
Universal cycles for weight-range binary strings

Joe Sawada1?, Aaron Williams2??, and Dennis Wong1? ? ?

1 School of Computer Science, University of Guelph, Canada.
2 Department of Mathematics and Statistics, McGill University, Canada.

Abstract. We present an efficient universal cycle construction for the set of binary strings of length n whose
weight (number of 1s) are in the range c, c+1, . . . , dwhere 0 ≤ c < d ≤ n. The construction can be implemented
to generate each character in constant amortized time using O(n) space which based on a simple lemma for
gluing universal cycles together. The Gluing lemma can also be applied to construct universal cycles for other
combinatorial objects including passwords and labeled graphs.

1 Introduction

Let B(n) denote the set of all binary strings of length n. A universal cycle for a set S is a cyclic
sequence u1u2 · · ·u|S| where each substring of length n corresponds to a unique object in S. When
S = B(n) these sequences are commonly known as de Bruijn sequences [6, 7, 13] and efficient
constructions are well known [10, 9, 16]. For example, the cyclic sequence 0000100110101111
is a universal cycle (de Bruijn sequence) for B(4); the 16 unique substrings of length 4 when the
sequence is considered cyclicly are:

0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000.

Universal cycles have been studied for a variety of combinatorial objects including per-
mutations, partitions, subsets, labeled graphs, various functions, and passwords [1, 3–5, 12, 14,
15, 17, 20]. In this paper we focus on the set Bd

c(n), which denotes the subset of B(n) con-
taining strings with weight (number of 1s) in the range c, c + 1, . . . , d, or in other words, the
subset of B(n) containing strings with weight-range from c to d. As an example, B3

2(4) =
{0011, 0101, 0110, 1001, 1010, 1100, 0111, 1011, 1101, 1110} and a universal cycle for this set is
0011101011. Using standard techniques, it can be shown that universal cycles exist for all Bd

c(n)
where 0 ≤ c < d ≤ n. When c = d, they exist only when c ∈ {0, 1, n− 1, n}. However, finding
efficient constructions remains a difficult problem. In this paper, a universal cycle has an efficient
construction if each successive symbol of the sequence can be generated in constant amortized
time (CAT) while using a polynomial amount of space with respect to the objects in the sequence.
By constant amortized time we mean amortized O(1)-time, where the constant does not depend
on the size of the objects in the sequence. Some special cases have been previously studied:

– if c = d− 1 , then an efficient construction is known [19],
– if c = 0 or d = n, then an efficient construction is known [23],
? Research supported by NSERC. email: jsawada@uoguelph.ca

?? email: haron@uvic.ca
? ? ? email: cwong@uoguelph.ca

– if d− c+ 1 is even, then an inefficient construction is known [24, 25].

This paper provides the first efficient construction for universal cycles of Bd
c(n) for all 0 ≤

c < d ≤ n. By applying the efficient construction for the case when c = d− 1, our construction
yields an algorithm that can generate each character in constant amortized time usingO(n) space.

The rest of this paper is presented as follows. In Section 2 we provide a simple proof for the
existence of universal cycle for Bd

c(n) where 0 ≤ c < d ≤ n; a more complicated proof is given
in [2]. In Section 3, we present a generic result that states when two universal cycles can be glued
together to obtain a new universal cycle. We then apply this result in Section 4 and Section 5
to provide an efficient construction of universal cycles for Bd

c(n). We conclude with Section 6,
where we consider other combinatorial objects including passwords and labeled graphs.

2 Universal cycle existence for Bc
d(n)

The de Bruijn graph G(S) for a set of length n strings S is a directed graph whose vertex set
consists of the length n−1 prefixes and suffixes of the strings in S. For each string b1 · · · bn ∈ S
there is an edge labeled bn that is directed from the prefix b1 · · · bn−1 to the suffix b2 · · · bn. Thus,
the graph has |S| edges. As an example, the de Bruijn graph G(B4

2(4)) in illustrated in Fig. 1.

001 011

100 110

1

1

0

0010 101

0

1

111

1

0

1

1

1

Fig. 1: The de Bruijn graph G(B4
2(4)).

A (directed) cycle in a directed graph G = (V,E) is a sequence v1, · · · , vj, v1 where vi ∈ V
and {vi, vi+1} ∈ E. A directed graph is said to be Eulerian if it contains a directed cycle that
includes each edge exactly once. It is well known that S admits a universal cycle if and only
if G(S) is Eulerian. If G(S) contains an Eulerian cycle, then a universal cycle is produced by
traversing an Eulerian cycle and outputting the edge labels. However, in practice, such a method
for producing a universal cycle is often impractical due to the size of the graph that must be stored
in memory. For example, the memory required to store the de Bruijn graph for B(n) is O(2n).

A directed graph is said to be balanced if the in-degree of each vertex is the same as its out-
degree. It is strongly connected if there is a directed path between every pair of vertices. The
following result is well-known, and appears in many references such as [18]:

Lemma 1. A directed graph is Eulerian if and only if it is balanced and strongly connected.

Theorem 1. G(Bd
c(n)) is Eulerian for 0 ≤ c < d ≤ n.

Proof. We prove thatG(Bd
c(n)) is Eulerian by showing that it is balanced and strongly connected.

Balanced: The vertex set of G(Bd
c(n)) contains all strings of length n− 1 with weight in the

range c − 1, c, . . . , d. Each vertex with weight c − 1 has one incoming edge and one outgoing
edge, each labeled 1. Each vertex with weight d has one incoming edge and one outgoing edge,
each labeled 0. All other vertices have in-degree and out-degree equal to 2.

Strongly connected: We apply induction on the size of the weight-range c, c+ 1, . . . , d. The
base case when c = d − 1 is proved in Theorem 2.4 of [19]. For the inductive step assume that
G(Bd−1

c (n)) is strongly connected for 0 ≤ c < d− 1, and consider G(Bd
c(n)). Observe:

– the vertex set of G(Bd
c(n)) is equal to the union of the vertex sets of G(Bd−1

c (n)) and
G(Bd

d−1(n)),
– the intersection of the vertex sets for G(Bd−1

c (n)) and G(Bd
d−1(n)) is non-empty,

– the edge sets of G(Bd−1
c (n)) and G(Bd

d−1(n)) are both subsets of the edge set for G(Bd
c(n)).

Thus, since both G(Bd−1
c (n)) and G(Bd

d−1(n)) are strongly connected (inductive hypothesis and
base case), there will be a directed path between any two vertices in G(Bd

c(n)). ut

3 Gluing universal cycles

In this section we consider concatenating two universal cycles together to obtain a new universal
cycle. An Eulerian cycle of a directed graph can be obtained by Hierholzer’s algorithm [18,
11]. Hierholzer’s approach is to construct an Eulerian cycle by exhaustively concatenating edge-
disjoint cycles that share a common vertex. The algorithm repeatedly applies the following lemma
to produce an Eulerian cycle.

Lemma 2. Let G = (V,E) and H = (V ′, E ′) be two Eulerian graphs such that V ∩ V ′ 6= ∅
and E ∩ E ′ = ∅. Let CG = u1, u2, · · · , uj, u1 and CH = v1, v2, · · · , vk, v1 denote Eulerian
cycles in G and H respectively such that u1 = v1. Then the concatenation of the two cycles
CGH = u1, · · · , uj, v1, · · · , vk, v1 is an Eulerian cycle for G ∪H .

As mentioned in Section 2, each universal cycle for a set S corresponds to an Eulerian cycle
of its de Bruijn graph G(S). Thus by Lemma 2, universal cycles for two sets S1 and S2 can be
joined together to form a new universal cycle for S1 ∪ S2 if G(S1) and G(S2) are edge-disjoint
and share a common vertex, or in other words, S1 and S2 are disjoint and have elements that
share a length n − 1 prefix or a length n − 1 suffix. As an example, consider the following two
universal cycles:

– universal cycle for B2
1(5): 000011000101001,

– universal cycle for B4
3(5): 001111011010111.

The de Bruijn graphs G(B2
1(5)) and G(B4

3(5)) are edge-disjoint and share a common vertex
α = 0011. Since the universal cycles are cyclic they can be re-written as 001100010100100 and
001111011010111 respectively. By gluing these two strings together, observe that we obtain a
universal cycle for B4

1(5) = B2
1(5) ∪ B4

3(5):

001100010100100001111011010111.

This example illustrates the following lemma which considers gluing universal cycles for an
alphabet of arbitrary size:

Lemma 3 (The Gluing lemma). Let U1 and U2 be universal cycles for the sets of length n string
S1 and S2, where S1 ∩S2 = ∅ and the length n− 1 prefixes of U1 and U2 are the same. Then the
concatenated string U1 · U2 is a universel cycle for S1 ∪ S2.

The phrasing of the Gluing lemma with respect to universal cycles provides a simple method
for “constructing” new universal cycles from existing ones. We apply this lemma in the upcoming
sections to construct weight-range universal cycles for Bd

c(n).

4 Universal cycle construction for Bd
c(n)

As mentioned earlier, there exists an efficient universal cycle construction for Bd
d−1(n) [19]. By

leveraging this result, we can use the Gluing lemma to create a universal cycle for binary strings
with an even weight-range (d− c + 1 is even). To create universal cycles for binary strings with
an odd weight-range (d − c + 1 is odd), we will glue in individual necklaces which are defined
below.

4.1 Preliminary definitions and notations

A necklace is defined to be the lexicographically smallest string in an equivalence class of strings
under rotation. Aperiodic necklaces are called Lyndon words. A string is called a prenecklace if it
is the prefix of some necklace. The aperiodic prefix of a string α, denoted as ap(α), is its shortest
prefix whose repeated concatenation yields α. That is, the aperiodic prefix of α = a1a2 · · · an is
the shortest prefix ap(α) = a1a2 · · · ak such that (ap(α))n/k = α, where exponentiation denotes
repeated concatenation. For example, when α = 001001001, ap(α) = 001. We denote Nk(n) to
be the set of binary necklaces of length n and weight k.

To further illustrate these objects, the prenecklaces, necklaces and Lyndon words in B4(6)
are listed as follows:

Prenecklaces Necklaces Lyndon words
001111 001111 001111
010111 010111 010111
011011 011011
011101
011110

4.2 Even weight-range

Suppose we want to construct a universal cycle for Bd
d−3(n) from the universal cycles for Bd−2

d−3(n)

and Bd
d−1(n). Observe that the sets Bd−2

d−3(n) and Bd
d−1(n) are disjoint, and their universal cycles

share many length n − 1 substrings (those with weight d − 2). Thus, we can apply the Gluing
lemma to construct a universal cycle for Bd

d−3(n). We can then repeatedly apply the Gluing
lemma on the resulting universal cycle and dual-weight universal cycles (weight-range universal
cycles with d− c+1 = 2) of lower weight-ranges to obtain a universal cycle of an arbitrary even
weight-range. However, the difficult task remains: How can we produce the glued universal cycle
efficiently, that is, without scanning for common substrings of length n−1?

To find an efficient construction, we must revisit the efficient construction of a universal
cycle for Bd

d−1(n). The universal cycle UCd
d−1 for Bd

d−1(n) can be efficiently constructed by the
algorithm described in [19] as follows:

1. List the necklaces of length n+ 1 and weight d in reverse cool-lex order [21],
2. Append the aperiodic prefixes of the necklaces together to get the string UCd

d−1.

As an example, Fig. 2 demonstrates a dual-weight universal cycle for B4
3(7) constructed by con-

catenating the aperiodic prefixes of N4(8) in reverse cool-lex order.

  
 











 





 


 














































Fig. 2: Concatenating the aperiodic prefixes of N4(8) in reverse cool-lex order to create a dual-weight universal cycle for B4
3(7).

Using this construction, we can find the common length n−1 substring α of the universal
cycles UCd−2

d−3(n) and UCd
d−1(n) by the following lemma:

Lemma 4. [19] The first necklace in reverse cool-lex order for Bd(n+ 1) is 0n−d+11d.

Applying this lemma, the first n+1 characters in UCd−2
d−3(n) and UCd

d−1(n) are 0n−d+31d−2 and
0n−d+11d respectively. Thus, if we rotate UCd−2

d−3(n) to the left by 2 characters, then the first n− 1
characters of both cycles will be 0n−d+11d−2.

00111 00011

1100011100

01110 10001

1

0

0

0

1

1

01011 00101

1100101100

10110 10010

1

0

0

1

0

1

01101 00110

0100110100

11010 10011

1

0

0

1

1

0

01010

10101

1 0

Fig. 3: Illustrating the de Bruijn graph corresponding to the universal cycles of the 4 necklace equivalence classes Neck(000111),
Neck(001011), Neck(001101) and Neck(010101) that make up B3(6).

Let VCd
d−1(n) denote the sequence UCd

d−1(n) with the first 2 characters removed. The fol-
lowing recursive formula provides a construction of the universal cycle UEd

c(n) for Bd
c(n), where

the weight-range d− c+ 1 is even:

UEd
c(n) =

{
UCd

d−1(n) if c = d− 1;
UCd

c+2(n) · VCc+1
c (n) · 00 if c < d− 1.

By expanding the recursive function, we obtain the following formula:

UEd
c(n) = UCd

d−1(n) · VCd−2
d−3(n) · VCd−4

d−5(n) · · ·VCc+1
c (n) · 0d−c−1.

Theorem 2. UEd
c(n) is a universal cycle for Bd

c(n) when 0 ≤ c < d ≤ n and d− c+ 1 is even.

Since the universal cycle UCd
d−1 can be constructed in constant amortized time per charac-

ter using O(n) space by the algorithm described in [19], and VCd
d−1 can easily be obtained by

constructing UCd
d−1 and removing its first 2 characters, we therefore arrive the following theorem:

Theorem 3. A universal cycle UEd
c(n) for Bd

c(n) can be constructed in constant amortized time
per character using O(n) space when d− c+ 1 is even and 0 ≤ c < d ≤ n.

4.3 Extending the weight-range (odd weight-range)

In this section, we consider modifying a universal cycle for Bd−1
c (n) into a universal cycle for

Bd
c(n). We will refer to this process as incrementing the universal cycle’s weight range since

the weight-range is incremented by one value. The process of incrementing the universal cycle’s
weight range allows us to extend an arbitrary even weight-range universal cycle to an odd weight-
range universal cycle.

Let Neck(α) denote the set of strings rotationally equivalent to α. We partition the strings in
Bd(n) into their necklace equivalence classes such that Bd(n) = Neck(n1)∪Neck(n2)∪ · · · ∪
Neck(n|Nd(n)|) where nj ∈ Nd(n). For example, B3(6) can be partitioned into the 4 subsets
B3(6) = Neck(000111)∪Neck(001011)∪Neck(001101)∪Neck(010101) with the elements
of each set listed as follows:.

. Neck(000111) = {000111, 001110, 011100, 111000, 110001, 100011},

. Neck(001011) = {001011, 010110, 101100, 011001, 110010, 100101},

. Neck(001101) = {001101, 011010, 110100, 101001, 010011, 100110}, and

. Neck(010101) = {010101, 101010}.
Observe that the de Bruijn graph G(Neck(nj)) forms a simple cycle with its edge labels corre-
sponds to ap(nj), which is a universal cycle for Neck(nj). As an example, Fig. 3 illustrates the
de Bruijn graphs for the 4 necklace equivalence classes that make up B3(6). The concatenation
of edge labels of the cycles are 000111, 001011, 001101, and 01 respectively, which correspond
to the universal cycles for Neck(000111), Neck(001011), Neck(001101) and Neck(010101).

A special case arises when a universal cycle for Neck(nj) has length less than n that happens
when nj is periodic. In such a universal cycle, each length n element of Neck(nj) is obtained
by repeatedly traversing the universal cycle n

|Neck(nj)| times. As an example, a universal cycle
for Neck(010101) = 01 where the characters of the universal cycle correspond to the strings
in Neck(010101), that is 010101 and 101010 when repeatedly traversing the universal cycle 3
times. We consider the length n− 1 prefix of such a universal cycle to be the length n− 1 prefix
of the length n string that corresponds to the first character of the universal cycle. For example,
the length 5 prefix of the universal cycle 01 for Neck(010101) is 01010.

Recall that by the Gluing lemma, two universal cycles can be joined together if the sets for
the universal cycles are disjoint and the length n− 1 prefixes are the same. Observe that Bd−1

c (n)
and Neck(nj) are disjoint for each nj ∈ Nd(n), and we can rotate the universal cycles such that
their first length n− 1 prefixes are the same. We can then apply the Gluing lemma to repeatedly
concatenate universal cycles for each necklace equivalence class Neck(nj) with the universal cy-
cle for Bd−1

c (n). For example, consider the universal cycles for Neck(000111), Neck(001011),
Neck(001101), Neck(010101) and B2

1(6): 000001100001010001001. By repeatedly applying
the Gluing lemma, we obtain a universal cycle for B3

1(n):

Step U1 U2 U1 · U2

1 000111 000110000101000100100 000111000110000101000100100
2 001101 000111000110000101000100100 000111000110100110000101000100100
3 001011 000111000110100110000101000100100 000111000110100110000101100101000100100
4 01 000111000110100110000101100101000100100 00011100011010011000010110010101000100100

Observe that the order of inserting the universal cycles for Neck(nj) does not affect the final
universal cycle.

A linear universal string for a universal cycle is a linear sequence obtained by appending the
first n − 1 characters of a universal cycle to its end. For example, the linear universal string for
the universal cycle U for B(4): 0000100110101111 is 0000100110101111000. Let u1u2 · · ·um
denote the linear universal string obtained from UDd−1

c , where UDd−1
c is a universal cycle for

Bd−1
c (n) where m = |UDd−1

c | + n − 1. The linear universal string u1u2 · · ·um contains each
element for Bd−1

c exactly once, the string α·0 therefore exists as a substring of the linear universal

string when α · 1 ∈ Nd(n). Thus, we can increment the weight-range of UDd−1
c and output a

universal cycle for Bd
c(n) as follows:

for t from n− 1 to m do
if α · 1 ∈ Nd(n) then

Print(ap(α · 1))
Print(us)

Let UDd
c denote the output string that results from this construction.

Theorem 4. UDd
c is a universal cycle for Bd

c(n) when 0 ≤ c < d ≤ n.

Proof. The string ap(α · 1) is a universal cycle for Neck(α · 1). Since Bd−1
c (n) and Neck(α · 1)

are disjoint and have the same length n − 1 prefix, that is α, by the Gluing lemma the construc-
tion exhaustively concatenate universal cycles for each necklace equivalence class Neck(nj)
and UDd−1

c . The resulting string UDd
c is a universal cycle for the set Bd−1

c (n) ∪ Neck(n1) ∪
Neck(n2) ∪ · · · ∪Neck(n|Nd(n)|), that is Bd

c(n). ut

5 Implementation

In this section, we consider the problem of efficiently modifying a universal cycle for Bd−1
c (n)

into a universal cycle for Bd
c(n). We assume that there is an efficient algorithm that outputs the

universal cycle for Bd−1
c (n) one character at a time. We buffer this output into a sliding window,

and examine it to determine if any additional characters need to be output. We first describe how
this process works, and then we describe how to make the process efficient.

5.1 A simple algorithm: SimpleIncrement()

The construction SimpleIncrement() follows the approach in Section 4.3. The algorithm reads
each character from a linear universal string u1 · · ·um. It examines the sliding window α =
us · · ·ut of size n − 1 and inserts ap(α · 1) if α · 1 ∈ Nd(n). The weight of α is maintained by
the variable w which can be easily updated with a constant amount of computation per character.
To examine if α · 1 ∈ Nd(n), we apply Duval’s algorithm [8] which returns 0 if α is not a
necklace, or otherwise returns the length of ap(α) which runs in O(n) time. The length of ap(α)
is maintained by the variable p.

Pseudocode that produces the universal cycle UDd
c(n) is illustrated by the procedure Sim-

pleIncrement() in Fig. 4. The initial call is SimpleIncrement(). The procedure calls the function
AperiodicPrefix(x1 · · ·xn) to examine if α · 1 ∈ Nd(n), which is the implementation of Duval’s
algorithm. Thus, each time we read a character from an input linear universal string we need
O(n) amount of computation to examine α · 1 for its aperiodic prefix. The sliding window of size
n − 1 can be implemented using circular array data structure that requires a constant amount of
computation to update using O(n) space.

function AperiodicPrefix(x1 · · ·xn)
int p
1: p← 1
2: for i from 2 to n do
3: if xi−p < xi then p← i
4: else if xi−p > xi then return 0
5: if n mod p = 0 then return p
6: else return 0

procedure SimpleIncrement()
int p, w
1: s← 1
2: for t from n− 1 to m do
3: w ← Weight(us · · ·ut)
4: p← AperiodicPrefix(us · · ·ut1)
5: if p > 0 and w = d− 1 then
6: Print(us · · ·us+p−21) // Insertion of ap(α · 1)
7: Print(us)
8: s← s+ 1

Fig. 4: Pseudocode of SimpleIncrement().

Thus, in addition to the time and space required to produce an input linear universal string
for Bd−1

c (n), the algorithm SimpleIncrement() uses an additional O(n) amount of computation
per character and O(n) space to constructs a universal cycle UDd

c(n) for Bd
c(n). From Theorem

3, we can construct even weight-range universal cycle in constant amortized time per character
using O(n) space, we therefore arrive the following theorem:

Theorem 5. A universal cycle UDd
c(n) for Bd

c(n) can be constructed in O(n) amortized time per
character using O(n) space for any weight-range where 0 ≤ c < d ≤ n.

5.2 Extending SimpleIncrement() to CAT

The major overhead of SimpleIncrement() in runtime comes from the function AperiodicPre-
fix(x1 · · ·xn) that examines the sliding window for its aperiodic prefix using O(n) amount of
computation per character. To efficiently locate the position to insert the aperiodic prefixes, we
instead maintain a sliding window β = us · · ·ut of variable size which stores the longest pre-
necklace of length at most n that ends at position t. Each time we read a character from an input
linear universal string, we increment t and update the length of the aperiodic prefix p if β is a pre-
necklace. If β is not a prenecklace, then we update s to s+ b t−s

p
c · p and update p to be the length

of ap(us+b t−s
p
c·p · · ·ut). The computation required to maintain the variables s and p is constant

per character when the size of the sliding window has not reached n.
The content of the sliding window β is a length n prenecklace when its size reaches n. If

ut−p < 1 and the weight of β is d−1, then us · · ·ut−1 ·1 ∈ Nd(n) and we insert ap(us · · ·ut−1 ·1).
The insertion requires a constant amount of computation per character. We scan β for the next
starting position s′ such that us′ · · ·ut is a prenecklace and update s to s′ which requires O(n)
amount of computation per character. However, the scan takes place only when the size of the
sliding window reaches n, which is bounded by the number of prenecklaces in Bd

c(n).
The number of length n prenecklaces of the weight-range c to d divided by the number of

elements in Bd
c(n) is bounded by a constant factor of 1

n
, thus the total amount of computation

required to update all prenecklaces is proportional to the length of universal cycle generated. The
sliding window of size at most n can be implemented using circular array data structure that

requires a constant amount of computation per character to update while using O(n) space. The
implementation detail and runtime analysis of the algorithm are discussed in the Appendix.

Thus, in addition to the time and space required to produce an input linear universal string
for Bd−1

c (n), the algorithm uses an additional constant amount of computation per character and
O(n) space to constructs a universal cycle UDd

c(n) for Bd
c(n). From Theorem 3, we can construct

even weight-range universal cycle in constant amortized time per character using O(n) space, we
therefore arrive the following theorem:

Theorem 6. A universal cycle UDd
c(n) for Bd

c(n) can be constructed in constant amortized time
per character using O(n) space for any weight-range where 0 ≤ c < d ≤ n.

6 Other applications of the Gluing lemma

In this section we consider other sets of strings and their associated universal cycles and apply
the Gluing lemma to produce new universal cycles.

6.1 Passwords

In [17], a passwords is defined to be all strings of length n over an alphabet of size k partitioned
into q < k classes where each string contains at least one character from each class. For instance,
4 natural classes would be: lower case letters, upper case letters, digits, and special characters.
A very secure password would contain one symbol from each class. They prove the following
result:

Theorem 7. [17] A universal cycle exists for all n-letter passwords over an alphabet of size k
partitioned into q < k classes, provided that n ≥ 2q.

We relax the definition of a password to be a string that contains at least one symbol from
q′ ≤ q classes. In fact, this is a common requirement of passwords where they must either contain
a number or a special character. As an example, consider all passwords of length n containing
characters in at least two classes. Such strings can be partitioned into

(
4
2

)
sets of words contain-

ing exactly 2 classes, plus 4 sets of words containing exactly 3 classes, plus one set containing
characters from all 4 classes. Observe that all sets are disjoint, and the sets containing strings
from exactly 2 classes have many strings that have n − 1 characters in common. For instance
‘aAAAAAAA’ and ‘1AAAAAAA’ and ‘#AAAAAAA’. Similarly, there exist common strings of
length n − 1 between a set of exactly 2 classes and a set with one additional class. For instance
‘aAAAAAAA’ and ‘aAAAAAA3’. Thus, the following theorem follows from Lemma 3:

Theorem 8. Let an alphabet of size k be partitioned into q < k classes. There exists a universal
cycle for all strings of length n containing letters from at least q′ ≤ q classes, provided that
n ≥ 2q.

Observe that if q′ = 1, then the universal cycle is a traditional de Bruijn sequence over an alphabet
of size k.

6.2 Labeled graphs

In [3], a number of universal cycle existence questions are given for various labeled graphs.
Instead of strings, they construct graph with a sliding window of size k that represents the labeled
graph. In particular, they give the following result:

Theorem 9. [3] Universal cycle exists for labeled graphs with precisely m edges (and k ver-
tices).

Since graphs withm edges and graphs withm+1 edges are disjoint and their universal cycles
have many graphs with identical k − 1 windows, we can apply Lemma 3 to obtain the following
result:

Theorem 10. Universal cycle exists for labeled graphs with between m1 and m2 edges (and k
vertices).

It remains an open problem to find efficient constructions for such universal cycles.

References
1. A. Bechel, B. LaBounty-Lay, and A. Godbole. Universal cycles of discrete functions. In Proceedings of the Thirty-Ninth

Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium 189,
pages 121–128, 2008.

2. A. Blanca and A. Godbole. On universal cycles for new classes of combinatorial structures. SIAM J. Discret. Math.,
25(4):1832–1842, December 2011.

3. G. Brockman, B. Kay, and E. Snively. On universal cycles of labeled graphs. Electronic Journal of Combinatorics, 17(1):9
pp, 2010.

4. K. Casteels and B. Stevens. Universal cycles for (n−1)-partitions of an n-set. Discrete Mathematics, 309:5341–5340, 2009.
5. F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures. Discrete Mathematics, 110:43–59,

December 1992.
6. N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen, 49:758–764, 1946.
7. N. G. de Bruijn. Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros

and ones that show each n-letter word exactly once. T.H. Report 75-WSK-06, page 13, 1975.
8. J. P. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381, 1983.
9. H. Fredericksen and I. J. Kessler. An algorithm for generating necklaces of beads in two colors. Discrete Mathematics,

61:181–188, 1986.
10. H. Fredericksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics,

23:207–210, 1978.
11. C. Hierholzer and C. Wiener. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu

umfahren. Mathematische Annalen, 6(1):30–32, March 1873.
12. G. Hurlbert. On universal cycles for k-subets of an n-element set. Siam Journal on Discrete Mathematics, 7:598–604, 1994.
13. G. Hurlbert, B. Jackson, and B. Stevens (Editors). Generalisations of de Bruijn sequences and Gray codes. Discrete Mathe-

matics, 309:5255–5348, 2009.
14. B. Jackson. Universal cycles of k-subsets and k-permutations. Discrete Mathematics, 117:114–150, 1993.
15. R. Johnson. Universal cycles for permutations. Discrete Mathematics, 309:5264–5270, 2009.
16. D. E. Knuth. Generating all tuples and permutations, fascicle 2. The Art of Computer Programming, 4, 2005.
17. A. Leitner and A. Godbole. Universal cycles of classes of restricted words. Discrete Mathematics, 310:3303–3309, 2010.
18. K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Higher Education, 5th edition, 2002.
19. F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM Journal on Discrete

Mathematics, 26(2):605–617, 2012.
20. F. Ruskey and A. Williams. An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM Transactions on

Algorithms, 6(3):12 pp, 2010.
21. F. Ruskey, A. Williams, and J. Sawada. Binary bubble languages and cool-lex order. J. Comb. Theory, Ser. A, 119(1):155–

169, 2012.
22. J. Sawada and F. Ruskey. An efficient algorithm for generating necklaces with fixed density. In Robert Endre Tarjan and

Tandy Warnow, editors, SODA, pages 752–758. ACM/SIAM, 1999.
23. J. Sawada, B. Stevens, and A. Williams. De Bruijn sequences for the binary strings with maximum specified density. In

Proceeding of 5th International Workshop on Algorithms and Computation (WALCOM 2011), New Dehli, India, LNCS,
2011.

24. B. Stevens and A. Williams. The coolest order of binary strings. In Evangelos Kranakis, Danny Krizanc, and Flaminia L.
Luccio, editors, FUN, volume 7288 of Lecture Notes in Computer Science, pages 322–333. Springer, 2012.

25. B. Stevens and A. Williams. The coolest way to generate binary strings. Theory of Computer Systems, 2013. To appear.

7 Appendix

In this section we provide the implementation detail and analysis of the efficient algorithm dis-
cussed in Section 5.2. The algorithm runs in constant amortized time per character using O(n)
space.

7.1 A CAT algorithm: FastIncrement()

The algorithm to efficiently increment the weight-range of a weight-range universal cycle can be
organized into three stages as follows:

Glue universal cycles: We insert ap(us · · ·ut−1 · 1) before the position s if us · · ·ut−1 · 1 ∈
Nd(n). The string us · · ·ut−1 · 1 ∈ Nd(n) if t− s+ 1 = n, w = d− 1 and ut = 0.

Maintain prenecklace: We maintain the variables s and p such that β is a prenecklace and p
is the length of ap(β). There are a few possible cases here:

– if ut−p < ut, then β is a prenecklace and ap(β) = us · · ·ut, thus we update p = |β| = t−s+1;
– if ut−p = ut, then β is a prenecklace and the aperiodic prefix remains unchanged, that is
ap(β) = ap(us · · ·ut−1) = us · · ·us+p−1, we keep the variables s and p unchanged;

– if ut−p > ut, then β is not a prenecklace; we update s to s + b t−s
p
c · p; we update p to be the

length of ap(us+b t−s
p
c·p · · ·ut);

. for example, consider n = 13, β = u1 · · ·u12 = 001001001000 and p = 3; β is not a
necklace because u12−3 > u12; the variable s is thus updated to 1 + b12−1

3
c · 3 = 10 such

that the sliding window starts with u10 · · ·u12 = 000 which is lexicographically smaller
than u1 · · ·u3 = 001; p is updated to the length of ap(u10 · · ·u12) = |ap(000)| = 1.

Maintain window-size: When the size of the sliding window β reaches n, we increment the
variable s to s′ such that us′ · · ·ut is a prenecklace; we update p to be the length of ap(us′ · · ·ut).

Pseudocode of such construction is illustrated by the procedure FastIncrement() in Fig. 5. The
initial call is FastIncrement(). The function Update(k, w) scans the string uk · · · at to update s to
s′ such that us′ · · ·ut is a prenecklace and p to be the length of ap(us′ · · ·ut). Despite the extra for
loop in line 7 - 8 of Update(k, w), each time we reach the for loop, s′ is updated to s′ + b i−s′

p
c · p

and we output the string us′ · · ·us′+b i−s′
p
c·p−1. Since |u

s′+b i−s′
p
c·p · · ·ui| ≤ |us′ · · ·us′+b i−s′

p
c·p−1|,

line 4 - 8 of Update(k, w) requires constant amount of computation per character.

Analysis: We analyze the amount of computation divided by the number of characters output,
and show that the total amount of computation of FastIncrement() divided by the characters output
is bounded by a constant. The computation required for each of the above stage is as follows:

Glue universal cycles: The string us · · ·ut−1 ·1 ∈ Nd(n) if w = d−1, ut = 0 and t−s+1 =
n, this can be verified using only a constant amount of computation per character.

Maintain prenecklace: If ut−p ≤ ut, then β is a prenecklace and we update p which requires
a constant amount of computation; if at−p > at, we call the function Update(s + b t−s

p
c · p, w)

which requires O(t− s−b t−s
p
c · p) amount of computation; however, we output at least b t−s

p
c · p

function Update(int k, int w)
int p, s′, w′

1: s′ ← k; p← 1;w′ ← w
2: for i from k + 1 to t do
3: if ui−p < ui then p← i− s′ + 1
4: else if ui−p > ui then
5: s′ ← s′ + b i−s′

p
c · p

6: p← 1
7: for j from s′ + 1 to i do
8: if uj−p < uj then p← j − s′ + 1
9: // Update weight w

10: for i from s to s′ − 1 do
11: if ui = 1 then w′ ← w − 1
12: return (s′, p, w′)

procedure FastIncrement()
int p, s′, w
1: p← 1;w ← 0; s← 1
2: for t from 1 to m do
3: w ← w + ut

4: // Glue universal cycles
5: if t− s+ 1 = n and w = d− 1 and ut = 0 then
6: if ut−p < 1 then Print(us · · ·ut−11)
7: else Print(us · · ·us+p−1)
8: // Maintain prenecklace
9: if ut−p < ut then p← t− s+ 1

10: else if ut−p > ut then
11: (s′, p, w)← Update(s+ b t−s

p
c · p, w)

12: Print(us · · ·us′−1)
13: s← s′

14: // Maintain window-size
15: if t− s+ 1 = n then
16: if p > n/2 then (s′, p, w)← Update(s+ 1, w)
17: else (s′, p, w)← Update(s+ p, w)
18: Print(us · · ·us′−1)
19: s← s′

Fig. 5: Pseudocode of FastIncrement().

characters. Since t− s− b t−s
p
c · p < b t−s

p
c · p, the amount of computation is proportional to the

number of characters output.
Maintain window-size: The size of the sliding window reaches n. It calls the function

Update(s + 1, w) to update the variables s and p but outputs only one character, thus it requires
O(n) amount of computation per character.

From the analysis of each stage, only stage 3 of the algorithm requires more than a constant
amount of computation per character. Observe that the algorithm will only go through stage 3 if
β is a length n prenecklace. We show that the number of length n prenecklaces is bounded by
the number of elements in the universal cycle over n, and thus the total amount of computation
required to update all prenecklaces is proportional to the length of universal cycle generated.

We denote Lk(n) and Pk(n) be the set of binary Lyndon words and prenecklaces of length
n and weight k respectively. Let N(n, k), L(n, k) and P (n, k) denote the cardinality of Nk(n),
Lk(n) and Pk(n), and let P0(n, k) and P1(n, k) denote the cardinality of the set of binary pre-
necklaces of length n and weight k that end with the character 0 and 1 respectively. The following
lemma provides an upper bound of P1(n, k) in terms of N(n, k) and L(n, k):

Lemma 5. [22] P1(n, k) ≤ N(n, k) + L(n, k).

Consider the upper bound of P0(n, k), replacing the last character of a prenecklace of weight
k that ends with a 0 with the character 1 will always yield a unique necklace of weight k + 1,
P0(n, k) is therefore bounded by the number of necklaces of weight k + 1:

Lemma 6. P0(n, k) ≤ N(n, k + 1).

The upper bound of N(n, k) and L(n, k) in terms of
(
n
k

)
has been discussed in [22] and are

given as follows:

L(n, k) ≤ 1

n

(
n

k

)
and N(n, k) ≤ 2L(n, k) ≤ 2

n

(
n

k

)
.

The upper bound of P (n, k) in terms of
(
n
k

)
is therefore as follows:

P (n, k) = P0(n, k) + P1(n, k)

≤N(n, k + 1) +N(n, k) + L(n, k)

≤ 2

n

(
n

k + 1

)
+

2

n

(
n

k

)
+

1

n

(
n

k

)
≤ 2

n

(
n

k + 1

)
+

3

n

(
n

k

)
.

Theorem 11. Algorithm FastIncrement() is a CAT algorithm.

Proof. Let hn be the amount of computation required in stage 3 of FastIncrement() to update the
prenecklace, where h is a constant. The ratio between the total amount of computation required
in stage 3 of FastIncrement() to the number of elements in the universal cycle for Bd

c(n) is as
follows:

Total computation in stage 3
|Bd

c |
=

(P (n, d− 1) + P (n, d− 2) + · · ·+ P (n, c))× hn(
n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
≤

(2
n

(
n
d

)
+ 5

n

(
n

d−1

)
+ 5

n

(
n

d−2

)
+ · · ·+ 5

n

(
n

c+1

)
+ 3

n

(
n
c

)
)× hn(

n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
≤

(2
(
n
d

)
+ 5

(
n

d−1

)
+ 5

(
n

d−2

)
+ · · ·+ 5

(
n

c+1

)
+ 3

(
n
c

)
)× h(

n
d

)
+
(

n
d−1

)
+ · · ·+

(
n
c

)
< 5h.

Since stage 1 and 2 of FastIncrement() requires only constant amount of computation per charac-
ter, the algorithm FastIncrement() is a CAT algorithm. ut

As discussed in Section 4.2, there exists a CAT construction for even weight-range universal
cycles using O(n) space. The algorithm FastIncrement() can efficiently increment the weight-
range of a weight-range universal cycle using an O(n) space circular array, therefore a universal
cycle UDd

c(n) for Bd
c(n) can be constructed in constant amortized time per character using O(n)

space.

