFC starting with the prenecklace 001210 and
remaining content n0 = 1, n1 = 1, n2 = 2. This fragment generates 9 prenecklaces: the 3 ending with 1 and
the 6 that ended early by optimization 4. Only the prenecklaces that end early (padded with 2’s) correspond
to bracelets in this case. The ones that end with 1 are necklaces but do not pass the bracelet test.

si in a run. Moreover, consecutive pairs (si, vi) and (si+1, vi+1) must represent different characters: si 6= si+1.
For example, the run-length encoding of α = 0000022211112 is (0, 5), (2, 3), (1, 4), (2, 1). For simplicity,
we call each pair (si, vi) a block and use nb to denote the number of blocks in the run-length encoding of a
string. From our example, nb = 4.

As a character at is appended to a string a1 · · · at−1, its run-length encoding is updated as follows: if at = at−1
then increment vnb; otherwise add a new block (at, 1) and increment nb. To restore the encoding after a
recursive call, we consider the value vnb: if it is greater than 1 then its value is decremented by 1; otherwise
the last block is removed and the value of nb is decremented by 1. In the pseudocode in Figure 4, the run-
length encoding and the variable nb are stored globally and these constant time operations are performed by
the procedures UpdateRunLength(j) and RestoreRunLength() respectively.

Using this encoding, it becomes more efficient to implement CheckRev(t), which compares a1 · · · at
to its reversal at · · · a1. Instead of comparing single characters at each step, we can compare entire
blocks. Specifically, the following function CheckRev(m) can be used to compare the run-length encod-
ing (s1, v1), (s2, v2), . . . , (sm, vm) with its reversal. Instead of t (the length of the string), this function now
receives the number of blocks m as the parameter.

function CheckRev(m: int) returns int
j: int

j := 1
while (sj , vj) = (sm−j+1, vm−j+1) and j ≤ m

2 do j := j + 1

5

if j > m
2 then return 0

if sj < sm−j+1 then return 1
if sj > sm−j+1 then return -1
if (vj < vm−j+1 and sj+1 < sm−j+1) or (vj > vm−j+1 and sj < sm−j) then return 1
return -1

end.

2.2.2 Fixed-content optimizations

Now we consider optimizations specific to the content restriction. Looking back at our simple algorithm in
Figure 2(b) observe that the for loop could iterate multiple times without producing a recursive call. This will
happen when many of the ni are already reduced to 0. An obvious optimization is to maintain a linked list
containing only the characters that can be successfully appended to the current prenecklace. By maintaining
the list in descending order, a loop can be constructed that produces a recursive call for each iteration. The
subroutines ListAdd(j) and ListRemove(j) can easily be implemented to respectively add and remove the
element j from the list. The global variable head provides the first element in the list, and ListNext(j)
returns the value after j in the list. Each function can easily be implemented in constant time using an array
representation for a doubly linked list (see C code in Appendix).

The third optimization is to terminate any branch of computation when only the character 0 remains to be
appended, since for any k > 0 it will not lead to a necklace. This is easily done with a constant time
comparison of n0 to n− t+ 1.

The fourth optimization is to end a branch of computation early when only the character k−1 remains to be
appended. This trims the computation by nk−1 recursive calls, where nk−1 refers to the remaining number
of k−1’s to be added. By initializing the string α to consist entirely of this character and restoring its value
appropriately as we backtrack, the string α will be as desired. With respect to the run-length encoding, it
amounts to adding the block (k − 1, nk−1). A side effect of truncating such branches early is that the value
for p will not be updated to handle these last nk−1 characters. This is important since p is used to test if the
prenecklace is a necklace or Lyndon word by the Print(p) procedure. The key to updating p in constant time
is to determine the number of consecutive k − 1’s that begin from position at−p, if any. As explained in [10],
this number can be determined in constant time per recursive call by maintaining an extra parameter z, and an
array run. In particular, if the prenecklace a1a2 · · · at has at = k − 1, the parameter z indicates the leftmost
position of the run of k−1’s in the suffix; otherwise if at 6= k−1 then z is set to t+1. The value runj stores
the number of consecutive k− 1’s starting at position j. Using this value, if nk−1 is greater than runt−p, then
p gets updated to n; otherwise it remains unchanged.

2.2.3 Bracelet optimizations

We now focus on the optimization specific to bracelets. Observe that the final test before printing compares
ar+1 · · · an to its reversal. If this test is done as the last character is appended, it may take linear time.
However, once we reach midpoint of this string as the prenecklace is generated, we can start to compare the
string and its reversal starting from the middle. Specifically, for each character in a position greater than
b(n − r)/2c + r we compare the most recently appended character at−1 to an−t+2+r. Depending on the
outcome, we update a parameter RS that maintains whether or not the reversal is currently smaller. This
incremental updating of the parameter RS is straightforward as illustrated in the first block of the pseudocode
in Figure 4.

6

procedure BraceletFC(t, p, r, z, b: int; RS: boolean)
c, j, z′, p′: int

// Incremental comparison of ar+1 · · · an with its reversal
if t− 1 > b(n− r)/2c+ r then

if at−1 > an−t+2+r then RS := FALSE
else if at−1 < an−t+2+r then RS := TRUE

// Termination condition - only characters k−1 remain to be appended
if nk−1 = n− t+ 1 then

if nk−1 > runt−p then p := n
if nk−1 > 0 and r + 1 6= t and sb+1 = k − 1 and vb+1 > nk−1 then RS := TRUE
if nk−1 > 0 and r + 1 6= t and (sb+1 6= k − 1 or vb+1 < nk−1) then RS := FALSE
if RS = FALSE then Print(p)

// Recursively extend the prenecklace - unless only 0’s remain to be appended
else if n0 6= n− t+ 1 then

j := head
while j ≥ at−p do

runz := t− z
UpdateRunLength(j);
nj := nj − 1
if nj = 0 then ListRemove(j)

at := j
z′ := z
if j 6= k − 1 then z′ := t+ 1
p′ := p
if j 6= at−p then p′ := t
c := CheckRev(nb)
if c = 0 then BraceletFC(t+1, p′, t, z′, nb, FALSE)
if c = 1 then BraceletFC(t+1, p′, r, z′, b, RS)

if nj = 0 then ListAdd(j)
nj := nj + 1
RestoreRunLength();

j := ListNext(j)

at := k − 1
end.

Figure 4: An optimized algorithm BraceletFC(t, p, r, z, b, RS) to list all bracelets with fixed content.

7

2.2.4 Merging the optimizations

There is one complication to merging the fixed content and bracelet optimizations. Since the fourth optimiza-
tion may truncate the computation early, the final incremental comparisons to accurately update RS will not
be performed. Ideally, this would be done in constant time otherwise it renders the fixed-content optimization
to be in-effective. Fortunately, this is attainable using the run-length encoding together with maintaining the
block index b for the number of blocks used to represent a1 · · · ar. Thus, b is updated with r is updated.
Observe that a new block always starts at position r + 1 by the definition of r: ar = 0 and ar+1 must be
greater than 0. Using this information, we can update the variable RS in constant time when the computation
is truncated by nk−1 > 0 steps by comparing the b+1-st block (sb+1, vb+1) with the last block (k− 1, nk−1).
If t = r+1, then we are comparing the same block to itself, so no update is required. Otherwise if t 6= r+1,
then RS gets updated to TRUE if sb+1 = k − 1 and vb+1 > nk−1 (the reversal is smaller); RS gets updated
to FALSE if sb+1 6= k − 1 or vb+1 < nk−1.

3 Analysis

In this section, we prove that the algorithm BraceletFC to generate bracelets with fixed content runs in con-
stant amortized time. The algorithm can be loosely thought of as taking the fixed-content necklace algorithm
from [10] and adding the reversal tests for bracelets from [9]. However, applying the same analysis that was
done for bracelets is not applicable since complex bounding arguments were applied that did not respect the
content of the strings, i.e., the merging of two CAT algorithms does not guarantee that the result is a CAT
algorithm. The approach used in our new analysis is to map the block comparisons performed by the function
CheckRev to prenecklaces in the computation tree. This idea also yields a much simpler analysis of the
original bracelet algorithm in [9] when the run-length encoding of the string is maintained.

The recursive computation tree for our algorithm is a subtree of the computation tree for the fixed-content
algorithm of [10]. The latter algorithm to generate necklaces with fixed content is CAT when each ni ≤ nk−1
for 0 ≤ i < k − 1. Thus, since there are at most 2 necklaces in each bracelet equivalence class, the size
of the computation tree of BraceletFC will be proportional to the number of bracelets generated. If each
recursive call was a result of a constant amount of work, this would be sufficient to prove that our algorithm
is CAT. Unfortunately, the function CheckRev may require more than a constant amount of computation.
However, by showing that the total work done by all calls to CheckRev is also proportional to the size of the
computation tree we will prove that the algorithm BraceletFC is CAT.

The function CheckRev(m), as outlined in Section 2.2.1, is called once for each prenecklace in the compu-
tation tree. The parameter m denotes the number of blocks in the run-length encoding of the prenecklace.
The work done by a single call is dominated by the while loop which iterates until two unequal blocks are
compared, or until m/2 comparisons have been made. Since there is at most one unequal comparison made
per prenecklace, we focus only on the equal block comparisons. To further simplify the analysis, we consider
only every second comparison starting from the 4th block comparison. This number of comparisons will be
proportional to the total number of comparisons when 4 or more comparisons are required; otherwise the work
done by the function is constant. Our strategy is to map each such block comparison to a unique prenecklace
in the computation tree.

Let β = B1B2 · · ·Bm be the run-length encoding of prenecklace tested by a call to CheckRev(m), where
Bi = (si, vi). Since the first character in any prenecklace generated by the algorithm is 0, s1 = 0. Moreover,
since β is a prenecklace, B1 must be a block with a maximal run of 0s: there is no block Bi = (0, vi) such
that vi > v1. Consider the following mapping, where j is even with 4 ≤ j < m/2 and B1B2 · · ·Bj =
BmBm−1 · · ·Bm−j+1:

8

f(β, j) =

{
BmB1BjB2B3 · · ·Bj−1Bj+1 · · ·Bm−2 if sj = 0
BmB1Bj−1B2B3 · · ·Bj−2Bj · · ·Bm−2 if sj 6= 0.

In the following two lemmas we will show that f(β, j) maps uniquely (1-1) to a prenecklace in the computa-
tion tree for BraceletFC.

LEMMA 2. If β = B1B2 · · ·Bm is the run-length encoding of a prenecklace from the computation tree of
BraceletFC such that B1B2 · · ·Bj = BmBm−1 · · ·Bm−j+1 and 4 ≤ j ≤ m/2 is even, then f(β, j) is also
a prenecklace of the same computation tree of BraceletFC.

Proof. Observe that the sequence of blocks in f(β, j) does not correspond to a valid run-length encoding
since sm = s1 = 0: the listing of blocks is not minimal. Also, depending on the case, either Bj−1 and Bj+1

or Bj−2 and Bj may also be blocks of the same character; however that character will not be 0 by the nature
of the mapping. Thus, the string given by f(β, j) will have a maximum substring of 0s uniquely at the start
of the string and hence it is a prenecklace. To see that f(β, j) is a prenecklace in a the computation tree for
BraceletFC, we must consider 3 items:

1. The content of f(β, j) is valid: it is precisely the content of β with the content from Bm−1 removed.

2. A prefix of f(β, j) will not apply optimization 3 or 4. The content of Bm−1 still must be added and
sm−1 6= 0 since sm = 0. Thus optimization 3 will not have been applied. If sm−2 = k− 1 then there is
content that is not k − 1 still to be added since sm−1 6= sm−2. Thus optimization 4 will not have been
applied.

3. A prefix of f(β, j) will not be rejected by a bracelet reversal test since the maximum number of 0s
appears uniquely at the beginning of the prenecklace.

LEMMA 3. If β = B1B2 · · ·Bm is the run-length encoding of a prenecklace such that B1B2 · · ·Bj =
BmBm−1 · · ·Bm−j+1 and 4 ≤ j ≤ m/2 is even, then the mapping f is 1-1.

Proof. The proof is by contradiction. Suppose that the mapping f is not 1-1. Then there exists prenecklaces
β = B1B2 · · ·Bm and γ = B′1B

′
2 · · ·B′m′ such that f(β, j) = f(γ, j′) for some j and j′ satisfying the

conditions of the lemma. If β = γ then j 6= j′. WLOG assume that j ≤ j′. Observe thatBm−j+1 · · ·Bm−1 =
B′m′−j+1 · · ·B′m′−1 because the last half of each prenecklace in the mapping remains unchanged except for
moving the last block of 0s to the beginning and dropping the second to last block. Thus, since B1 · · ·Bj =
Bm · · ·Bm−j+1 and B′1 · · ·B′j′ = B′m′ · · ·B′m′−j′+1 we have B3 · · ·Bj = B′3 · · ·B′j . If j = j′ then this
implies that β = γ, a contradiction. Thus j′ ≥ j + 2 and the first j+2 blocks from each mapping are
illustrated as follows:

f(β, j) = BmB1BxB2 B3 · · ·Bj−2 ByBj+1 · · ·
f(γ, j′) = B′m′B

′
1B
′
zB
′
2 B3 · · ·Bj−2 Bj−1Bj · · · ,

where x and y are either j − 1 or j, and z > j. Since adjacent blocks in the original run-length encodings
of β and γ must represent different characters, it is not difficult to see that the strings represented by the
first 4 blocks specified in these mappings must be the same. The next j − 4 blocks are also the same in
each mapping. However, the following 2 blocks in each mapping will correspond to different strings since
Bj 6= Bj+1, a contradiction. Thus f is 1-1.

9

Our earlier arguments together with the previous 2 lemmas give us the following lemma.

LEMMA 4. From an initial call to BraceletFC, the total amount of computation for all calls to CheckRev is
proportional to the number of bracelets generated.

This result immediately gives us our main theorem.

THEOREM 2. Given content n0, n1, . . . , nk−1 where ni ≤ nk−1 for all 0 ≤ i < k − 1, the algorithm
BraceletFC runs in constant amortized time.

Lemmas 2 and 3 also provide a simple proof that the algorithm to generate k-ary bracelets given in [9] is CAT,
provided the algorithm also maintains the run-length encoding of the prenecklaces.

4 Summary

We develop an algorithm to list all bracelets with fixed content. Using a fairly simple technique of mapping
comparisons to nodes in the recursive computation tree, we are able to prove that the algorithm runs in constant
amortized time. The analysis also yields a simpler proof that the bracelet algorithm in [9] is CAT, as long as
the run-length encoding is maintained. As an application, the algorithm is critical to the efficient generation
of all non-isomorphic uni-cyclic graphs [4].

A complete C implementation of our algorithm is given in the Appendix.

References

[1] K. Cattell, F. Ruskey, J. Sawada, M. Serra and C.R. Miers, Fast algorithms to generate necklaces, unlabeled
necklaces, and irreducible polynomials over GF(2), Journal of Algorithms, Vol. 37 No. 2 (2000) 267-282.

[2] H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math.,
Vol. 61 No. 2-3 (1986) 181-188.

[3] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete Math.,
Vol. 23 No. 3 (1978) 207-210.

[4] S. Karim, Z. Alamgir and S. M. Husnine, Generating non-isomorphic uni-cyclic graphs, manuscript, 2011.

[5] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Tuples and Permutations, Fascicle 2,
Addison-Wesley, February 2005.

[6] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating all Combinations and Partitions, Fascicle
3, Addison-Wesley, July 2005.

[7] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Trees; History of Combinatorial
Generation, Fascicle 4, Addison-Wesley, February 2006.

[8] F. Ruskey and J. Sawada, An efficient algorithm for generating necklaces of fixed-density, SIAM J. Comput., 29
(1999) 671684.

[9] J. Sawada, Generating bracelets in constant amortized time, SIAM J. Comput., Vol. 31 No. 1 (2001) 259-268.

[10] J. Sawada, A fast algorithm to generate necklaces with fixed content, Theoretical Computer Science, Vol. 301
No.1-3 (2003) 477-489.

10

APPENDIX - Complete C program to generate bracelets with fixed content
#include <stdio.h>
#define TRUE 1
#define FALSE 0

typedef struct cell {
int next,prev;

} cell;

typedef struct element {
int s, v;

} element;

cell avail[50];
element B[50]; // run length encoding data structure
int nb = 0; // number of blocks
int num[50], a[50],run[50],n,k,total,head, NECK=1, LYN=0;

/*---*/
void ListRemove(int i) {

int p,n;

if (i == head) head = avail[i].next;
p = avail[i].prev;
n = avail[i].next;
avail[p].next = n;
avail[n].prev = p;

}

void ListAdd(int i) {
int p,n;

p = avail[i].prev;
n = avail[i].next;
avail[n].prev = i;
avail[p].next = i;
if (avail[i].prev == k+1) head = i;

}

int ListNext(int i) {

return avail[i].next;
}

/*---*/
void Print(int p) {

int j;

if (NECK && n %p != 0) return;
if (LYN && n != p) return;

for(j=1; j<=n; j++) printf("%d ",a[j]-1);
printf("\n");
total++;

}
/*---*/
void UpdateRunLength(int v) {

if (B[nb].s == v) B[nb].v = B[nb].v + 1;
else {

nb++;
B[nb].v = 1;
B[nb].s = v;

}
}

void RestoreRunLength() {

if (B[nb].v == 1) nb--;
else B[nb].v = B[nb].v - 1;

}
/*---*/
// return -1 if reverse smaller, 0 if equal, and 1 if reverse is larger
/*---*/
int CheckRev() {

int j;

j = 1;
while (B[j].v == B[nb-j+1].v && B[j].s == B[nb-j+1].s && j<= nb/2) j++;

if (j > nb/2) return 0;
if (B[j].s < B[nb-j+1].s) return 1;
if (B[j].s > B[nb-j+1].s) return -1;

11

if (B[j].v < B[nb-j+1].v && B[j+1].s < B[nb-j+1].s) return 1;
if (B[j].v > B[nb-j+1].v && B[j].s < B[nb-j].s) return 1;
return -1;

}
/*---*/
void Gen(int t, int p, int r, int z, int b, int RS) {

int j,z2,p2,c;

// Incremental comparison of a[r+1...n] with its reversal
if (t-1 > (n-r)/2 + r) {

if (a[t-1] > a[n-t+2+r]) RS = FALSE;
else if (a[t-1] < a[n-t+2+r]) RS = TRUE;

}
// Termination condition - only characters k remain to be appended
if (num[k] == n-t+1) {

if (num[k] > run[t-p]) p = n;
if (num[k] > 0 && t != r+1 && B[b+1].s == k && B[b+1].v > num[k]) RS = TRUE;
if (num[k] > 0 && t != r+1 && (B[b+1].s != k || B[b+1].v < num[k])) RS = FALSE;
if (RS == FALSE) Print(p);

}
// Recursively extend the prenecklace - unless only 0s remain to be appended
else if (num[1] != n-t+1) {

j = head;
while(j >= a[t-p]) {

run[z] = t-z;
UpdateRunLength(j);
num[j]--;
if (num[j] == 0) ListRemove(j);

a[t] = j;
z2 = z;
if (j != k) z2 = t+1;
p2 = p;
if (j != a[t-p]) p2 = t;
c = CheckRev();
if (c == 0) Gen(t+1,p2,t,z2,nb,FALSE);
if (c == 1) Gen(t+1,p2,r,z2,b,RS);

if (num[j] == 0) ListAdd(j);
num[j]++;
RestoreRunLength();

j = ListNext(j);
}
a[t] = k;

} }

/*---*/
int main() {

int j;

printf("enter n k: "); scanf("%d %d", &n, &k);
for (j=1; j<=k; j++) {

printf(" enter # of %d’s: ", j);
scanf("%d", &num[j]);

}

for (j=k+1; j>=0; j--) {
avail[j].next = j-1;
avail[j].prev = j+1;

}
head = k;

for (j=1; j<=n; j++) {
a[j] = k;
run[j] = 0;

}

total = 0;
a[1] = 1;
num[1]--;
if (num[1] == 0) ListRemove(1);

B[0].s = 0;
UpdateRunLength(1);

Gen(2,1,1,2,1,FALSE);

printf("Total = %d\n", total);
}

12

