
A FAST ALGORITHM FOR GENERATING NONISOMORPHIC
CHORD DIAGRAMS∗

JOE SAWADA†

SIAM J. DISCRETE MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 15, No. 4, pp. 546–561

Abstract. Using a new string representation, we develop two algorithms for generating noniso-
morphic chord diagrams. Experimental evidence indicates that the latter of the two algorithms runs
in constant amortized time. In addition, we use simple counting techniques to derive a formula for
the number of nonisomorphic chord diagrams.

Key words. chord diagram, generation algorithm, enumeration, necklace

AMS subject classifications. 05-04, 05A15, 68R05, 68R15

PII. S0895480100377970

1. Introduction. Chord diagrams are the fundamental combinatorial objects
underlying Vassiliev invariants, which have applications in knot theory [1]. A chord
diagram is a set of 2n points on an oriented circle (counterclockwise) joined pairwise
by n chords. Figure 1 illustrates a chord diagram with four chords. Two chord digrams
are isomorphic if one can be obtained by some rotation of the other. Special instances
of chord diagrams are shown to have application in stamp foldings by Koehler [7]. A
related object called a linearized chord diagram is studied by Stoimenow in [12] and
braided chord diagrams are discussed by Birman and Trapp in [2].

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 1. Chord diagram with four chords.

Two fundamental questions when dealing with any combinatorial object are the
following:

1. How many instances of the object are there? (i.e., How many nonisomorphic
chord diagrams are there with n chords?)

∗Received by the editors September 12, 2000; accepted for publication (in revised form) June 27,
2002; published electronically September 10, 2002. This research was supported by NSERC and in
part by Czech grant GAČR 201/99/0242 and ITI under project LN-00A 056.

http://www.siam.org/journals/sidma/15-4/37797.html
†Department of Computer Science, University of Toronto, Toronto, ON, Canada (jsawada@cs.

toronto.edu).

546

GENERATING NONISOMORPHIC CHORD DIAGRAMS 547

2. How can we efficiently generate (list) all instances of the object? (i.e., Can we
develop a fast algorithm to generate all nonisomorphic chord diagrams with
n chords?)

In response to the first question, three independent papers by Li and Sun [8], Cori
and Marcus [4], and Stoimenow [13] have derived enumeration formulas for the num-
ber of nonisomorphic chord diagrams. In each of these papers, the exact formula is
the main result; however, in each case the derivation of the formula uses relatively
complex methods. Cori and Marcus use Burnside’s lemma (stated in section 3) along
with liftings of quasidiagrams; Li and Sun introduce a new object called a general-
ized m-configuration; Stoimenow uses Burnside’s lemma along with two new objects:
linearized chord diagrams and generalized linearized chord diagrams. As a secondary
result in this paper, we derive an exact formula for the number of nonisomorphic
chord diagrams with n chords using simple counting techniques.

The second question has not received as much attention as the first, or at least no
significant results have been previously recorded. In response to this open problem,
we develop two algorithms for generating nonisomorphic chord diagrams using a new
string representation. A primary goal in any generation algorithm is for the amount of
computation to be proportional to the number of objects generated. Such algorithms
are said to be CAT, for constant amortized time. The first algorithm we develop is
very simple but does not attain this time bound. The second algorithm requires more
explanation; however, experimental evidence gives a strong indication that it is CAT.

In the following section we give some basic number theory definitions, along with
a background of a related object called a necklace. In section 3 we derive an exact
formula for enumerating nonisomorphic chord diagrams using simple techniques. In
section 4 we describe a new string representation for chord diagrams. Then, in section
5, we outline a simple generation algorithm for nonisomorphic chord diagrams. In sec-
tion 6 we present another generation algorithm, with experimental results indicating
that the algorithm is CAT. We conclude with a discussion of future work and open
problems in section 7.

2. Background. In the next section we derive an exact formula for the number
of nonisomorphic chord diagrams with n chords. In the derivation, we encounter the
following number theoretic functions.

The Euler totient function on an integer n, denoted φ(n), is the number of positive
integers less than n that are relatively prime to n.

The bifactorial of an integer n, denoted n!!, is defined by the following:

n!! =

�n−1
2 �∏

j=0

n− 2j if n > 0,

1 if n = 0 or n = −1,
0 if n ≤ −2 .

Using this notation, it is easy to see that the number of chord diagrams with n chords
is (2n− 1)!!.

2.1. Necklaces. An object closely related to a chord diagram is a necklace.
A necklace is the lexicographically smallest element of an equivalence class of k-ary
strings under rotation. For example, the set of all binary necklaces of length 4 is
{0000, 0001, 0011, 0101, 0111, 1111}. We call an aperiodic necklace a Lyndon word
and a string that is a prefix of a necklace a prenecklace. We will reserve the term
periodic necklace for a necklace that is not a Lyndon word.

548 JOE SAWADA

procedure GenNecklaces (t, p : integer);
local j : integer;
begin

if t > n then
if n mod p = 0 then Print()

else begin
for j ∈ {at−p, . . . , k − 2, k − 1} do begin

at := j;
if at = at−p then GenNecklaces(t+ 1, p);
else GenNecklaces(t+ 1, t);

end;
end;

end;

Fig. 2. The recursive necklace generation algorithm.

Later, when we outline two algorithms for generating nonisomorphic chord dia-
grams, we follow the methods used in Ruskey’s recursive necklace generation algorithm
GenNecklaces(t, p) shown in Figure 2 [3]. This algorithm has been the basis for gener-
ating many other objects with rotational equivalence. In particular, it has been used
to develop CAT algorithms to generate bracelets [11], fixed density necklaces [9], and
unlabeled necklaces [3]. The general idea of this backtracking algorithm is to generate
a length t prenecklace, stored in the array a, and then for each valid character append
it to the end of the prenecklace to get a length t + 1 prenecklace. The parameter p
maintains the length of the longest Lyndon prefix of the string. When the prenecklace
is of length n, a simple test determines whether or not it is a necklace. This algorithm
can also generate Lyndon words by changing the condition from n mod p = 0 to n = p.
The initial call is GenNecklaces(1,1), and a0 is initially set to 0. The function Print()
prints out the string a1a2 · · · an. A more detailed explanation and a proof showing
the algorithm is CAT is found in [3].

3. Enumerating nonisomorphic chord diagrams. One of the most useful
tools for enumerating combinatorial objects with equivalence under some group action
is Burnside’s lemma.

Burnside’s Lemma. If a group G acts on a set S and Fix(g) = {s ∈ S|g(s) = s},
then the number of equivalence classes is given by

1

|G|
∑
g∈G

|Fix(g)|.

The set of all chord diagrams with n chords is partitioned into equivalence classes
by the cyclic group C2n. Two chord diagrams are isomorphic if one can be obtained by
some rotation of the other. If we let σ denote a single rotation by (360/2n) degrees,
then the group elements of C2n are σj for j = 1, 2, . . . , 2n. To count the number
of nonisomorphic chord diagrams with n chords, which we denote C(n), we apply
Burnside’s lemma:

C(n) =
1

2n

2n∑
j=1

Fix(σj).

GENERATING NONISOMORPHIC CHORD DIAGRAMS 549

��

�
�
�
�

��
��
��
��

��

�����
�
�
�

��
��
��
��

����

��
����
�
�
�
�

����

�
�
�
�

�
�
�
�

��������
��
��
�� ����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��

��
��
��
��

����

��

��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��

��

��
��
��
��
����
�
�
�
��
�
�
�

�
�
�
�

����

��
��
��
��

��

����

��
��
��
��

��

��

����
�
�
�
�

�
�
�
�
��

��
��
��
��
����

��
��
��
��

�
�
�
��
�
�
�����

��
��
��
����

 (a)

q

2q

3q

4q

5q

6q

7q

5q

6q

4q

2q

q

3q

 (b)

Fig. 3. (a) One of the 2n− p possible lengths for the chords starting at q, 2q, . . . , pq. (b) For p
even, there is only one choice for the endpoint landing back in the list q, 2q, . . . , pq.

The number of chord diagrams fixed by σj depends only on the order of σj . In other
words, if two group elements σj and σk have the same order, then the set of chord
diagrams fixed by each group element will be the same. The number of elements of
C2n with order p (where p|2n) is φ(p). Thus, if we let T (2n, p) denote the number of
chord diagrams with n chords fixed by a group element of order p (namely σq), then

C(n) =
1

2n

∑
pq=2n

φ(p)T (2n, p).

We now derive a formula for T (2n, p) by deriving recurrence equations for two
cases: p odd and p even. We start by labeling the endpoints on a chord diagram
from 1 to 2n in counterclockwise order around the circle. For each endpoint i we
consider the chord that touches i to start at i and end at its other endpoint j. With
this labeling, we define the length of a chord starting from i and ending at j to be
(j − i) mod 2n. We now consider the chords starting at q, 2q, . . . , pq, where pq = 2n.
If a chord diagram is fixed by σq, then the length of the chords starting at these
positions must be the same. If p is odd, then there are 2n− p possible lengths for the
chords, since it is impossible for two endpoints in the list q, 2q, . . . , pq to be joined
together (see Figure 3(a)). If we now ignore these chords and their 2p endpoints, we
are reduced to the problem of counting T (2n− 2p, p). Thus, if p is odd,

T (2n, p) = (2n− p)T (2n− 2p, p).

In the base case, T (0, p) = 1. If p is even, then there is also one way for the chords
to have both endpoints in the set q, 2q, . . . , pq. This case arises when there are p/2
chords of length n which means that there are only p endpoints to ignore (see Figure
3(b)). Therefore, if p is even,

T (2n, p) = (2n− p)T (2n− 2p, p) + T (2n− p, p).

In the base cases, T (p, p) = T (0, p) = 1.
Solving the two recurrence equations yields the following exact formula:

T (2n, p) =

p
q
2 (q − 1)!! if p odd,

� q
2 �∑

j=0

pj
(

q

2j

)
(2j − 1)!! if p even.

550 JOE SAWADA

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s

(a) string = 42123143

2

3

1 3

4

2

4

1

2

3

6

5

3

5

6

2

(b) string = 62363525

s

Fig. 4. Two string representations: (a) label chords then endpoints; (b) label endpoints by chord
length.

The solution for odd p is easily obtained by substituting into the recurrence. Proof
by induction on q will verify the solution when p is even.

4. Representing chord diagrams. There are numerous ways to represent
chord diagrams. Several objects equivalent to our definition of chord diagrams have
been studied by other authors, including polygons where the sides are identified pair-
wise [14, 15] and one-vertex maps [6]. In this section we develop a new string repre-
sentation.

Before we describe this new string representation for chord diagrams, we outline a
very natural one. First, assign each chord a unique value from 1 to n and then label the
endpoints with the value of their incident chord. If we arbitrarily pick a starting point
s, then we obtain a string representation by recording the endpoint values starting
at s and moving counterclockwise (by convention) around the circle. In this manner,
any string with length 2n containing exactly two occurrences of the values 1 through
n can be used to represent a chord diagram. An example of this string representation
is shown in Figure 4(a). Such string representations have equivalence under string
rotation and permutation of the alphabet symbols 1 through n. Thus, there may be
up to 2n(n!) strings in each equivalence class. The lexicographically smallest strings
in each equivalence class are more commonly known as unlabeled necklaces (where the
number of each alphabet symbol is 2). Currently, there exists an efficient algorithm
for generating binary unlabeled necklaces [3]; however, no efficient algorithm exists
for strings on an arbitrarily sized alphabet. There also exists an efficient algorithm
to generate necklaces where the number of 0’s is fixed [9], but there is currently no
efficient algorithm to generate necklaces if the number of each alphabet symbol is
fixed.

Because no efficient generation algorithm currently exists using this natural string
representation, we consider a new approach. This time we label each endpoint with
its associated length (see section 3). Note that the lengths are independent of the
starting point s; however, there is a dependency between each pair of endpoints joined
by a chord—their values must sum to 2n. If we again traverse counterclockwise
around the circle starting at s, recording the endpoint values, we obtain a new string
representation. In this new string representation, we no longer have equivalence under
permutation of the alphabet symbols, and the number of each alphabet symbol is no
longer fixed; however, the size of the alphabet has increased from n to 2n − 1. An

GENERATING NONISOMORPHIC CHORD DIAGRAMS 551

example of this string representation is given in Figure 4(b).

In each of the following two sections, we present an algorithm for generating
nonisomorphic chord diagrams. Both algorithms use the new string representation
outlined in this section; however, each algorithm defines a different representative for
each equivalence class.

5. A simple algorithm. In this section we develop a simple algorithm to list
all nonisomorphic chord diagrams with n chords. To represent the chord diagrams,
we use the new string representation described in the previous section. Using the
lexicographically smallest string as the representative of each equivalence class, we
arrive at a problem equivalent to generating length 2n necklaces on an alphabet of
size 2n−1, with the added restriction that each necklace corresponds to a valid chord
diagram.

Recall that when generating necklaces, we build up a prenecklace one character at
a time. Applying this to chord diagrams, we instead add one chord or two characters
at a time. Thus, if we are adding the value j to the tth position of the string, then
we must also add the value 2n − j to the (t + j)th position. Of course, we must
observe the condition that t + j ≤ 2n. In addition, we must make sure that we do
not overwrite values already assigned to positions t and t + j in the prenecklace. If
we have already assigned a value to the tth position (i.e., if at �= 0), then we continue
generation with position t + 1 only if the string a1 . . . at is a valid prenecklace (i.e.,
at ≥ at−p). If at < at−p, then any chord diagram with prefix a1a2 · · · at will not be
lexicographically minimal under rotation [3]. By adding these simple modifications
to GenNecklaces(t, p), we ensure that each necklace generated corresponds to a valid
chord diagram. The resulting algorithm for generating nonisomorphic chord diagrams
in lexicographic order, SimpleChords(t, p), is shown in Figure 5. The initial call is
SimpleChords(1, 1), and a0 is initially set to 1. The function Print() prints out the
string a1a2 · · · a2n. Aperiodic chord diagrams can be generated by replacing the test
2n mod p = 0 with 2n = p, as was the case with necklaces.

Recall that our goal is to develop a generation algorithm which runs in constant
amortized time. The goal does not look promising with this algorithm since the depth
of the computation tree is 2n when we require only the assignment of n chords per
diagram. To verify this conjecture we gather some experimental evidence. To calculate
the amount of computation we sum the number of recursive calls plus the number of
iterations of the for loop that did not produce a recursive call. The resulting ratio
of this computation compared to the number of chord diagrams generated is given
in Table 1 for n ≤ 11 . Notice that the ratios are steadily increasing as the number
of chords increases. This is a strong indication that the algorithm is not CAT. For
this reason, we attempt no mathematical analysis and focus on developing a faster
algorithm.

6. A fast algorithm. In this section we develop an experimentally CAT algo-
rithm for generating nonisomorphic chord diagrams. In this algorithm we use the
same string representation for chord diagrams as in the previous algorithm, but this
time we use a different representative for each equivalence class.

Let α = a0a1a2 · · · a2n−1 represent a chord diagram with n chords. Let posi be
the increasing sequence (possibly empty) composed of the positions (indexes) for all
occurrences of the value i in α. Now consider the string β = pos1pos2pos3 · · · pos2n−1.
Using this construction, each string α yields a unique string β. We define the canonical
form, or representative, of each equivalence class to be the string α with the lexico-

552 JOE SAWADA

procedure SimpleChords (t, p : integer);
local j : integer;
begin

if t > 2n then
if 2n mod p = 0 then Print()

else begin
if at = 0 and t+ at−p ≤ 2n then begin

for j ∈ {at−p, . . . , 2n− t} do begin
if at+j = 0 then begin

at := j; at+j := 2n− j;
if at = at−p then SimpleChords(t+ 1, p);
else SimpleChords(t+ 1, t);
at+j := 0;

end;
end;
at := 0;

end;
else if at = at−p then SimpleChords(t+ 1, p);
else if at > at−p then SimpleChords(t+ 1, t);

end;
end;

Fig. 5. A simple algorithm for generating nonisomorphic chord diagrams with n chords.

Table 1
Experimental results for SimpleChords(t, p).

Number of Nonisomorphic Ratio of work done to
chords n chord diagrams chord diagrams generated

1 1 1.0
2 2 3.0
3 5 8.0
4 18 11.8
5 105 14.3
6 902 15.7
7 9749 16.9
8 127072 17.9
9 1915951 18.8
10 32743182 19.8
11 624999093 20.7

graphically smallest string β. For example, in Table 2 we show the equivalence class of
strings representing the chord diagram in Figure 4(b) along with their corresponding
β strings.

Before we develop a generation algorithm using these representatives, we first
outline a linear time verification algorithm for determining whether or not the string
α (representing a chord diagram) is in canonical form.

6.1. A verification algorithm. A näıve method for determining if a chord
diagram α is in canonical form is to compare its β string with the β string of all other
strings in its equivalence class. Such an algorithm would take worst case time O(n2).
We present an algorithm that runs in linear time.

By the definition of the canonical form, we see that the positions of the minimum

GENERATING NONISOMORPHIC CHORD DIAGRAMS 553

Table 2
The canonical form for this equivalence class is 25623635.

α β
62363525 16245703
23635256 05134627
36352562 47023516
63525623 36172405
35256236 25061347
52562363 14570236
25623635 03461725
56236352 27350614

value in the string α = a0a1 · · · a2n−1 are the most critical. If v∗ is the minimum
value, then we consider the string posv∗ = p1p2 · · · pt, where there are t occurrences
of the value v∗ in α. In order for α to be in canonical form then p1 must equal 0 or,
equivalently, a0 = v∗. If p1 had any other value, then there would exist a rotation of
α such that p1 = 0. This would yield a smaller posv∗ string, and thus a smaller β
string. Now consider the modified string pos′v∗ = q1q2 · · · qt, where qi = pi+1 − pi for
i = 1, 2, . . . , t− 1 and qt = 2n− pt. If the string pos′v∗ is a necklace, then it is easy to
verify that the original string posv∗ will be the lexicographically smallest string when
compared to the corresponding posv∗ strings from other strings in α’s equivalence
class. Furthermore, if pos′v∗ is a Lyndon word, then α will be the unique string in its
equivalence class to yield the string posv∗ , and thus it is in canonical form. If pos′v∗ is
not a necklace, then we can find a rotation of the string α such that a smaller string
posv∗ can be obtained, implying that α is not in canonical form. As an example to
the above strategy, consider the string α = 363959463789. Since the minimum value
is 3, we consider pos3 = 028 and pos′3 = 264. Because pos′3 is a Lyndon word, α is in
canonical form.

Using this strategy, we can determine whether or not a string α is in canonical
form unless the string pos′v∗ is a periodic necklace. If pos′v∗ has length t and pe-
riod p, assign p′ = 2n(pt); then the rotations of the string α starting at positions
p′, 2p′, . . . , 2n− p′ will all yield the same string posv∗ . In this case, we must continue
examining α’s corresponding β string. We update the value v to the next smallest
value found in α and focus on the new string posv. Observe that we can no longer
employ the same strategy as before, since the starting points for the other rotations
of α that may be the canonical form have been restricted. Of these remaining strings,
for α to be in canonical form, it must have the lexicographically smallest string posv.
To determine this efficiently, we modify the string posv in the following manner. First,
the values p′, 2p′, . . . , 2n − p′, 2n are inserted into posv so the string is still in sorted
order. Then each value j is replaced with j mod p′. Finally, we replace all 0’s, which
were originally the values p′, 2p′, . . . , 2n, with p′. We denote this modified string by
pos′v. Notice that such a construction implies that the string pos′v for σj(α), where
j is p′, 2p′, . . . , 2n − p′, is a rotation of the string pos′v for α. Thus, as before, if the
resulting string pos′v is a Lyndon word, then α is in canonical form. If pos′v is a peri-
odic necklace with period p and length t, then we repeat this procedure with the next
largest v, updating p′ to 2n(pt). If pos′v is not a necklace, then α is not in canonical
form. Due to the dependencies on the string α, if v ever exceeds n, then the chord
diagram is in canonical form and has period equal to the last updated value for p′.

To get a better understanding of this verification algorithm, we go through two
examples.

554 JOE SAWADA

Example 1. Consider a chord diagram represented by α = 1925819258 . We want
to determine if α is in canonical form. First we consider pos1 = 05 and pos′1 = 55.
Since pos′1 is a periodic necklace we must consider pos2 = 27, with p′ = 5. To modify
pos2, we insert the value 5 and 10 to get the string 2 5 7 10. Next, we replace each
value j with j mod 5 to get 2020. Finally, we replace the 0’s with 5 to get the new
string pos′2 = 2525. Since this is a periodic necklace, we must repeat this procedure
for the string pos5 updating p′ = 5. We now consider pos5 = 38 and perform the
modifications to get pos′5 = 3535. Again we have a periodic necklace and update
p′ = 5. Since the next value exceeds n, we conclude that α is in canonical form (with
period 5).

Example 2. Consider the string α = 3 6 10 13 11 4 7 10 3 12 4 13 6 9 12 5 rep-
resenting a chord diagram with eight chords. To determine if it is in canonical form we
first consider pos3 = 08 with pos′3 = 88. Since the latter string is a periodic necklace
we must consider pos4 = 5 10 with pos′4 = 5828. Now since 5828 is not a necklace,
the string α is not in canonical form.

In the worst case, this verification algorithm must analyze each string pos′v for
v = 1, 2, . . . , n. Using Duval’s algorithm for factoring a string into Lyndon words [5],
we can determine if pos′v is a necklace or a Lyndon word in linear time. Therefore,
an upper bound for the running time of the algorithm is proportional to

∑n
v=1 |pos′v|.

Observe that length of each string pos′v is at most |posv| + |posv−1|. Thus, since∑n
v=1 |posv| ≤ 2n, the verification algorithm runs in time O(n).

6.2. The generation algorithm. In this subsection we describe a fast algo-
rithm for generating chord diagrams. The method behind the generation algorithm
follows directly from the verification algorithm described in the previous subsection.

Following the verification algorithm, the placement of the minimum value v∗ is
the most important. Specifically, the value v∗ must occur in the position a0, and the
string pos′v∗ must be a necklace. Thus, the first step in the generation algorithm is to
generate all strings posv∗ (the placing of the values v∗ in α) so that the corresponding
string pos′v∗ is a necklace. For each string pos′v∗ that is a Lyndon word, it does not
matter how the rest of the string α is filled as long as each position has value at least
v∗ + 1. Of course, each value added to a string represents an endpoint of a chord
whose other endpoint must be added simultaneously, so that whenever the value v is
added to position s the value 2n − v must be added to position (s + v) mod 2n. If
the string pos′v∗ is a periodic necklace, then we repeat the process by attempting to
place the next largest value v in such a way that pos′v is a necklace. The result of this
approach is the generation of all strings α which represent unique chord diagrams.

This algorithm is naturally divided into three separate recursive routines: the
first routine Gen(t, p, s, v∗, last, B) generates the necklaces pos′v∗ ; the second routine
Gen2(t, p, s, v, p′, part) generates the necklaces pos′v for all v > v∗; and the third
routine GenRest(s, e, v) fills the remaining positions with values that are at least v.
The routine FastChords() drives these routines to generate all nonisomorphic chord
diagrams with n chords.

Within the algorithm a global linked list is used to keep track of the available
positions of α, in increasing order. The variable head is the value of the first available
position, and the value 2n represents the end of the list. If s is an available position in
the list, then s.next will give the value of the next available position in the list. If the
list is implemented using an array with next and previous pointers, then the functions
Add(s), Remove(s), and Avail(s) can be implemented in constant time. The boolean
function Avail(s) returns TRUE if s is in the list of available positions and FALSE

GENERATING NONISOMORPHIC CHORD DIAGRAMS 555

procedure FastChords ();
local i, v∗ : integer;
begin

InitList();
for v∗ ∈ {1, 2, . . . , n− 1} do posv∗,0 := 0;
for v∗ ∈ {1, 2, . . . , n− 1} do begin

a0 := v∗; av∗ := 2n− v∗;
Remove(0); Remove(v∗);
Gen(1, 1, head, v∗, 0,TRUE);
Add(v∗); Add(0);

end;
for i ∈ {0, 1, 2, . . . , 2n− 1} do ai := n;
Print();

end;

Fig. 6. FastChords().

otherwise. The routine InitList() initializes the list to contain every position from 0 to
2n− 1. The function Print() prints out the contents of the string α = a0a1 · · · a2n−1.

The various details of the functions FastChords(), Gen(t, p, s, v∗, last, B),
Gen2(t, p, s, v, p′, part), and GenRest(s, e, v) are described in the following subsections.
Many of the details correspond directly to comments made in the verification algo-
rithm.

6.2.1. FastChords(). The routine FastChords() drives the algorithm by calling
Gen(1, 1, head, v∗, 0,TRUE) for each value v∗ ranging from 1 to n− 1. Before making
the call, it makes the first assignment of the value v∗ to the position a0 as well as the
assignment of the value 2n − v∗ to the position av∗ . The only string with minimum
value n is α = n2n. This string is listed separately at the end of this function. The
pseudocode for FastChords() is shown in Figure 6.

6.2.2. Gen(t, p, s, v∗, last, B). This function generates all necklaces pos′v∗ by re-
cursively going through each available position s in α and attempting to place the
value v∗. The function maintains the following parameters (the first two are from the
necklace generation algorithm):

• t: maintains the length of the prenecklace pos′v∗

• p: maintains the length of the longest Lyndon prefix of pos′v∗

• s: the position of α to be filled
• v∗: the value to be placed into position s
• last: the position of the last inserted value v∗ in α
• B: boolean value indicating if it the first time the prenecklace pos′v∗ has been
encountered

At each call to Gen(t, p, s, v∗, last, B), the string pos′v∗ = q1q2 · · · qt−1 is a prenecklace.
To extend this string to a length t prenecklace, the next value qt must be at least qt−p.
If we set the value min = last + qt−p then if s ≥ min, then the new value s − last
can be appended to the prenecklace of length t− 1 (as long as the associated position
(s+ v∗) mod 2n is available) to obtain a new prenecklace of length t.

Before we attempt to extend the pre-necklace pos′v∗ we must consider its sta-
tus with the value 2n − last appended to the end. If min < 2n, then the string
with the appended value is a Lyndon word and for each Lyndon word we call Gen-

556 JOE SAWADA

procedure Gen (t, p, s, v∗, last: integer; B: boolean);
local s′,e,min : integer;
begin

min := last+ pos′v∗,t−p;
if min < 2n and B = TRUE then GenRest(head, head.next, v∗ + 1);
if min = 2n and t mod p = 0 and B = TRUE then begin

if t = n then Print();
else Gen2(1, 1, head, v∗ + 1, 2np

t , 0);
end;
if min < 2n and s < 2n then begin

e := (s+ v∗) mod 2n;
if s ≥ min and Avail(e) then begin

s′ := s.next;
if s′ = e then s′ := e.next;
as := v∗; ae := 2n− v∗;
Remove(s); Remove(e);
pos′v∗,t := s− last;
if s = min then Gen(t+ 1, p, s′, v∗, s,TRUE);
else Gen(t+ 1, t, s′, v∗, s,TRUE);
Add(e); Add(s);

end;
Gen(t, p, s.next, v∗, last,FALSE);

end; end;

Fig. 7. Gen(t, p, s, v∗, last, B).

Rest(head, head.next, v∗ + 1) to fill the remainder of the string α. If min = 2n and
t mod p = 0, then the modified string is a periodic necklace and for each periodic neck-
lace we attempt to place the value v∗ + 1 by calling Gen2(1, 1, head, v∗ + 1, 2np

t , 0),
unless α has been completely filled (t = n), in which case we simply print the string.
For these tests we must be careful not to consider the same prenecklace pos′v∗ twice.
The boolean value B indicates whether or not the prenecklace has been encountered
before. If B is TRUE, then it is the first time the prenecklace has been encountered.

Once we have checked if pos′v∗ with the appended value 2n − last is a necklace,
we proceed by attempting to add the value v∗ to the position s. If we can, then we
remove the positions s and (s+ v∗) mod 2n from the avail list, make the appropriate
assignments to α and pos′v∗ , and make a recursive call with appropriate updates to the
parameters. Finally, regardless of whether or not a value has been placed, we make a
recursive call for the next available position s.next, but here we must set the boolean
value B to FALSE, since the same prenecklace is used in the resulting recursive call.

This function assumes that the first position in the string α has been assigned
the value v∗. The pseudocode for Gen(t, p, s, v∗, last, B) is shown in Figure 7.

6.2.3. Gen2(t, p, s, v, p′, part). This function generates all necklaces pos′v for val-
ues v > v∗, given the remaining available positions in the string α. It maintains the
following parameters:

• t: maintains the length of the prenecklace pos′v
• p: maintains the length of the longest Lyndon prefix of pos′v
• s: the position of α to be filled
• v: the value to be placed into position s

GENERATING NONISOMORPHIC CHORD DIAGRAMS 557

• p′: the value as described in the verification algorithm
• part: maintains the number of times p′ has been inserted

According to the verification algorithm, we must make two modifications to the
string posv. First we convert all positions s in the string to s mod p′. Second we
must insert the values p′ at particular locations in the string. Thus, if we generate
the prenecklaces posv by converting each position s to s mod p′ and adding the values
p′ where necessary, we are in fact generating the prenecklaces pos′v.

The extension of the prenecklaces pos′v = q1q2 · · · qt−1 is similar to the pre-
vious function, but in this case the value min is simply qt−p and the value we
wish to add is s mod p′. Thus if s mod p′ ≥ min and the associated position (s +
v) mod 2n is available, then we can extend the prenecklace pos′v in a similar fashion
to Gen(t, p, s, v∗, last, B).

Once we have considered all available positions s in α, the parameter s will equal
2n. If head = 2n, then α is full and by construction it is in canonical form. In this
case the string α is printed. Otherwise, we analyze the string pos′v to see if it is a
Lyndon word or a periodic necklace. If min is strictly less than p′, then the string
is a Lyndon word and GenRest(head, head.next, v + 1) is called to fill the remaining
available positions in α. If t mod p = 0, then the string is a periodic necklace. In this
case we call Gen2(1, 1, head, v + 1, 2np

t , 0) to generate the necklaces pos′v+1. Before
we make the initial test of s = 2n, however, we must consider three special cases.

Case 1. When v = n we do not want to place the value v in any position s greater
than n. This is because the resulting string is equivalent to placing the value in the
position n − s. Thus as soon as we reach such a state we terminate generation from
this node, unless α is full (head = 2n), in which case we print the string.

Case 2. We must consider the case when the value v is not placed in the string α.
This state occurs when t = 1 and s > p′. In this case we continue with the placement
of v+1 by calling Gen2(1, 1, head, v+1, p′, 0). Before making this call, we must make
sure that v is less than n. Otherwise, we will end up trying to place a value greater
than n which will result in the value 2n − v, which will be less than n, being added
to α.

Case 3. The final case to consider is the placement of the values p′ in the string
pos′v. These values are placed the first time the position s exceeds the value p′(part+
1). Once the value is added, then the generation is continued by incrementing the
parameter part by 1 and updating the values t and p as usual.

The pseudocode for Gen2(t, p, s, v, p′, part) is shown in Figure 8.

6.2.4. GenRest(s, e, v). The routine GenRest(s, e, v) is a simple recursive proce-
dure that fills the remaining available positions in α with values greater than or equal
to v. It takes the following parameters as input:

• s: the first available position in α
• e: another available position in α
• v: the minimum value to be placed

The idea is to place a chord joining positions s and e. Such an assignment is valid
as long as the values e − s and 2n − e + s are both greater than or equal to v. If
the assignment is valid, then a recursive call is made with the next two available
positions. Regardless, if the assignment is valid, we make a recursive call to check the
next possible position for e which is e.next. If 2n − e.next + s < v, then clearly no
empty positions past e will provide valid assignments. Once all the positions are filled

558 JOE SAWADA

procedure Gen2 (t, p, s, v, p′, part: integer);
local s′,e,min: integer;
begin

min := pos′v,t−p;
if v = n and s > n then begin

if head = 2n then Print();
end;
else if t = 1 and s > p′ then begin

if v < n then Gen2(1, 1, head, v + 1, p′, 0);
end;
else if s > p′(part+ 1) then begin

pos′v,t := p′;
if min = p′ then Gen2(t+ 1, p, s, v, p′, part+ 1);
else Gen2(t+ 1, t, s, v, p′, part+ 1);

end;
else if s = 2n then begin

if head = 2n then Print();
else if min < p′ then GenRest(head, head.next, v + 1);
else if t mod p = 0 then Gen2(1, 1, head, v + 1, 2np

t , 0);
end;
else begin

e := (s+ v) mod 2n;
if s mod p′ ≥ min and Avail(e) then begin

s′ := s.next;
if s′ = e then s′ := e.next;
as := v; ae := 2n− v;
Remove(s); Remove(e);
pos′v,t := s mod p′;
if s mod p′ = min then Gen2(t+ 1, p, s′, v, p′, part);
else Gen2(t+ 1, t, s′, v, p′, part);
Add(e); Add(s);

end;
Gen2(t, p, s.next, v, p′, part);

end; end;

Fig. 8. Gen2(t, p, s, v, p′, part).

(s = 2n) then the string is printed. The pseudocode for GenRest(s, e, v) is shown in
Figure 9.

6.2.5. Analysis. As with the previous algorithm, we obtain experimental results
for the amount of work done compared to the number of chord diagrams generated.
Since the work done for each recursive call is constant, we count the amount of work
done by summing the number of recursive calls. The resulting ratios are shown in
Table 3 for n ≤ 12. Notice that the ratios are decreasing (after n = 5) as the number
of chords increases. This gives a very strong indication that the algorithm runs in
constant amortized time.

GENERATING NONISOMORPHIC CHORD DIAGRAMS 559

procedure GenRest (s, e, v : integer);
begin

if s = 2n then Print();
else if e �= 2n then begin

if e− s ≥ v and 2n− e+ s ≥ v then begin
as := e− s; ae := 2n− as;
Remove(s); Remove(e);
GenRest(head,head.next,v);
Add(e); Add(s);

end;
if 2n− e.next+ s ≥ v then GenRest(s,e.next,v);

end; end;

Fig. 9. GenRest(s, e, v).

Table 3
Experimental results for FastChords().

Number of Nonisomorphic Ratio of work done to
chords n chord diagrams chord diagrams generated

1 1 1.0
2 2 3.0
3 5 9.2
4 18 13.6
5 105 14.2
6 902 12.4
7 9749 11.0
8 127072 10.0
9 1915951 9.4
10 32743182 8.9
11 624999093 8.5
12 13176573910 8.2

Conjecture 1. The algorithm for generating nonisomorphic chord diagrams,
FastChords(), is CAT.

A complete C program for each of the nonisomorphic chord diagram generation algo-
rithms is available from the author. Table 4 shows the outputs from each of the two
algorithms for values of n up to 4.

7. Future work. In this paper we have outlined a fast algorithm for generating
nonisomorphic chord diagrams. However, we have not found a mathematical proof to
show that the algorithm is CAT, leaving a challenging open problem. We have also
mentioned two other open problems in this paper:

• the development of an efficient algorithm to generate k-ary unlabeled neck-
laces;

• the development of an efficient algorithm to generate k-ary necklaces where
the number of occurrences of each alphabet symbol is fixed.

The canonical form used in the algorithm FastChords() has recently been used to
develop a CAT algorithm for the latter problem if the number of occurrences of some
value v is relatively prime to n [10].

560 JOE SAWADA

Table 4
Different outputs for the two generation algorithms.

Output from SimpleChords(t, p) Output from FastChords()

n = 1: 1 1 n = 1: 1 1

n = 2: 1 3 1 3 n = 2: 1 3 1 3
2 2 2 2 2 2 2 2

n = 3: 1 5 1 5 1 5 n = 3: 1 5 1 5 1 5
1 5 2 2 4 4 1 5 3 1 5 3
1 5 3 1 5 3 1 5 2 2 4 4
2 3 4 2 3 4 2 3 4 2 3 4
3 3 3 3 3 3 3 3 3 3 3 3

n = 4: 1 7 1 7 1 7 1 7 n = 4: 1 7 1 7 1 7 1 7
1 7 1 7 2 2 6 6 1 7 1 7 3 1 7 5
1 7 1 7 3 1 7 5 1 7 1 7 2 2 6 6
1 7 2 3 6 2 5 6 1 7 4 1 7 2 4 6
1 7 2 4 6 1 7 4 1 7 5 3 1 7 5 3
1 7 3 3 3 5 5 5 1 7 4 4 1 7 4 4
1 7 3 4 2 5 6 4 1 7 2 3 6 2 5 6
1 7 4 2 3 6 4 5 1 7 3 3 3 5 5 5
1 7 4 4 1 7 4 4 1 7 3 4 2 5 6 4
1 7 5 2 2 6 6 3 1 7 4 2 3 6 4 5
1 7 5 3 1 7 5 3 1 7 5 2 2 6 6 3
2 2 6 6 2 2 6 6 2 2 6 6 2 2 6 6
2 3 6 3 5 2 5 6 2 5 6 2 3 6 3 5
2 4 6 3 3 4 5 5 2 4 6 4 2 4 6 4
2 4 6 4 2 4 6 4 2 4 6 3 3 4 5 5
3 4 4 5 3 4 4 5 3 5 3 5 3 5 3 5
3 5 3 5 3 5 3 5 3 4 4 5 3 4 4 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

REFERENCES

[1] D. Bar-Natan, On the Vassiliev knot invariants, Topology, 34 (1995), pp. 423–472.
[2] J. Birman and R. Trapp, Braided chord diagrams, J. Knot Theory Ramifications, 7 (1998),

pp. 1–22.
[3] K. Cattell, F. Ruskey, J. Sawada, C.R. Miers, and M. Serra, Fast algorithms to generate

necklaces, unlabeled necklaces, and irreducible polynomials over GF(2), J. Algorithms, 37
(2000), pp. 267–282.

[4] R. Cori and M. Marcus, Counting non-isomorphic chord diagrams, Theoret. Comput. Sci.,
204 (1998), pp. 55–73.

[5] J-P. Duval, Factoring words over an ordered alphabet, J. Algorithms, 4 (1983), pp. 363–381.
[6] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent.

Math., 85 (1986), pp. 457–485.
[7] J.E. Koehler, Folding a strip of stamps, J. Combinatorial Theory, 5 (1968), pp. 135–152.
[8] B. Li and H. Sun, Exact number of chord diagrams and an estimation of the number of spine

diagrams of order n, Chinese Sci. Bull., 42 (1997), pp. 705–720.
[9] F. Ruskey and J. Sawada, An efficient algorithm for generating necklaces of fixed density,

SIAM J. Comput., 29 (1999), pp. 671–684.
[10] J. Sawada, Fast Algorithms to Generate Restricted Classes of Strings under Rotation, Dis-

sertation, University of Victoria, Victoria, BC, Canada, 2000.
[11] J. Sawada, Generating bracelets in constant amortized time, SIAM J. Comput., 31 (2001), pp.

259–268.

GENERATING NONISOMORPHIC CHORD DIAGRAMS 561

[12] A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants,
J. Knot Theory Ramifications, 7 (1998), pp. 93–114.

[13] A. Stoimenow, On the number of chord diagrams, Discrete Math., 218 (2000), pp. 209–233.
[14] T. Walsh and A. Lehman, Counting rooted maps by genus I, J. Combinatorial Theory Ser.

B, 13 (1972), pp. 192–218.
[15] T. Walsh and A. Lehman, Counting rooted maps by genus II, J. Combinatorial Theory Ser.

B, 13 (1972), pp. 122–141.

