
Investigating the discrepancy property of de Bruijn sequences

Daniel Gabric Joe Sawada*

September 7, 2021

Abstract

The discrepancy of a binary string refers to the maximum (absolute) difference between the number
of ones and the number of zeroes over all possible substrings of the given binary string. We provide an
investigation of the discrepancy of over a dozen simple constructions of de Bruijn sequences as well as de
Bruijn sequences based on linear feedback shift registers whose feedback polynomials are primitive. Fur-
thermore, we demonstrate constructions that attain the lower bound of Θ(n) and a new construction that
attains the previously known upper bound of Θ(2n√

n
). This extends the work of Cooper and Heitsch [Dis-

crete Mathematics, 310 (2010)].

1 Introduction

Let B(n) denote the set of binary strings of length n. A de Bruijn sequence is a circular string of length 2n

that contains every string in B(n) as a substring. Thus, each length-n substring must occur exactly once. As
an example,

0000001111110111100111010111000110110100110010110000101010001001 (1)

is a de Bruijn sequence of order n = 6; it contains each length-6 binary string as a substring when viewed
circularly. There is an extensive literature on de Bruijn sequences motivated in part by their random-like
properties. As articulated by Golomb [19], de Bruijn sequences have the following properties:

• they are balanced, as they contain the same number of 0s and 1s;

• they satisfy a run property, as there are an equal number of contiguous runs of 0s and 1s of the same
length in the sequence;

• they satisfy a span-n property, as they contain every distinct length n binary string as a substring.

From the example in (1) for n = 6, note that there are exactly 2n−1 0s and 1s respectively; there are 2n−2

contiguous runs of 0s and 1s respectively; and by definition, it contains every distinct length n binary string
as a substring.

Despite these properties, many de Bruijn sequences display other properties that are far from random. For
instance, consider the greedy prefer-1 construction [24]. After starting with an initial seed, successive bits
are appended by always trying a 1 first. Only if adding a 1 results in repeating a length-n substring will a 0

be appended instead. The resulting de Bruijn sequence for n = 6 is the one obtained in (1) by rotating the

*Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2018-04211.

1

initial prefix of 0s to the suffix. As one would expect, it has more 1s than 0s at the start of the sequence. One
measure that accounts for this is the discrepancy, which is informally defined to be the maximum absolute
difference between the number of 0s and 1s in any substring of a given sequence.

To formally define discrepancy, we first introduce some notation. Let w be a binary string. Let ∣w∣a
denote the number of occurrences of the symbol a in w. Let C(w) denote the set of all substrings of w
where we interpret w as a circular string. For example, taking w = 110 we have that ∣w∣1 = 2 and C(w) =
{ε,0,1,11,10,01,110,101,011}. Then the discrepancy disc(w) of w is defined as

disc(w) = max
u∈C(w)

∣ ∣u∣1 − ∣u∣0 ∣.

The discrepancy of the sequence in (1) is ∣17 − 5∣ = 12 as witnessed by the underlined substring. The
sequences generated by the prefer-1 construction are known to have discrepancy Θ(2

n logn
n) [6] with an exact

formulation based on the Fibonacci and Lucas numbers [7]. In contrast, the expected discrepancy of a random
sequence of length 2n is Θ(2n/2

√
logn) [6]. Letting D be a de Bruijn sequence of order n, disc(D) is

bounded below by n since D must contain 1n as a substring. In other words, disc(D) ∈ Ω(n). By putting
upper bounds on character sums of non-linear recurrence sequences, an upper bound of disc(D) ∈ O(2n/√n)
can be obtained; see page 1131 in [4] for an explicit calculation. One of the main results of this paper is to
build on the preliminary work by the authors [16] to demonstrate de Bruijn sequence constructions with
discrepancies that obtain these asymptotic lower and upper bounds.

Some applications in pseudo-random bit generation require de Bruijn sequences that do not have large
discrepancy. For example, when used as a carrier signal, a de Bruijn sequence with a large discrepancy
causes spectral peaks that could interfere with devices operating at these frequencies [26]. Similar measures
described as “balance” and “uniformity” are discussed in [21]. However, they focus only on n = 2 and instead
vary the size of the alphabet. They explain that de Bruijn sequences with good balance and uniformity are
useful in the planning of reaction time experiments [11, 34]. De Bruijn sequences with high discrepancy
necessarily have poor balance and uniformity.

In this paper, we extend the work initiated by Cooper and Heitsch [6] providing a more complete analysis
of discrepancy for a wide variety of de Bruijn sequence constructions.

1. We evaluate the discrepancies of an additional 12 simple/interesting de Bruijn sequence constructions
up to n = 30.

2. We evaluate the discrepancies of all de Bruijn sequences obtained from linear feedback shift registers
(LFSRs) based on primitive polynomials up to n = 25.

3. We demonstrate de Bruijn sequences constructions with discrepancy that attain the asymptotic lower
bound of Θ(n).

4. We present a new de Bruijn sequence construction with discrepancy that attains the asymptotic upper
bound of Θ(2n√

n
).

The remainder of this paper is presented as follows. In Section 1.1 we present background definitions and
notation. In Section 1.2 we present an overview of our experimental results. They are partitioned into five
groups which are further analyzed in Sections 2, 3, 4, 5, and 6. We conclude in Section 7 with open problems
and future avenues of research.

2

1.1 Background and notation

Let α = a1a2⋯an be a binary string in B(n). A feedback function is a function f that maps B(n) to {0,1}.
A feedback shift register (FSR) is a function on B(n) that maps a string α to a2a3⋯anf(α), where f(α) is
feedback function. If f is linear, then an FSR is called a linear feedback shift register (LFSR). The following
four “simple” LFSRs are presented on page 171 in the third edition of the classic work by Golomb [20]. We
follow their notation letting the operator ⊕ represent addition modulo 2.

• The pure cycling register (PCR) has feedback function f(α) = a1.

• The complemented cycling register (CCR) has feedback function f(α) = 1⊕ a1.

• The pure summing register (PSR) has feedback function f(α) = a1 ⊕ a2 ⊕⋯⊕ an.

• The complemented summing register (CSR) has feedback function f(α) = 1⊕ a1 ⊕ a2 ⊕⋯⊕ an.

In addition to these four LFSRs, there is one other LFSR that relates to the de Bruijn sequences under inves-
tigation [3, 29].

• The pure run-length register (PRR) has feedback function f(α) = a1 ⊕ a2 ⊕ an.

Let 0n denote n copies of 0 concatenated together. When the feedback function of an LFSR is based on
a primitive polynomial (discussed further in Section 6), then its corresponding LFSR produces a maximal-
length sequence or m-sequence, which is a de Bruijn sequence without the 0n substring. Adding an additional
0 before the substring 0n−11 in an m-sequence yields a regular de Bruijn sequence.

For the remainder of the paper, when discussing a specific algorithm for constructing a de Bruin sequence
we will put it in bold, e.g., the greedy Prefer-1 construction.

1.2 The discrepancy of de Bruijn sequence constructions up to n = 25

In Table 1 we present exact discrepancies for 13 de Bruijn sequence constructions for values of n between 10

and 25. The results are partitioned into the following four groups based on increasing discrepancy. A larger
table up to n = 30 is provided in the appendix.

Group 1: Constructions based on the CCR.

Group 2: Constructions based on the PRR, including the greedy prefer-same (Prefer-same) and prefer-
opposite (Prefer-opposite) constructions.

Group 3: Constructions based on the PCR, including the Prefer-1 construction. Table 1 also shows
a random entry based on taking the average discrepancy of 10000 randomly generated1 sequences of
length 2n.

Group 4: Constructions based on joining smaller weight-range cycles, including one based on the
PSR/CSR.

Details about the constructions from each group are presented in their respective upcoming sections. Imple-
mentations for each of these constructions can be found at http://debruijnsequence.org. Each de Bruijn
sequence can be generated in O(n) time or better per bit using only O(n) space.

1The sequences were generated in C using the srand and rand functions.

3

(Group 1) (Group 2)
n Huang CCR2 CCR3 CCR1 Pref-same Lex-comp Pref-opposite
10 12 13 13 16 24 24 27
11 13 14 15 18 29 29 34
12 15 16 16 22 35 35 43
13 16 17 18 23 43 43 52
14 18 19 20 30 48 48 63
15 19 21 21 29 59 59 74
16 21 22 23 36 68 68 87
17 22 24 25 37 79 79 100
18 24 26 26 43 88 88 115
19 25 27 28 43 103 103 130
20 27 29 30 52 114 114 147
21 28 31 31 50 127 127 164
22 30 32 33 59 142 142 183
23 31 34 35 59 155 155 202
24 33 36 36 67 172 172 223
25 35 37 38 66 187 187 244

(Group 3) (Group 4)
n PCR4 Random PCR3 PCR2 Prefer-1/PCR1 Cool-lex Weight-range
10 29 50 75 101 120 131 131
11 41 71 141 180 222 257 257
12 51 101 248 321 416 468 468
13 70 143 468 587 784 801 930
14 85 203 850 1065 1488 1723 1723
15 110 288 1604 1974 2824 3439 3439
16 175 407 2965 3632 5376 6443 6443
17 246 575 5594 6785 10229 11452 12878
18 326 815 10461 12635 19484 24319 24319
19 462 1157 19765 23746 37107 48629 48629
20 730 1634 37243 44585 71250 92388 92388
21 954 2311 70575 84270 138332 167975 184766
22 1327 3264 133737 159281 268582 352727 352727
23 1820 4565 254322 302449 521553 705443 705443
24 2684 6252 484172 574819 1012795 1352090 1352090
25 3183 9192 924071 1096009 1966813 2496163 2704168

Table 1: Discrepancies of de Bruijn sequence constructions of order n ordered by increasing discrepancy and
partitioned into four groups.

We also consider a fifth group of de Bruijn sequences, where each sequence corresponds to a unique
primitive polynomial.

Group 5: Constructions based on primitive polynomials and their corresponding LFSRs.

By generating all primitive polynomials of degree n and their corresponding LFSRs, we compute the mini-
mum, the maximum, and average discrepancies for their corresponding de Bruijn sequences in Table 2. Any
related m-sequence known to be generated by such an LFSR can be completely determined after reading only
2n bits [25]. Thus, their application for generating pseudo-random numbers is limited. Further discussion is
given in Section 6.

1.3 Computing the discrepancy of a de Bruijn sequence

Given a de Bruijn sequence of order n, how quickly can the discrepancy be calculated? De Bruijn sequences
are exponentially long with respect to their order. Thus, it is natural to try to find a fast algorithm to compute
the discrepancy of de Bruijn sequences.

4

(Group 5)
n min avg Random max LFSRs
10 36 41 50 46 60
11 51 58 71 68 176
12 72 84 101 106 144
13 97 118 143 144 630
14 141 167 203 206 756
15 200 236 288 294 1800
16 280 335 407 432 2048
17 391 473 575 625 7710
18 544 669 815 860 7776
19 775 947 1157 1262 27594
20 1066 1341 1634 1842 24000
21 1500 1896 2311 2619 84672
22 2128 2681 3264 3634 120032
23 3009 3793 4565 5326 356960
24 4236 5362 6252 7545 276480
25 5905 7586 9192 11291 1296000

Table 2: The minimum, average, and maximum discrepancies of de Bruijn sequence constructions of order
n based on primitive polynomials and their corresponding LFSRs. The number of LFSRs based on primitive
polynomials is given in the final column.

A naïve way to calculate the discrepancy of a de Bruijn sequence D is to consider every substring u of D
and compute ∣ ∣u∣1 − ∣u∣0 ∣, keeping track of the maximum value. In a circular string of length m, there are
m substrings of length 1, m substrings of length 2, and more generally m substrings of length j. Therefore,
there are Θ(m2) substrings in a length-m circular string. For every substring u that the algorithm visits, the
absolute difference between the number of 0s and the number of 1s in u is computed, which takes Θ(∣u∣)
time. Thus, when given a de Bruijn sequence of order n as input, this algorithm runs in Θ(23n) time. A slight
upgrade from this naïve approach is obtained by observing that every substring of a circular stringw is a prefix
of a rotation of w. For every rotation of w, we scan from left to right one bit at a time while keeping track of
the number of 0s, the number of 1s, and the maximum absolute difference between them. This algorithm runs
in Θ(22n) time when given a de Bruijn sequence of order n as input.

We show that the discrepancy of a de Bruijn sequence of order n can be calculated in Θ(2n) time. First,
we define some notation. Let w be a binary string and let

d0(w) = max
w=uv

(∣u∣0 − ∣u∣1)

and
d1(w) = max

w=uv
(∣u∣1 − ∣u∣0).

In other words, d0(w) (resp., d1(w)) denotes the maximum difference between the numbers of 0s and 1s
(resp., 1s and 0s) in any prefix of w.

Lemma 1.1 Let D be a de Bruijn sequence of order n. There exists a word y such that D = xyz and
disc(D) = ∣ ∣y∣1 − ∣y∣0 ∣.

Proof. Suppose we cannot write D = xyz where disc(D) = ∣ ∣y∣1 − ∣y∣0 ∣ for any strings x, y, z. Then we must

have disc(D) = ∣ ∣zx∣1 − ∣zx∣0 ∣ for some choice of x, z. However, since D is a de Bruijn sequence, it must

contain the same number of 1s as 0s. Thus, disc(D) = ∣ ∣zx∣1 − ∣zx∣0 ∣ = ∣ ∣y∣1 − ∣y∣0 ∣, which contradicts our
initial assumption. ◻

5

Lemma 1.2 Let D be a de Bruijn sequence of order n. Then disc(D) = d0(D) + d1(D).

Proof. Let γi denote the length-i prefix ofD. Let j0, j1, . . . , j2n denote a sequence of integers such that j0 = 0

and ji = ∣γi∣1− ∣γi∣0 for all i ∈ {1,2, . . . ,2n}. SinceD is a de Bruijn sequence, it has an equal number of 1s and
0s. Thus, j2n = 0. By Lemma 1.1, we can write D = xyz for strings x, y, z such that disc(D) = ∣ ∣y∣1 − ∣y∣0 ∣.
The number of 1s in y is equal to the number of 1s in xy minus the number of 1s in x. The same is true for
the number of 0s in y. Therefore, ∣y∣1 − ∣y∣0 = j∣xy∣ − j∣x∣. The value ∣ j∣xy∣ − j∣x∣ ∣ is maximized when either j∣x∣
is as large as possible and j∣xy∣ is as small as possible, or when j∣x∣ is as small as possible and j∣xy∣ is as large
as possible. In the former case, the value corresponds to d1(D) − (−d0(D)), and in the latter case the value
corresponds to ∣ − d0(D) − d1(D)∣. In both cases the value simplifies to d1(D) + d0(D). ◻

Corollary 1.3 Let D be a de Bruijn sequence of order n. The discrepancy of D can be calculated in Θ(∣D∣)
time.

2 Group 1: CCR-based constructions

In this section we consider the four de Bruijn sequence constructions in Group 1 based on the CCR. The se-
quences generated by the constructions CCR1, CCR2, and CCR3 are based on shift-rules presented in [18].
The sequences generated by the CCR2 and CCR3 constructions can also be constructed by concatenation
approaches [17] described later in this section; the equivalence of the shift-rules to their respective concate-
nation constructions has been confirmed up to n = 30, though no formal proof has been given. The Huang
construction is a shift-rule based construction in [22]. Since every de Bruijn sequence of order n contains the
substring 0n, a lower bound on discrepancy is clearly n. In this section we prove that two aforementioned con-
catenation based constructions have discrepancy at most 2n, and thus attain the smallest possible asymptotic
discrepancy of Θ(n).

To get a better feel for these four de Bruijn sequence constructions, the following graphs illustrate the
running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn
sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.

0 200 400 600 800 1,000

−10

−5

0

5

10

CCR1 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

−10

−5

0

5

10

CCR2 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

6

0 200 400 600 800 1,000

−10

−5

0

5

10

CCR3 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

−10

−5

0

5

10

Huang sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

Recall that the CCR is a feedback shift register with feedback function f(a1a2⋯an) = a1 + 1 (mod 2).
B(n) is partitioned into equivalence classes of strings, called co-necklaces, by the orbits of f . For example,
the following four columns are the co-necklace equivalence classes for n = 5:

00000 00010 00100 01010
00001 00101 01001 10101
00011 01011 10011
00111 10111 00110
01111 01110 01101
11111 11101 11011
11110 11010 10110
11100 10100 01100
11000 01000 11001
10000 10001 10010

The periodic reduction of a string α, denoted by pr(α), is the shortest prefix β of α such that α = βj for
some j ≥ 1. In [17], the following two de Bruijn sequence constructions CCR2 and CCR3 concatenate the
periodic reductions of αα for given representatives α of each co-necklace equivalence class.

CCR2

1. Let the representative for each co-necklace equivalence class of order n be its lexicographically
smallest string.

2. Let α1, α2, . . . , αm denote these representatives in colex order.

3. Output: pr(α1α1) ⋅ pr(α2α2) ⋯ pr(αmαm).

For n = 5, the representatives for this algorithm are the bolded strings in the equivalence classes above and
CCR2 produces:

0000011111 ⋅ 0010011011 ⋅ 0001011101 ⋅ 01.

7

CCR3

1. Let the representative for each co-necklace equivalence class of order n be the string obtained by
taking the lexicographically smallest string, removing its largest prefix of the form 0j , and then
appending 1j to the end.

2. Let α1, α2, . . . , αm denote these representatives in lexicographic order.

3. Output: pr(α1α1) ⋅ pr(α2α2) ⋯ pr(αmαm).

For n = 5, the representatives for this algorithm are the underlined strings in the equivalence classes above
and CCR3 produces:

1001101100 ⋅ 10 ⋅ 1011101000 ⋅ 1111100000.

We now prove that the discrepancy resulting from these two de Bruijn sequence constructions is at most
2n.

Lemma 2.1 Consider a sequence of binary strings α1, α2, . . . , αm where each αi has the same number of 0s
as 1s and has discrepancy at most n. Then disc(α1α2⋯αm) ≤ 2n.

Proof. Let S = α1α2⋯αm. By Lemma 1.1 there exists a shortest substring y = uαi+1αi+2⋯αj−1v of S such

that disc(S) = ∣ ∣y∣1 − ∣y∣0 ∣ where u is a suffix of αi and v is a prefix of αj . Since the number of 0s and 1s is

the same in each αk and disc(αk) ≤ n, ∣ ∣y∣1 − ∣y∣0 ∣ = ∣ ∣uv∣1 − ∣uv∣0 ∣ ≤ 2n. ◻

Theorem 2.2 The de Bruijn sequences constructed by CCR2 and CCR3 have discrepancy at most 2n.

Proof. Given a length n binary string α, αα has the same number of 0s and 1s and has discrepancy at most
n. These properties also hold for pr(αα) by definition of the periodic reduction. Thus, by Lemma 2.1, the
sequences constructed by CCR2 and CCR3 have discrepancy at most 2n. ◻

Interestingly, from Table 1, these two concatenation-based constructions do not demonstrate the small-
est discrepancy for n ≤ 30. The construction by Huang [22], which is based on a cycle-joining approach,
demonstrates slightly smaller discrepancy. In particular the author states:

“It seems clear that the sequences produced by our algorithm have a relatively good character-
istic of local 0-1 balance in comparison with the ones produced by the ‘prefer one’ algorithm.”

So the author indicates that their construction may have small discrepancy, however no analysis is provided.

3 Group 2: PRR-based constructions

In this section we consider the three de Bruijn sequence constructions in Group 2 based on the PRR. The
Pref-same [3,10,13] and the Pref-opposite [2] are greedy constructions based on the last bit of the sequence
as it is constructed. They have the downside of requiring an exponential amount of memory. The Lex-
comp construction is obtained by concatenating lexicographic compositions. It was an attempt to generate

8

the sequence generated by the Pref-same construction without using exponential space and it the resulting
sequences were conjectured to be the same for a very long prefix [14]. In fact, it attains the same discrepancy
as the Pref-same for all values of n tested. Recently, it was demonstrated that the Pref-same and the Pref-
opposite sequences can be generated in O(n) time per bit using only O(n) space by applying the PRR [29].
There is also a PRR-based construction that produces an equivalent sequence as Lex-comp for large n, but
there is no formal proof showing they are equivalent.

To get a better feel for the two greedy de Bruijn sequence constructions, the following graphs illustrate
the running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn
sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.

0 200 400 600 800 1,000

−10

0

10

20

Pref-same sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

−10

0

10

20

Pref-opp sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

In the following table we study some experimental results for the Pref-same construction. In particular,
for 10 ≤ n ≤ 25 we compute the maximum difference between the number of 1s and the number of 0s along
with the maximum difference between the number 0s and the number of 1s, over all prefixes of each Pref-
same de Bruijn sequence of order n. Adding these two values together, we get the discrepancies shown in
Table 1.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
max(#1s − #0s) 21 26 31 36 43 50 57 64 73 82 91 100 111 122 133 144
max(#0s − #1s) 3 3 4 7 5 9 11 15 15 21 23 27 31 33 39 43

discrepancy 24 29 35 43 48 59 68 79 88 103 114 127 142 155 172 187

Interestingly, the values in the row max(#1s − #0s) are equivalent to the known sequence A008811 in the
Online Encyclopedia of Integer Sequences (OEIS) [1] offset by four positions. The sequence enumerates the
“Expansion of x(1+x4)/((1−x)2(1−x4))” and the provided formula demonstrates that each value is Θ(n2).
More specifically the values match the sequence for 6 ≤ n ≤ 30, though we have no intuition as to why this is
the case. This leads to the following conjecture.

Conjecture 3.1 The de Bruijn sequences constructed by the Pref-same and Lex-comp algorithms have dis-
crepancy Θ(n2).

A similar analysis was performed for sequences generated by the Pref-opposite construction.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
max(#1s − #0s) 10 13 17 21 26 31 37 43 50 57 65 73 82 91 101 111
max(#0s − #1s) 17 21 26 31 37 43 50 57 65 73 82 91 101 111 122 133

discrepancy 27 34 43 52 63 74 87 100 115 130 147 164 183 202 223 244

9

Remarkably, observe that the two middle rows are a shift from each other by two positions. Just as interesting,
the sequences also correspond to a known sequence in OEIS [1], namely A033638. Specifically, the row
max(#1s− #0s) corresponds to this sequence shifted by four positions. The sequence does not match for
n < 10, but we have verified it matches for 10 ≤ n ≤ 30. The sequence corresponds to “quarter squares plus
1”, and by applying the appropriate shifts, the discrepancy for the Prefer-opposite sequence of order n, for
10 ≤ n ≤ 30 is given by:

⌊(n − 4)2
4

⌋ + ⌊(n − 2)2
4

⌋ + 2.

This leads to the following conjecture.

Conjecture 3.2 The de Bruijn sequence constructed by the Pref-opposite algorithm has discrepancy Θ(n2).

We conclude this section with an observation regarding the Pref-opposite de Bruijn sequence: For 2 ≤
n ≤ 25, each sequence has the following suffix where j = ⌈n/3⌉:

0j1n−j ⋅ 0j−11n−j+1 ⋯ 01n−1 ⋅ 10n−1.

For example, when n = 10, the Pref-opposite de Bruijn sequence has suffix

0000001111 ⋅ 0000011111 ⋅ 0000111111 ⋅ 0001111111 ⋅ 0011111111 ⋅ 0111111111 ⋅ 1000000000,

and the underlined substring has 5+ 6+ 7+ 8+ 10 ones and 4+ 3+ 2+ 1 zeros. A slight rearrangement gives a
lower bound of (5− 1)+ (6− 2)+ (7− 3)+ (8− 4)+ 10 = 4 ⋅ 4+ 10 = 26 for the discrepancy of the sequence.
The actual discrepancy is 27. More generally, if this suffix is indeed a suffix for each Pref-opposite de Bruijn
sequence, then a lower bound on its discrepancy will be

(⌈n/2⌉ − 1)(⌊n/2⌋ − 1) + n = Ω(n2).

4 Group 3: PCR-based constructions

In this section we consider the four de Bruijn sequence constructions in Group 3 based on the PCR. The
constructions PCR1, PCR2, PCR3, and PCR4 are based on shift-rules presented in [18]. Like the other
shift-rule constructions, these four rules result from joining smaller cycles based on the underlying feedback
function; depending on how the “bridge states” are defined leads to the different shift-rules. The sequences
generated by PCR1 are the same as the ones generated by the prefer-0 greedy construction; they are the
complements of the sequences generated by PCR1, and so they have the same. The sequences generated
by PCR1 can also be generated by two necklace concatenation constructions, one based on lexicographic
order [15], and another taking a recursive approach [27].

The sequences generated by PCR2 are the same as the ones generated by a necklace concatenation con-
struction based on colex order [8, 9]. The PCR3 is based on a general approach in [23] and revisited in [33].

To get a better feel for these four de Bruijn sequence constructions, the following graphs illustrate the
running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn
sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.

10

0 200 400 600 800 1,000

0

25

50

75

100

PCR1 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

0

25

50

75

100

PCR2 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

0

25

50

75

100

PCR3 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

0

25

50

75

100

PCR4 sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

The discrepancy for the sequence generated by the PCR1 construction has already been studied in [6]
where they show that the discrepancy is Θ(2

n logn
n). The sequences generated by the PCR2 and PCR3

constructions appear to have a similar growth trajectories. More interesting are the sequences generated by
the PCR4 construction that, from Table 1, appear to have discrepancy that is closest to that of a random string.
It would be interesting to do a more detailed investigation of this construction, which is based on a very simple
successor rule.

5 Group 4: Weight range constructions and the PSR/CSR

In this section we consider two de Bruijn sequence constructions that join smaller cycles based on weight
(number of 1s). In some related works the term density is also used to mean weight, so will use the variable d
to indicate a weight. The Cool-lex construction [28], is a concatenation approach which is based on creating
underlying cycles which contain all strings with weights d and d + 1 given 0 ≤ d < n. Then, appropriate
such cycles can be joined together to obtain a de Bruijn sequence [31]. By the nature of how the cycles are
joined, most length-n substrings in the first half of the resulting de Bruijn sequence have weight less than or
equal to n/2. Similarly, most length-n substrings in the latter half of the sequence have weight greater than or
equal to n/2. Thus, as one would expect, the resulting de Bruijn sequence has a very large discrepancy. The
Weight-range construction is a new construction presented in this section. Its resulting de Bruijn sequence
has discrepancy that attains the asymptotic upper bound of Θ(2n/√n).

11

To get a better feel for these two de Bruijn sequence constructions, the following graphs illustrate the
running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn
sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.

0 200 400 600 800 1,000

0

25

50

75

100

125

Cool-lex sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

0 200 400 600 800 1,000

0

25

50

75

100

125

Weight-range sequence for n = 10

#
1s
−

#
0s

in
pr

efi
x

Notice that if we had shifted the starting position of the Cool-lex sequence the profile of the graph would
be very similar to that the Weight-range sequence. In fact, the discrepancies of the two sequences are the
same except when n mod 4 ≡ 1 (see Table 1). This will be discussed more after we present the Weight-range
construction.

A minimum weight de Bruijn sequence is a cyclic sequence that contains each binary string of length n
with weight at least d exactly once. A maximum weight de Bruijn sequence is defined similarly where the
weight of each string is at most d. A construction for the former sequence is given in [32]; it is constructed
by concatenating the periodic reduction of each necklace of weight ≥ d when the necklaces are listed in
lexicographic order. Let the resulting sequence be denoted by Dd(n).

Remark 5.1 For any d < n, Dd(n) begins with 0n−d1d and ends with 1n.

By complementing the bits in Dd(n), we obtain a maximum weight de Bruijn sequence with weight at most
n − d. Denote this sequence by Dd(n). From the previous remark, it begins with 1n−d0d and ends with 0n.

Example 1 The necklaces of length 6 with weight d ≥ 3 in lexicographic order are:

000111,001011,001101,001111,010101,010111,011011,011111,111111.

Concatenating together their periodic reductions we obtain the minimum weight de Bruijn se-
quence D3(6).

000111 ⋅ 001011 ⋅ 001101 ⋅ 001111 ⋅ 01 ⋅ 010111 ⋅ 011 ⋅ 011111 ⋅ 1

As further examples,
D4(6) = 001111 ⋅ 010111 ⋅ 011 ⋅ 011111 ⋅ 1

and
D4(6) = 110000 ⋅ 101000 ⋅ 100 ⋅ 100000 ⋅ 0.

From the above example observe that:

12

• D3(6) contains all binary strings of length 6 with weight greater than or equal to 3,

• D4(6) contains all binary strings of length 6 with weight less than or equal to 2,

• The length n−1 prefix of D4(6), namely 11000, appears in the wraparound of D3(6).

Let Dr
d(n) denote the sequence Dd(n) with the suffix 1d−1 rotated to the front. Then by applying the Gluing

Lemma [31], the following is a de Bruijn sequence of order 6:

1100001010001001000000
´¹¹¸¹¹¶

D4(6)

⋅ 110001110010110011010011110101011101101111
´¹¹¸¹¹¶

Dr
3(6)

.

Applying this strategy more generally, let DBmax(n) denote the de Bruijn sequence obtained by joining two
such smaller cycles.

Weight-range construction
DBmax(n) = Dd(n) ⋅Dr

d′(n),

where d = ⌊n/2⌋ + 1 and d′ = ⌈n/2⌉.

A complete C implementation to construct DBmax(n) is given in the Appendix2.
The following technical lemma leads to a lower bound for the discrepancy of DBmax(n).

Lemma 5.2 A maximum weight de Bruijn sequence of order n and maximum weight d has (n−1
d

) more 0s
than 1s.

Proof. By definition, a maximum weight de Bruijn sequence of order n and maximum weight d contains every
binary string of length n with weight at most d as a substring exactly once. Since each bit in this sequence
belongs to n different strings the total number of 1s in the sequence is

ones = 1

n

d

∑
j=0

j(n
j
)

= 0

n
(n

0
) + 1

n
(n

1
) + 2

n
(n

2
) +⋯ + d

n
(n
d
)

= 0 + (n − 1

0
) + (n − 1

1
) +⋯ + (n − 1

d − 1
),

and the total number of 0s is

zeros = 1

n

d

∑
j=0

(n − j)(n
j
)

= n

n
(n

0
) + n − 1

n
(n

1
) + n − 2

n
(n

2
) +⋯ + n − d

n
(n
d
)

= (n − 1

0
) + (n − 1

1
) + (n − 1

2
) +⋯ + (n − 1

d
).

Thus zeros − ones = (n−1
d

). ◻

2It is also available at http://debruijnsequence.org.

13

Theorem 5.3 The de Bruijn sequence DBmax(n) has discrepancy at least (n−1
⌊n/2⌋) + ⌊n2 ⌋.

Proof. Let d = ⌊n/2⌋ + 1 and d′ = ⌈n/2⌉. Recall that Dd(n) is a maximum weight de Bruijn sequence
with maximum weight n − d. Thus, by Lemma 5.2, it has (n−1

n−d) = (n−1
n−(⌊n/2⌋+1)) = (n−1

⌊n/2⌋) more 0s than 1s.

ConsiderDd(n) with its prefix of 1n−d removed. The resulting string, which is a substring ofDBmax(n), has
(n−1
⌊n/2⌋) + (n − d) more 0s than 1s. When n is odd we have n − d = n − ⌊n/2⌋ − 1 = ⌊n2 ⌋ and thus DBmax(n)

has discrepancy at least (n−1
⌊n/2⌋) + ⌊n2 ⌋. When n is even, we additionally add the length n − 1 prefix of Dr

d′(n)
which has more 0s than 1s (exactly one more). Since n − d + 1 = n − (⌊n/2⌋ − 1) + 1 = ⌊n2 ⌋ (when n is even)
this again means that DBmax(n) has discrepancy at least (n−1

⌊n/2⌋) + ⌊n2 ⌋. ◻

By applying Stirling’s approximation to (n−1
⌊n/2⌋) we obtain the following corollary.

Corollary 5.4 The discrepancy of the de Bruijn sequence DBmax(n) attains the asymptotic upper bound of
Θ(2n√

n
).

Observe from Table 1 that the discrepancy of DBmax(n) is exactly (n−1
⌊n/2⌋) + ⌊n2 ⌋ for 10 ≤ n ≤ 25. This leads

to the following conjecture.

Conjecture 5.5 The de Bruijn sequence DBmax(n) has discrepancy equal to (n−1
⌊n/2⌋) + ⌊n2 ⌋, and moreover, it

is the maximum possible discrepancy over all de Bruijn sequences of order n.

As noted earlier, the discrepancy of the Cool-lex construction matches the discrepancy for the Weight-
range construction for 10 ≤ n ≤ 25, except for when n mod 4 ≡ 1 (see Table 1). As illustration, the Cool-lex
construction first constructs cycles of the following weights for n = 6,7,8,9:

• n = 6: (0,1,2), (3,4), (5,6)

• n = 7: (0,1), (2,3), (4,5), (6,7)

• n = 8: (0,1,2), (3,4), (5,6), (7,8)

• n = 9: (0,1), (2,3), (4,5), (6,7), (8,9)

before joining them together one at a time. Note when n = 9, strings with weights 4 and 5 are grouped to-
gether before the smaller cycles are joined together. This causes a reduction in the discrepancy compared to
the Weight-range construction. It is possible, however, to tweak the Cool-lex implementation so the discrep-
ancies are equivalent. For instance for n = 9, the smaller cycles with weights (0,1,2), (3,4), (5,6), (7,8,9)
could be joined together instead.

Recently, a shift-rule construction based on the PSR and CSR has been discovered to generate the same
sequence as Cool-lex [30]. A discussion on generating de Bruijn sequences applying the PSR and CSR is also
given in [12]; it describes joining small cycles together in the same manner as Cool-lex. Thus, we anticipate
the resulting sequences would obtain a similar discrepancy profile.

6 Group 5: LFSR constructions based on primitive polynomials

In this section we consider de Bruijn sequences that can be generated for a specific n by a primitive polynomial
of degree n. As discussed by Golomb [20], a primitive polynomial of the form g(x) = c0+c1x+c2x2+⋯+cnxn
over GF(2) corresponds to a feedback function of the form f(a1a2⋯an) = cna1 ⊕ cn−1a2 ⊕⋯⊕ c1an.

14

Example 2 The primitive polynomial 1 + x2 + x5 of degree 5 over GF(2) corresponds to the feedback
function f(a1a2a3a4a5) = a1 + a4. If a1a2a3a4a5 is initialized to 00001, then the LFSR with this
feedback function produces the m-sequence

0000101011101100011111001101001

of length 25 − 1 = 31 when outputting the value a1 before each application of the LFSR. By prepending
a 0 to the beginning of this m-sequence we obtain a de Bruijn sequence.

To obtain the data in Table 2, we generated all primitive polynomials of degree n for n = 10,11, . . . ,25

along with their corresponding LFSRs. The algorithm used to exhaustively list the primitive polynomials is
based on the work in [5] and is available at http://debruijnsequence.org/lfsr. We seeded the
LFSRs with 0n−11 as described in the above example to obtain a de Bruijn sequence. We then computed the
discrepancy of all such sequences. The number of primitive polynomials (and hence LFSRs) of degree n is
given by sequence A011260 in the On-Line Encyclopedia of Integer Sequences [1]. This number is listed in
the final column of Table 2.

Below is a list of feedback functions for n = 10,11, . . . ,25 that generated de Bruin sequences with dis-
crepancy closest to the corresponding entry for a random sequence.

n Feedback function Random Discrepancy
10 a1 ⊕ a2 ⊕ a6 ⊕ a9 50 46
11 a1 ⊕ a6 ⊕ a7 ⊕ a10 71 68
12 a1 ⊕ a4 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a12 101 99
13 a1 ⊕ a2 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a10 ⊕ a11 ⊕ a12 143 143
14 a1 ⊕ a2 ⊕ a4 ⊕ a5 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a13 203 203
15 a1 ⊕ a2 ⊕ a6 ⊕ a11 288 287
16 a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a13 ⊕ a15 407 406
17 a1 ⊕ a3 ⊕ a5 ⊕ a8 ⊕ a9 ⊕ a10 ⊕ a11 ⊕ a12 ⊕ a13 ⊕ a15 ⊕ a16 ⊕ a17 575 575
18 a1 ⊕ a4 ⊕ a5 ⊕ a7 ⊕ a10 ⊕ a11 ⊕ a12 ⊕ a15 ⊕ a16 ⊕ a17 815 814
19 a1 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a10 ⊕ a11 ⊕ a14 ⊕ a16 ⊕ a17 1157 1157
20 a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10 ⊕ a11 ⊕ a12 ⊕ a13 ⊕ a15 ⊕ a16 ⊕ a17 ⊕ a19 ⊕ a20 1634 1633
21 a1 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a8 ⊕ a11 ⊕ a16 ⊕ a19 ⊕ a20 ⊕ a21 2311 2311
22 a1 ⊕ a3 ⊕ a6 ⊕ a12 ⊕ a13 ⊕ a15 ⊕ a17 ⊕ a18 ⊕ a19 ⊕ a20 ⊕ a21 ⊕ a22 3264 3264
23 a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a9 ⊕ a10 ⊕ a12 ⊕ a14 ⊕ a16 ⊕ a17 ⊕ a18 ⊕ a23 4565 4565
24 a1 ⊕ a2 ⊕ a4 ⊕ a6 ⊕ a12 ⊕ a13 ⊕ a14 ⊕ a15 ⊕ a16 ⊕ a17 ⊕ a18 ⊕ a20 ⊕ a21 ⊕ a24 6252 6252
25 a1 ⊕ a8 ⊕ a9 ⊕ a11 ⊕ a12 ⊕ a16 ⊕ a20 ⊕ a21 ⊕ a24 ⊕ a25 9192 9192

7 Future directions and open problems

In this paper, we investigated the discrepancies of 13 de Bruijn sequence constructions. We proved that two
constructions attain the lower bound of Θ(n) and presented one new construction that attains the upper bound
of Θ(2n√

n
). It remains an interesting problem to demonstrate a generic construction for all n with discrepancy

that is close to that of a random stream of bits of the same length. Some additional avenues of future research
include the following.

1. Simplify the description of the Huang construction [22]. Does it have the smallest discrepancy over all
de Bruijn sequences?

15

2. Answer the conjectures regarding the discrepancies for the greedy Pref-same and Pref-opposite con-
structions (Conjecture 3.1 and Conjecture 3.2).

3. Analyze the discrepancy of PCR4 which had discrepancy closest to one we might expect from a random
stream of bits.

4. Determine whether or not the maximum discrepancy of any de Bruijn sequence is (n−1
⌊n/2⌋) + ⌊n2 ⌋ (Con-

jecture 5.5).

5. Generalize the investigation of discrepancy to de Bruijn sequences over an arbitrary alphabet size k.

6. Study the distribution of discrepancy over all possible de Bruijn sequences.

8 Acknowledgement

The research of Joe Sawada is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant RGPIN-2018-04211.

References

[1] OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

[2] A. Alhakim. A simple combinatorial algorithm for de Bruijn sequences. The American Mathematical
Monthly, 117(8):728–732, 2010.

[3] A. Alhakim, E. Sala, and J. Sawada. Revisiting the Prefer-same and Prefer-opposite de Bruijn sequence
constructions. Theoretical Computer Science, 852:73–77, 2021.

[4] S. R. Blackburn and I. E. Shparlinski. Character sums and nonlinear recurrence sequences. Discrete
Math., 306(12):1126–1131, June 2006.

[5] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. Miers. Fast algorithms to generate necklaces, unla-
beled necklaces, and irreducible polynomials over GF(2). Journal of Algorithms, 37(2):267–282, 2000.

[6] J. Cooper and C. Heitsch. The discrepancy of the lex-least de Bruijn sequence. Discrete Mathematics,
310:1152–1159, 2010.

[7] J. Cooper and C. E. Heitsch. Generalized Fibonacci recurrences and the lex-least de Bruijn sequence.
Advances in Applied Mathematics, 50:465–473, 2010.

[8] P. B. Dragon, O. I. Hernandez, J. Sawada, A. Williams, and D. Wong. Constructing de Bruijn sequences
with co-lexicographic order: The k-ary Grandmama sequence. European Journal of Combinatorics,
72:1–11, 2018.

[9] P. B. Dragon, O. I. Hernandez, and A. Williams. The grandmama de Bruijn sequence for binary strings.
In Proceedings of LATIN 2016: Theoretical Informatics: 12th Latin American Symposium, Ensenada,
Mexico, pages 347–361. Springer Berlin Heidelberg, 2016.

[10] C. Eldert, H. Gray, H. Gurk, and M. Rubinoff. Shifting counters. AIEE Trans., 77:70–74, 1958.

16

[11] P. L. Emerson and R. D. Tobias. Computer program for quasi-random stimulus sequences with equal
transition frequencies. Behavior Research Methods, Instruments, & Computers, 27(1):88–98, Mar 1995.

[12] T. Etzion. Self-dual sequences. Journal of Combinatorial Theory, Series A, 44(2):288 – 298, 1987.

[13] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM Review,
24(2):195–221, 1982.

[14] H. Fredricksen and I. Kessler. Lexicographic compositions and de Bruijn sequences. J. Combin. Theory
Ser. A, 22(1):17 – 30, 1977.

[15] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete
Math., 23:207–210, 1978.

[16] D. Gabric and J. Sawada. A de Bruijn sequence construction by concatenating cycles of the comple-
mented cycling register. In Combinatorics on Words - 11th International Conference, WORDS 2017,
Montréal, QC, Canada, September 11-15, 2017, Proceedings, pages 49–58, 2017.

[17] D. Gabric and J. Sawada. Constructing de Bruijn sequences by concatenating smaller universal cycles.
Theoretical Computer Science, 743:12–22, 2018.

[18] D. Gabric, J. Sawada, A. Williams, and D. Wong. A framework for constructing de Bruijn sequences
via simple successor rules. Discrete Mathematics, 241(11):2977–2987, 2018.

[19] S. Golomb. On the classification of balanced binary sequences of period 2n − 1(corresp.). IEEE Trans-
actions on Information Theory, 26(6):730–732, November 1980.

[20] S. W. Golomb. Shift Register Sequences. World Scientific, Singapore, 2017.

[21] Y. Hsieh, H. Sohn, and D. Bricker. Generating (n,2) de Bruijn sequences with some balance and unifor-
mity properties. Ars Combinatoria, 72:277–286, 07 2004.

[22] Y. Huang. A new algorithm for the generation of binary de Bruijn sequences. J. Algorithms, 11(1):44–
51, 1990.

[23] C. J. A. Jansen, W. G. Franx, and D. E. Boekee. An efficient algorithm for the generation of DeBruijn
cycles. IEEE Transactions on Information Theory, 37(5):1475–1478, Sep 1991.

[24] M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859–864, 1934.

[25] J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory,
15(1):122–127, January 1969.

[26] A. A. Philippakis, A. M. Qureshi, M. F. Berger, and M. L. Bulyk. Design of compact, universal DNA
microarrays for protein binding microarray experiments. In T. Speed and H. Huang, editors, Research
in Computational Molecular Biology, pages 430–443, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg.

[27] A. Ralston. A new memoryless algorithm for de Bruijn sequences. J. Algorithms, 2(1):50–62, 1981.

[28] F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM
Journal on Discrete Mathematics, 26(2):605–617, 2012.

17

[29] E. Sala, J. Sawada, and A. Alhakim. Efficient constructions of the Prefer-same and Prefer-opposite de
Bruijn sequences. CoRR, abs/2010.07960, 2020.

[30] J. Sawada and A. Williams. Universal cycles for strings with fixed content based on cool-lex order.
manuscript, 2021.

[31] J. Sawada, A. Williams, and D. Wong. Universal cycles for weight-range binary strings. In Combinato-
rial Algorithms - 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, LNCS
8288, pages 388–401, 2013.

[32] J. Sawada, A. Williams, and D. Wong. The lexicographically smallest universal cycle for binary strings
with minimum specified weight. Journal of Discrete Algorithms, 28:31–40, 2014.

[33] J. Sawada, A. Williams, and D. Wong. A surprisingly simple de Bruijn sequence construction. Discrete
Math., 339:127–131, 2016.

[34] H.-S. Sohn, D. L. Bricker, J. R. Simon, and Y. Hsieh. Optimal sequences of trials for balancing practice
and repetition effects. Behavior Research Methods, Instruments, & Computers, 29(4):574–581, Dec
1997.

18

A Table of discrepancies
(Group 1) (Group 2)

n Huang CCR2 CCR3 CCR1 Pref-same Lex-comp Pref-opposite
10 12 13 13 16 24 24 27
11 13 14 15 18 29 29 34
12 15 16 16 22 35 35 43
13 16 17 18 23 43 43 52
14 18 19 20 30 48 48 63
15 19 21 21 29 59 59 74
16 21 22 23 36 68 68 87
17 22 24 25 37 79 79 100
18 24 26 26 43 88 88 115
19 25 27 28 43 103 103 130
20 27 29 30 52 114 114 147
21 28 31 31 50 127 127 164
22 30 32 33 59 142 142 183
23 31 34 35 59 155 155 202
24 33 36 36 67 172 172 223
25 35 37 38 66 187 187 244
26 36 39 40 77 208 208 267
27 38 41 42 74 224 224 290
28 40 43 43 85 246 246 315
29 41 44 45 84 264 264 340
30 43 46 47 94 286 286 367

(Group 3) (Group 4)
n PCR4 Random PCR3 PCR2 Prefer-1/PCR1 Cool-lex Weight-range
10 29 50 75 101 120 131 131
11 41 71 141 180 222 257 257
12 51 101 248 321 416 468 468
13 70 143 468 587 784 801 930
14 85 203 850 1065 1488 1723 1723
15 110 288 1604 1974 2824 3439 3439
16 175 407 2965 3632 5376 6443 6443
17 246 575 5594 6785 10229 11452 12878
18 326 815 10461 12635 19484 24319 24319
19 462 1157 19765 23746 37107 48629 48629
20 730 1634 37243 44585 71250 92388 92388
21 954 2311 70575 84270 138332 167975 184766
22 1327 3264 133737 159281 268582 352727 352727
23 1820 4565 254322 302449 521553 705443 705443
24 2684 6252 484172 574819 1012795 1352090 1352090
25 3183 9192 924071 1096009 1966813 2496163 2704168
26 4108 13074 1766284 2092284 3819605 5200313 5200313
27 5604 17933 3382851 4004050 7453523 10400613 10400613
28 7629 22672 6488970 7672443 14544826 20058314 20058314
29 10433 34591 12468181 14730243 28382864 37442182 40116614
30 13637 57357 23991972 28316271 55421919 77558775 77558775

19

B C program to construct maximum-discrepancy de Bruijn sequences

#include <stdio.h>
int n,c,a[100],first;

//---
// Generate the lexicographically smallest universal cycle (de Bruijn sequence)
// for binary strings of length "n" with minimum weight "c" when comp = 0. When
// comp=1, it complements the bits producing a maximum weight n-c universal cycle
//---
void Gen(int t, int p, int w, int comp) {

int i;

if (t > n) {
if (n%p == 0) {

if (first == 0) {
for (i=1; i<=c; i++) printf("0");
first = 1;

}
else {

for (i=1; i <= p; i++) printf("%d", (a[i]+comp) % 2);
}

}
}
else {

// Append 0
a[t] = 0;
if (a[t-p] == 0 && c-w < n-t+1) Gen(t+1,p,w,comp);

// Append 1
a[t] = 1;
if (a[t-p] == 1) Gen(t+1,p,w+1,comp);
else Gen(t+1,t,w+1, comp);

}
}
//===
int main() {

printf("Enter n: "); scanf("%d", &n);

c = n/2+1;
for (int i=1; i<=c-1; i++) printf("1");
a[0] = 0; first = 1;
Gen(1,1,0,0);

c = n-c+1; first = 0;
Gen(1,1,0,1);
printf("\n");

}

20

