
Efficient Oracles for Generating Binary Bubble Languages

J. Sawada∗ A. Williams†

September 13, 2010

Abstract

Given a string α = 1s0tγ in a binary language L, the bubble lower bound is the smallest non-negative
integer j such that 1s−10t−j10jγ ∈ L. We present an efficient oracle, which is a function that returns
the bubble lower bound, for a number of fixed-density languages including: k-ary Dyck words, connected
unit interval graphs, linear-extensions of B-posets, those lexicographically larger than ω, those avoiding 10k

for fixed k, reversible strings and feasible solutions to knapsack problems. Using these oracles, we apply
the cool-lex framework to generate each language in constant amortized time. The algorithms generate the
strings in either co-lex order or the cyclic cool-lex Gray code and can output each string’s sequence of bits,
its run-length block encoding, or the operation (shift or swap) used in the Gray code. Additionally, we prove
that the cool-lex Gray code for L can be generated in O(m) amortized time given an O(m) time membership
tester for L.

Keywords: Bubble language, Gray code, cool-lex, unit interval graph, linear extensions of B-posets, knapsack,
reversible strings, CAT algorithm, necklace, Lyndon word

1 Introduction

A binary language L is said to be a bubble language if it satisfies one of the following properties [4]:

first-01: if α ∈ L, then by swapping its first 01 (if it exists) to 10 yields another string in L, or

first-10: if α ∈ L, then by swapping its first 10 (if it exists) to 01 yields another string in L.

Some interesting examples of bubble languages include:
∗Computing and Information Science, University of Guelph, Canada. Research supported by NSERC. E-mail:

jsawada@uoguelph.ca
†Computer Science, University of Guelph, Canada. Research supported by Roncesvalles Post-doc.E-mail: haron@uvic.ca

1

first-01 bubble languages first-10 bubble languages
• combinations • combinations
• strings with forbidden 01k • strings with forbidden 10k

• strings with ≤ k inversions from 1∗0∗ • strings with ≤ k inversions from 0∗1∗

• strings with ≤ k transpositions from 1∗0∗ • strings with ≤ k transpositions from 0∗1∗

• strings ≥ some string ω • strings ≤ to some string ω
• strings > or ≥ their reversal • strings < or ≤ their reversal
• strings ≥ their complemented reversal • strings ≤ their complemented reversal
• necklaces (largest rotation) • necklaces (smallest rotation)
• aperiodic necklaces (largest rotation) • Lyndon words
• k-ary Dyck words
• ordered forests with ≤ k trees
• linear extensions of a B-poset
• connected unit interval graphs
• feasible solutions to 0-1 knapsack.

In [4], a framework is provided to generate any bubble language of strings with fixed-density (the number of 1s
is fixed). The elegance of the generic algorithm is its ability to switch between languages by simply altering a
function that computes the “bubble lower bound”. Given a string α = 1s0tγ in a binary language L, the bubble
lower bound is the smallest non-negative integer j such that 1s−10t−j10jγ ∈ L. To be precise, we assume γ is
empty or begins with 1, and t > 0. These two restrictions ensure that α can be written uniquely as 1s0tγ.

Example. The following first-01 bubble language consists of all strings of length 7 and density 3 that are
greater than or equal to ω = 1001010. The strings are listed in co-lex order as illustrated in Figure 1.

L = {1110000, 1101000, 1011000, 1100100, 1010100, 1001100, 1100010, 1010010, 1001010, 1100001, 1010001}

Consider the string α = 1100010 where s = 2, t = 3, and γ = 10. The bubble lower bound for α is 1 since
(i) 10010γ ≥ ω and (ii) 10001γ < ω.

The generic algorithm from the framework can list a bubble language’s strings in either co-lex order or the cool-
lex Gray code where successive strings differ by at most 2 swaps. However, the efficiency is dependent on the
time required to determine the bubble lower bound for the specific bubble language. As a first step, we provide
a generic oracle that applies to any bubble language L as long as it is provided with a membership tester that
determines whether or not a given α ∈ L. In other words, the problem of producing a Gray code for a bubble
language is reduced to providing a membership tester for it. As an application, we apply the generic oracle
to fixed-density necklaces and Lyndon words to obtain a O(n) amortized time generation algorithm for these
strings. For the remaining bubble languages outlined above, we present language specific O(1) time oracles
except for the feasible solutions to the knapsack problem; however, for this language a simple analysis shows
that the oracle we provide is efficient in the amortized sense. As a result each language can be generated in
Constant Amortized Time: the algorithms are CAT.

We organize the remainder of the paper as follows. In Section 2, we recall the recursive cool-lex framework
from [4] (which is heavily based on [11]) and add an alternate string representation (run-length blocks) that
will be useful in some of our oracles. Additionally for the cool-lex order, maintaining the run-length blocks
will allow the output to be efficiently given as a sequence of left-shifts or by a sequence of swaps that detail
how to go from one string to the next. In Section 3, we provide a generic oracle for any bubble language with
a membership tester and illustrate it with necklaces and Lyndon words. In Section 4, we explicitly provide
efficient oracles for many fixed-density bubble languages. In most cases the oracles require only several lines
of code to implement and in all cases they immediately yield CAT algorithms for their respective language.

2

1110000

1101000
1010100
1001100
1100100
1010010
1001010
1100010
1010001
1100001
1110000

Post−orderPre−order

co−lex cool−lex
Gray code

1101000
1011000
1100100
1010100
1001100
1100010
1010010
1001010
1100001
1010001

1110000

1011000 1010100 1001100 1010010 1001010 1010001

11000011101000 1100100 1100010

1011000

Figure 1: Computation tree for strings of length 7 and density 3 that are greater than or equal to ω = 1001010.

In Section 5 we outline how to obtain Gray codes for the objects in constant amortized time when the density
restriction is removed. We conclude the paper with a number of open problems in Section 6.

2 Recursive framework

Given a non-empty first-01 bubble language L consisting of strings with length n and density d, the following
recurrence can be used to produce its cool-lex Gray code [4]:

C(s, t, γ) =
{

C(s− 1, 1, 10t−1γ),C(s− 1, 2, 10t−2γ), . . . ,C(s− 1, t− j, 10jγ), 1s0tγ if s > 0
0tγ if s = 0

where j is the smallest non-negative integer such that 1s−10t−j10jγ ∈ L. In this recurrence γ represents a
fixed suffix and each recursive term prepends a string of the form 10i to γ. In particular, C(d, n − d, ε) will
produce the Gray code for L.

Observe that if the first line of the recurrence is altered so the last term 1s0tγ is moved to the front, then we
obtain co-lex order. As an illustration consider the computation tree in Figure 1 for strings with length n = 7
and density d = 3 that are greater than or equal to ω = 1001010. Each node in the computation tree α = 1s0tγ
corresponds to the string that gets output directly from a recursive call to C(s, t, γ) . By traversing the tree in
post-order, we obtain the cool-lex Gray code. If the tree is traversed in pre-order, we obtain co-lex order.

The simple recursive algorithm GenBubble(s, t) shown in Figure 2 produces the cool-lex Gray code for a given
first-01 bubble language L. The string α = a1 · · · an that is visited during each recursive call is initialized to
1d0n−d and is maintained globally. The function Oracle(s, t) determines the oracle lower bound of the current
string α = 1s0tγ and it takes s and t as parameters for efficiency. For each iteration of the for loop, α is updated
by swapping the 1 in position s and the 0 in position s + t− i. This single swap effectively prepends the string
10i to γ as described in the recurrence. Observe that recursive calls are only made if t > 0, so there is no need
to call an oracle if t = 0. This allows for this special case to be omitted from all the oracles described later
in this paper. The initial call is GenBubble(d, n − d). To output the strings in co-lex order move the function
Visit() from the end of the function GenBubble(s, t) to the beginning.

To produce the cool-lex Gray code for a first-10 bubble language simply complement the 0s and 1s in the
recurence. Algorithmically this means initializing α := 0n−d1d and calling GenBubble(n− d, d).

3

procedure GenBubble(s, t: int)
int i, j

if s > 0 and t > 0 then
j := Oracle(s, t)
for i := t− 1 downto j do

Swap(as, as+t−i)
GenBubble(s− 1, t− i)
Swap(as, as+t−i)

Visit()
end.

Figure 2: Simple recursive algorithm to list all strings in the bubble language L in cool-lex Gray code order.

Since every recursive call of GenBubble(s, t) visits a string in L, we obtain the following theorem:

THEOREM 1 [4] If the total amount of computation required by all calls to Oracle(s, t) for a given bubble
language L is proportional to the number of strings in L, then the algorithm GenBubble(s, t) will generate all
strings in L in O(1) amortized time.

The main focus of this paper is to apply this theorem by finding O(1) time oracles for a variety of different
bubble languages. For fixed-density binary strings with no restrictions (i.e., combinations) the oracle simply
returns 0; however most bubble languages will require some additional data structure information in order to
obtain an efficient oracle. A common structure is outlined in the next subsection which will also enable us to
produce alternate output representations efficiently.

2.1 Run-length blocks

A more compact representation for a binary string is its run-length encoding. In particular, a binary string
can be represented by a series blocks which are maximal substrings of the form 1∗0∗. Each block Bi is
composed of two integers (si, ti) representing the number of 1s and 0s respectively. For example, the string
00011010100011001 can be represented by B6B5B4B3B2B1 = (0, 3)(2, 1)(1, 1)(1, 3)(2, 2)(1, 0) where s6 =
0 and t6 = 3.

To maintain this run-length representation within GenBubble(s, t), let the blocks be stored in Bc · · ·B1 where
c denotes the number of blocks required to represent α. Initially B1 = (d, n − d) and c = 1 since the first
string is 1d0n−d. Observe that the values for sc and tc equal s and t respectively at the start of each recursive
call. There are two cases for updating the blocks. If i = 0 and c > 1 then a 1 is moved from the leading block
(sc, tc) to the block c − 1: sc−1 is incremented and sc is decremented. Otherwise, a new block of the form 10i

is created: Bc splits into the two blocks Bc+1 = (sc − 1, tc − i) and Bc = (1, i). After making the recursive
call these actions must be undone to restore the blocks for the next iteration of the for loop. These updates can
be accomplished by inserting the following code fragments:

4

Insert before recursive call Insert after recursive call

if i = 0 and c > 1 then if i = 0 and (c > 2 or B1 6= (1, 0)) then
sc−1 := sc−1 + 1 sc−1 := sc−1 − 1
sc := s− 1 sc := s

else else
Bc := (1, i) Bc−1 := (s, t)
Bc+1 := (s− 1, t− i) c := c− 1
c := c + 1

Besides giving a compact representation of the current string, this extra data structure will be critical to the
efficiency for some of the oracles described in the following section.

2.2 Shifts and swaps

In addition to outputting the Gray code as a sequence of strings or blocks, it is also possible to output the strings
as a sequence of left-shifts of a single bit, or as a sequence of the 1 or 2 swaps that are required to go from one
string to the next [4]. An example of these various outputs is given in Table 1. To output these shifts or swaps
using only a constant amount of extra time, two extra global variables to and from must be maintained. The
value for from is initialized to d + 1 and the variables are updated as follows:

Insert before recursive call Insert after recursive call

if i < t− 1 then from := s + t− i from := s + t− i
to := s to := s

To output the sequence of left-shifts, the function Visit() can print “shift(from, to)” indicating that the bit in
position from gets shifted into position to. To output the swaps a global counter total is maintained to indicate
how many strings have already been generated. This allows us to test for a special case when considering the
first string. Using this extra variable along with the run-length block data structure, the following code fragment
will output the sequence of swaps:

if ato = 1 or total = 0 then Print(“ swap(to, from) ”)
else if ato+1 = 1 then Print(“ swap(from− 1, from) and swap(to, to + sc−1) ”)
else Print(“ swap(from− 1, from)”).

3 A generic oracle

In this section we provide a generic oracle that can be applied to any bubble language L provided there is a
membership tester Member(L, α) that determines whether or not α ∈ L. Then we provide a short analysis
that shows if the tester requires O(m) time, then the language can be generated in O(m) amortized time. As
an example, we apply the generic oracle to necklaces and Lyndon words.

The basic idea behind the generic approach is to test each possible value j to determine the smallest value such
that 1s−10t−j10jγ ∈ L. Two strategies are: (1) start at j = 0 and increment j until we find a string in L
or (2) start at j = t − 1 and decrement j until we find a string that does not belong to L. Depending on the

5

Strings Blocks Left Shifts Swaps
1 0 1 1 0 0 0 (1,1) (2,3) shift(4,2) swap(2,4)
1 1 0 1 0 0 0 (2,1) (1,3) shift(3,2) swap(2,3)
1 0 1 0 1 0 0 (1,1) (1,1) (1,2) shift(5,2) swap(4,5) and swap(2,3)
1 0 0 1 1 0 0 (1,2) (2,2) shift(4,2) swap(3,4)
1 1 0 0 1 0 0 (2,2) (1,2) shift(4,2) swap(2,4)
1 0 1 0 0 1 0 (1,1) (1,2) (1,1) shift(6,2) swap(5,6) and swap(2,3)
1 0 0 1 0 1 0 (1,2) (1,1) (1,1) shift(4,2) swap(3,4)
1 1 0 0 0 1 0 (2,3) (1,1) shift(4,2) swap(2,4)
1 0 1 0 0 0 1 (1,1) (1,3) (1,0) shift(7,2) swap(6,7) and swap(2,3)
1 1 0 0 0 0 1 (2,4) (1,0) shift(3,2) swap(2,3)
1 1 1 0 0 0 0 (3,4) shift(7,3) swap(3,7)

Table 1: Different outputs available to Visit(c) for the cool-lex Gray code of binary strings of length 7 and density 3
that are greater than or equal to ω = 1001010. The shifts and swaps are relative to the previous string in the Gray code
cyclicly.

language, one method may be more efficient than the other. However from an analytical standpoint we choose
the second method since every successful membership test can be accounted to a unique string in the language.
Pseudocode for this generic oracle can be described as follows:

procedure Oracle(s, t: int)
int j

j := t− 1
while j ≥ 0 and Member(L, 1s−10t−j10jγ) do j := j − 1
return j + 1

end.

Note that the string 1s−10t−j10jγ can be obtained from the current string α = 1s0tγ in constant time by
swapping the bits in positions s and s + t− j.

THEOREM 2 If Member(L, α) is a membership tester that runs in O(m) time for a given bubble language L,
then L can be generated in cool-lex Gray code order or colex order in O(m) amortized time.

PROOF: Since each recursive call to Gen(s, t) visits a string in the language, we must show that the total
number of membership tests is proportional to the number of strings visited. Clearly each call to the oracle
will have at most one unsuccessful test which can be mapped to the string α visited during the recursive call
in which the oracle was called. Additionally, each successful membership test also corresponds to a unique
string in the language – one that gets generated within the for loop of the current recursive call. Thus, for each
string visited, we have accounted at most O(m) work from all oracle calls which implies a O(m) amortized
algorithm. 2

3.1 Necklaces and Lyndon words

Necklaces are often described as the lexicographically smallest string in an equivalence class of strings under
rotation. Using this representation, aperiodic necklaces are known as Lyndon words. Fixed-density necklaces

6

function Member(L, α) returns boolean
int i, p

for i := 1 to n do an+i := ai

a2n+1 := −1
i := 2
p := 1
while ai−p ≤ ai do

if ai−p < ai then p := i
i := i + 1

if i ≤ 2n then return FALSE
if p < n and L = LYNDON WORDS then return FALSE
return TRUE

end.

Figure 3: A (combined) membership tester derived from [1] to determine whether or not α is a necklace or a
Lyndon word.

and Lyndon words are both 10-bubble languages. Using the lexicographically largest element as representa-
tive, the fixed-density necklaces and aperiodic necklaces are both 01-bubble languages. We will focus on the
lexicographically smallest string as representative.

The construction of a constant time oracle for fixed-densiy necklaces and Lyndon words appears to be a very
challenging task and we leave it as an open problem. Instead, in Figure 3 we present a Θ(m) membership tester
based on the work of Duval [1]. The tester starts by concatenating two copies of the input string α together and
then requires at most a linear scan of the resulting string.

COROLLARY 1 Fixed-density necklaces and Lyndon words can be generated in either co-lex or cool-lex Gray
code order in O(n) amortized time.

Gray codes for fixed-density necklaces have previously been discovered by Wang and Savage [10] and Ueda [8];
however, these algorithms do not use the lexicographic smallest representative and hence do not apply to Lyndon
words. Furthermore, their Gray codes are not cyclic.

4 Efficient oracles

In this section we detail oracles for the bubble languages listed in Section 1 (except necklaces and Lyndon
words). For most languages, extra information needs to be maintained within the recursive framework to obtain
an efficient oracle. The information specific to a given language is detailed in the relevant subsection and in
each case the information can be maintained in O(1) time. In some cases the oracles will apply to two related
languages. For instance, all strings with forbidden substring 01k is a first-10 bubble language and all strings
with forbidden substring 10k is a first-01 bubble language. The oracle for each language is the same, but the
initialization for the algorithm must reflect the correct initial string as noted in Section 2.

Important Assumptions: By the nature of the recurrence in GenBubble(s, t), assume that γ is either empty
or begins with 1 (for first-01 bubble languages). Also the cases when s = 0 or t = 0 are already handled by
GenBubble(s, t) and hence these cases do not need to be considered by the oracles. Additionally, assume that
the languages in question are non-empty since an initial call to GenBubble(s, t) will always produce the string
1d0n−d.

7

4.1 k-ary Dyck words

A k-ary Dyck word with density d is a binary string with d 1s and d(k − 1) 0s such that every prefix has
≤ k − 1 0s for every 1. When k = 2 this means that no prefix has more 0s than 1s. k-ary Dyck words are
known to be equivalent to k-ay trees with k internal nodes. In the case when k = 2, Dyck words are equivalent
to many structures counted by the Catalan numbers including balanced parentheses strings [7]. Dyck words
are a first-01 bubble language.

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ is a Dyck word given
that 1s0tγ is a Dyck word. In other words we want to find the smallest non-negative j such that: t − j ≤
(s− 1)(k − 1). Thus, the oracle for Dyck words returns max(0, t− (s− 1)(k − 1)).

COROLLARY 2 k-ary Dyck words can be generated in either co-lex or cool-lex Gray code order in O(1)
amortized time.

4.2 Ordered forests with ≤ k trees

A prefix is balanced if it contains the same number of 1s as 0s. Balanced parentheses strings with ≤ k balanced
(non-empty) prefixes represent ordered forests with ≤ k trees and form a first-01 bubble language. To construct
an efficient oracle for ordered forests, we maintain an extra parameter bal that indicates the number of non-
empty balanced prefixes in α. This parameter can be updated by replacing the recursive call in GenBubble(s, t)
with:

if s− 1 = t− i then GenBubble(s− 1, t− i, bal + 1)
else GenBubble(s− 1, t− i, bal)

Initially, α = 1d0d so the initial call is GenBubble(d, d, 1).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ is a balanced parentheses
string with at most k balanced prefixes given that 0s1tγ is a balanced parentheses string with bal balanced
prefixes. The oracle for k-ary Dyck words when k = 2 gives an initial lower bound of max(0, t − s + 1). To
make sure the number of allowable balanced prefixes is not violated, consider two special cases when bal = k.
If s = t and s > 1 then a new balanced prefix is introduced when j = 1. Thus, the oracle returns 2. Similarly,
if s = t + 1 a new balanced prefix is introduced when j = 0. Thus, in this case the oracle returns 1. These
cases can be summarized as follows:

procedure Oracle(s, t, bal: int)
if bal = k and s = t and s > 1 then return 2
if bal = k and s = t + 1 then return 1
return max(0, t− s + 1)

end.

COROLLARY 3 Ordered forests with ≤ k trees can be generated in either co-lex or cool-lex Gray code order
in O(1) amortized time.

8

4.3 Forbidden substring 01k or 10k

Fixed-density strings with no substring of the form 01k (a first-01 bubble language) has a straightforward oracle
that takes advantage of the run-length block data structure. We need only be careful when sc−1 = k − 1 since
if an additional 1 is appended to this block then the resulting string will contain the forbidden substring. Thus,
if sc−1 = k − 1 the oracle returns 1; otherwise it returns 0.

Fixed-density strings with no substring of the form 01k form a first-01 bubble language and we can apply the
same oracle.

COROLLARY 4 Fixed-density strings with forbidden substring 01k or 10k can be generated in either co-lex or
cool-lex Gray code order in O(1) amortized time.

These strings have been studied for specific values of k as outlined in [6].

4.4 Strings with ≤ k inversions

An inversion (with respect to 1∗0∗) in a string α = a1 · · · an is any ai = 0 and aj = 1 such that i < j. For
example the string a1 · · · a6 = 100101 has 5 inversions: (a2, a4), (a2, a6), (a3, a4), (a3, a6), (a5, a6). Observe
that the number of inversions in a string is the minimum number of adjacent transpositions required to obtain a
string of the form 1∗0∗. Fixed-density strings with at most k inversions form a first-01 bubble language.

To construct an oracle for this language, we maintain an additional parameter inv in GenBubble(s, t) that
stores the number of inversions in the current string. By prepending the prefix 10i to γ during a recursive call,
t− i new inversions are introduced into the string. Thus, the parameter inv can be maintained by replacing the
recursive call with GenBubble(s, t, inv+t−i) and initially calling GenBubble(s, t, 0).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ has at most k inversions
given that 1s0tγ has inv inversions. In other words, we want to find the smallest j such that inv + (t− j) ≤ k.
Thus, the oracle returns Max(0, t− k + inv).

An inversion (with respect to 0∗1∗) in a string α = a1 · · · an is any ai = 1 and aj = 0 such that i < j.
Fixed-density strings with at most k of these inversions form a first-10 bubble language and we can apply the
same oracle.

COROLLARY 5 Fixed-density strings with at most k inversions can be generated in either co-lex or cool-lex
Gray code order in O(1) amortized time.

4.5 Strings with ≤ k transpositions to sort

As previously mentioned, another way to look at a string with k inversions is that it requires k adjacent transpo-
sitions to sort the string into the form 1∗0∗. If the “adjacent” criteria is removed, then we can consider a bound
k on the number of transpositions required to sort a string. For example, while the string 100101 requires 5
adjacent transpositions (it has 5 inversions), it requires only 2 transpositions to sort it: namely swapping the 0s
in positions 2 and 3 with the 1s in position 4 and 6. Fixed-density strings requiring at most k transpositions to
sort the string form a first-01 bubble language.

9

To construct an efficient oracle for this language, we maintain an additional parameter sort that keeps track of
how many 1s occur past position d in the string. This is done by replacing the recursive call with:

if s + t− i > d then GenBubble(s− 1, t− i, sort + 1)
else GenBubble(s− 1, t− i, sort)

The initial call is GenBubble(d, n− d, 0).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ has at most k 1s past position
d given that 0s1tγ has exactly sort 1s past position d. If sort = k then (s− 1) + (t− j) + 1 ≤ d which means
the oracle returns Max(0, s + t− d). Otherwise, the oracle returns 0.

Fixed-density strings that require at most k transpositions to sort a string into the form 0∗1∗ are a first-10 bubble
language. To apply the aforementioned oracle, replace d with n− d in the oracle.

COROLLARY 6 Fixed-density strings that can be sorted with at most k transpositions can be generated in
either co-lex or cool-lex Gray code order in O(1) amortized time.

4.6 Linear extensions of B-posets

If the maximum position of the i-th one in a fixed-density string of length n is bounded by posi, then the string
is a linear extension of a B-poset [4]. An oracle for this object simply returns Max(0, s + t − poss) since
(s− 1) + (t− j) + 1 ≤ poss.

COROLLARY 7 Linear extensions of B-posets can be generated in either co-lex or cool-lex Gray code order in
O(1) amortized time.

Another Gray code for linear extensions is given in [3].

4.7 Strings that are ≥ or ≤ a given string ω

Strings that are greater than or equal to a given ω = w1w2 · · ·wn form a first-01 bubble language. To obtain
an efficient oracle for this language, we maintain an extra parameter flag that is set to TRUE if and only if
the current suffix γ of α is greater than or equal to the suffix of the same length in ω. To efficiently maintain
this extra parameter, we need to know whether or not two bits wi and wj belong to the same block. To check
this in constant time we pre-compute the block number associated with each bit and store it in b1 · · · bn. For
example the string w1 · · ·w9 = 111010011 with 3 blocks has the corresponding block number sequence:
b1 · · · b9 = 333322211.

To maintain this flag as 10i is prepended to γ, the recursive call is replaced with:

if ws+t−i = 0 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (ws+t−i+1 = 0 and bs+t−i+1 = bs+t) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

10

The initial call with the new parameter is GenBubble(d, n− d, TRUE).

Using this extra parameter, we still need to compare the prefix of α with the prefix of ω efficiently. Thus we
also pre-compute the first 2 blocks of ω: (u, v) and (y, z). From our example string w1 · · ·w9 = 111010011,
these blocks are (u, v) = (3, 1) and (y, z) = (1, 2) respectively.

Using these blocks, our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ ≥ ω
where ω starts with 1u0v1y0z . Thus if s − 1 < u then the oracle returns t. Also if s − 1 > u or s − 1 = u
and t < v then clearly the oracle returns 0. Otherwise s − 1 = u and t ≥ v. This will lead to two possible
values for the bubble lower bound: t − v or t − v + 1. Clearly the latter case will result in a string larger than
ω since α’s prefix would become (u, v − 1). Thus, we determine when setting j = t − v will result in a string
that is greater than or equal to ω. This will be the case if flag = TRUE and either (i) t = v or (ii) y = 1 and
t− v ≤ z. These observations can be simplified and summarized as follows:

procedure Oracle(s, t, flag: int)
if s− 1 < u then return t
if s− 1 > u or t < v then return 0
if (t = v or (y = 1 and t− v ≤ z)) and flag then return t− v
return t− v + 1

end.

Strings that are less than or equal to ω form a first-10 bubble language. For this language we can apply the same
oracle but when considering the bits within the string ω, we replace the two bit comparisons with 0 to 1. Also,
the pre-computed block information in ω must be of the form 0∗1∗ instead of 1∗0∗.

COROLLARY 8 Fixed-density strings that are greater (less) than or equal to a string ω can be generated in
either co-lex or cool-lex Gray code order in O(1) amortized time.

4.8 Strings that are ≥ or > or ≤ or < their reversal

Fixed-density strings that are greater than (or equal) to their reversal form a first-01 bubble language. First we
provide an oracle that includes palindromes (strings equal to their reversal) and then add details that will allow
the oracle to reject the palindromes. For our discussion let the reversal of a string α be denoted αR. The oracle
described here requires the run-length block encoding data structure outlined in Section 2.1.

At the start of each recursive call α = 1s0tγ and α ≥ αR. We are trying to determine the smallest non-negative
value j such that 1s−10t−j10jγ is also greater than or equal to its reversal. If the length of γ is greater than
s + t then let δ denote the string γ with the last s + t bits removed. When testing a given j, if the reversal
of γ also starts 1s−10t−j10j then we need to determine whether or not δ ≥ δR. To obtain this information in
constant time we maintain an additional parameter flag in the recursion that is TRUE if and only if δ ≥ δR.
As an example, let α = 110000011001110000100 where s = 2, t = 5 and γ = 11001110000100. Then
δ = 1100111 and flag = FALSE since δ < δR. To efficiently update this new parameter we may need
to efficiently determine which block a given 1 (not in the first block) belongs to. Thus, the global array b is
maintained that stores which block a specific 1 (not in the first block) belongs to. From our example string α,
the 1 in position 8 belongs to the 2nd block and thus b8 = 2. Similarly b9 = 2 and b12 = 3.

During a recursive call, as 10i is prepended to γ, we need to update flag. Let p = s + t − i which denotes
the position of the 1 (from the 10i) in the updated string α. Then if q = n − p + 1, we compare the strings

11

apap+1 · · · ap+i with aqaq−1 · · · aq−i. To perform this test efficiently, first test ap = 1 against aq. If aq = 0 then
we set flag to TRUE; otherwise we check further. If i = 0 then flag remains unchanged, but if i > 0 then test
ap+1 = 0 with aq−1. If aq−1 = 1 then set flag to FALSE. Otherwise since ap+1 · · · ap+i = 0i test if the same
is true for aq−iaq−i+1 · · · aq−1. Because aq = 1 and aq−1 = 0, the 1 in position aq is at the start of the block
bq. The number of consecutive 0s before this 1 is given by tbq+1. Thus if tbq+1 ≥ i the value for flag remains
unchanged. Otherwise set flag to FALSE. There is one special case where p > n/2 in which case δ is empty
so flag remains TRUE.

From our discussion, to update the value for flag the recursive call is replaced with the following:

p := s + t− i
q := n− p + 1
bp := c− 1
if p > n/2 or aq = 0 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (aq−1 = 0 and tbq+1 ≥ i) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

The initial call with the added parameter is GenBubble(d, n− d, TRUE).

Once again, recall that we are trying to determine the smallest non-negative value j such that β = 1s−10t−j10jγ
is greater than or equal to its reversal. Using flag we obtain a O(1) time oracle by comparing 1s−10t−j10j

with the start of the reversal 0t11s10t21s20t3 . We examine two cases depending on t1 being careful when c = 1
or c = 2.

Case 1: t1 = 0. In this case we compare 1s−10t−j10j with 1s10t21s20t3 . If s − 1 > s1 then the oracle returns
0. If s − 1 < s1 then the oracle returns t. The interesting case is when s − 1 = s1. As a special case when
c = 2 the oracle simply returns b(t + 1)/2c. Otherwise observe that β > βR if j = t− t2 + 1 ≥ 0 and β < βR

if j = t − t2 − 1 ≥ 0. Thus, consider what happens if j = t − t2. If j < 0 then the oracle simply returns 0.
Also notice that if j = 0 and flag = TRUE then β = βR. Otherwise, in order for β ≥ βR, we have s2 = 1,
t3 ≥ j and flag = TRUE. The following subroutine (which we use again later) handles these latter cases with
the call TestJ(t− t2, f lag, s2, t3):

procedure TestJ(j, flag, ones, zeros: int)
if j < 0 or (j = 0 and flag) then return 0
if ones = 1 and zeros ≥ j and flag then return j
return j + 1

end.

Case 2: t1 > 0. If s > 1 then β will start with a 1 for any j. Thus the oracle returns 0. Otherwise s = 1
and we compare 0t−j10j with 0t11s10t2 . In a special case if c = 1 then β the oracle returns bn/2c. For
the remaining cases we encounter a problem similar to the previous case which can be handled with the call
TestJ(t− t1, f lag, s1, t2).

12

The following summarizes the oracle for reversible strings:

procedure Oracle(s, t, flag: int)
if t1 = 0 then

if s− 1 > s1 then return 0
if s− 1 < s1 then return t
if c = 2 return b(t + 1)/2c
return TestJ(t− t2, flag, s2, t3)

if s > 1 then return 0
if c = 1 then return bn/2c
return TestJ(t− t1, flag, s1, t2)

end.

Since fixed-density strings that are less than or equal to their reversal form a first-10 bubble language we can
apply the exact same oracle.

COROLLARY 9 Fixed-density strings that are greater (less) than or equal to their reversal can be generated in
either co-lex or cool-lex Gray code order in O(1) amortized time.

Reversible strings have also been called “neckties” and Gray codes for them are presented in [9].

4.8.1 No palindromes

If we consider fixed-density strings that are strictly greater than their reversals, which are also a first-01 bubble
language, then the following modifications are required:

• When updating flag, if δ = ε, then flag = FALSE. Thus set flag := FALSE in the recursive call when
p > n/2.

• In the oracle when t1 = 0 we make two changes. First when c = 2 and s − 1 = s1 + 1 we return 1.
Second, for the case when c = 2 and s− 1 = s1, the oracle returns t/2 + 1 instead of b(t + 1)/2c.

• In the oracle when t1 > 0 we also make 2 changes. First when c = 1 and s = 2 we return 1. Second for
the case when c = 1 and s = 0 the oracle returns b(n + 1)/2c instead of bn/2c.

COROLLARY 10 Fixed-density strings that are strictly greater (less) than to their reversal can be generated in
either co-lex or cool-lex Gray code order in O(1) amortized time.

4.9 Strings that are ≥ or > or ≤ or < their complemented reversal

Fixed-density strings that are greater than or equal to their complemented reversals form a first-01 bubble
language if d ≥ dn/2e. These strings will be useful later when we consider connected unit interval graphs.
The construction of an oracle for this language is very similar to the previous language for reversals and once
again uses the run-length block data structure. As defined in the previous subsection, we will use the term δ
and will require the global array b that maintains the index of the blocks for each 1 in the string α. We maintain
a flag which is set to TRUE if and only if δ (as defined in the previous section) is greater than or equal to its
complemented reversal.

13

Updating the flag for complemented reversals is very similar to reversals. In particular, to update the value for
flag as we add each 10i to γ, replace the recursive call with the following:

p := s + t− i
q := n− p + 1
bp := c− 1
if p ≥ n/2 or aq = 1 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (aq−1 = 1 and sbq−1 ≥ i) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

The initial call with this added parameter is GenBubble(d, n− d, TRUE).

Using this extra parameter flag, we now describe the oracle for complemented reversals. Recall we are trying
to determine the smallest non-negative value for j such that β = 1s−10t−j10jγ is greater than or equal to its
complemented reversal. So in particular we need to compare 1s−10t−j10j with the reversed complemented
suffix 1t10s11t20s2 . For the special case when c = 1, clearly a 1 can be moved into the last position an so the
oracle returns 0. If s − 1 > t1, then the oracle also returns 0; if s − 1 < t − 1 then the oracle returns t. The
interesting case is when s− 1 = t1. When c = 2, there is a special case: if t− 1 ≤ s1 then the oracle returns 0.
Otherwise we can re-use the function TestJ(j,flag,ones,zeros) presented in the previous subsection by calling
TestJ(t− s1, flag, t2, s2). The resulting oracle can be summarized as follows:

procedure Oracle(s, t, flag: int)
if c = 1 or s− 1 > t1 then return 0
if s− 1 < t1 then return t
if c = 2 and t− 1 ≤ s1 return 0
return TestJ(t− s1, flag, t2, s2)

end.

Since fixed-density strings that are less than or equal to their complemented reversal form a first 10-bubble
language we can apply the exact same oracle.

COROLLARY 11 Fixed-density strings that are greater (less) than or equal to their complemented reversal can
be generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

Note that a string cannot equal its complemented reversal unless n = 2d. Thus, this result applies to strings
that are strictly greater (less) than their complemented reversals when d > n/2.

4.10 0-1 Knapsack

Consider a knapsack with capacity C and a set of n items sorted by non-decreasing weights w1w2 · · ·wn. The
set of all subsets of d items whose total weight does not exceed the capacity form a first-01 bubble language. For
example, consider a knapsack with capacity C = 22 and 5 items with weights 2, 4, 6, 6, and 15 respectively.
Then the 5 feasible solutions with 3 items, where a 1 indicates that we are including the item, are: 11100,
11010, 11001, 10110, and 01110.

To obtain an efficient oracle we maintain an extra parameter avail that represents the available capacity from
using the current d items. As the string 10i is prepended to γ, we are effectively removing the s-th item from

14

the knapsack and inserting the s+ t− i-th item. Thus to maintain this parameter, replace the recursive call with
GenBubble(s− 1, t− i, avail −ws+t−i + ws) where the initial call is GenBubble(d, n− d,C −

∑d
k=1 wk).

Using this extra parameter, the oracle determines the heaviest item (up to item s + t) that can be swapped with
the s-th item so we do not violate the capacity C. This can be done as follows:

procedure Oracle(s, t, avail: int)
int j

j := t
while j > 0 and avail ≥ ws+t−j+1 − ws do j := j − 1
return j

end.

Clearly this oracle does not run in O(1) time. However observe that for every successful iteration of the while
loop, we will generate a recursive call in GenBubble(s, t, avail). This means we will still achieve a CAT
algorithm.

COROLLARY 12 Feasible solutions to the 0-1 knapsack problem with exactly d items can be generated in either
co-lex or cool-lex Gray code order in O(1) amortized time.

A comprehensive discussion on knapsack problems is given in [2].

4.11 Closure properties of oracles

Bubble languages are closed under both union and intersection [4] (with respect to either the first-01 bubble or
first-10 bubble property). Thus if there are oracles for two first-01 bubble languages L1 and L2, then an oracle
for L1 ∪L2 will be the minimum of the two oracles and an oracle for L1 ∩L2 will be the maximum of the two
oracles.

As an example, connected unit interval graphs with d vertices can be expressed as a first-01 bubble language of
length n = 2d and density d. This language is the intersection of balanced parentheses strings with 1 balanced
prefix and strings that are greater than or equal to their complemented reversals [4]. Since there exists O(1)
time oracles for these two languages, we obtain a O(1) time oracle for connected unit interval graphs.

COROLLARY 13 Connected unit interval graphs can be generated in either co-lex or cool-lex Gray code order
in O(1) amortized time.

Another Gray code for connected unit interval graphs is also presented in [5].

5 Layering densities

In the previous section we provided efficient oracles for a number of fixed-density bubble languages that allows
the languages to be generated in O(1) amortized time. For many of the objects, there are corresponding bubble
languages when the density is not fixed. For such languages, we can concatenate the cool-lex Gray codes

15

together over all densities to obtain Gray codes that are ordered by density. Alternatively if we output the even
densities in increasing order followed by the odd densities in decreasing order, then we will obtain a cyclic Gray
code [4].

THEOREM 3 The following objects can be listed in a cyclic Gray code order in O(1) amortized time:

first-01 bubble languages first-10 bubble languages
• strings with forbidden 01k • strings with forbidden 10k

• strings with ≤ k inversions from 1∗0∗ • strings with ≤ k inversions from 0∗1∗

• strings with ≤ k transpositions from 1∗0∗ • strings with ≤ k transpositions from 0∗1∗

• strings ≥ some string ω • strings ≤ to some string ω
• strings ≥ their reversal • strings ≤ their reversal
• strings > their reversal • strings < their reversal
• feasible solutions to 0-1 knapsack.

6 Summary and open problems

We have provided a recursive framework to efficiently generate many fixed-density bubble languages in cool-
lex Gray code order. Moreover, we have reduced the problem of generating the Gray code for a particular
bubble language to the problem of providing a membership tester for it. A C program that combines all the
algorithmic results of this paper is available at http://www.socs.uoguelph.ca/∼sawada/prog.html.

We conclude with the following open problems:

1. Are there other interesting bubble languages and do they have efficient oracles?

2. Can the cool-lex Gray code for fixed-density necklaces and Lyndon words be generated in constant
amortized time?

7 Acknowledgements

Thanks to Frank Ruskey for many helpful discussions and valuable comments.

References

[1] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms, Vol. 4 No. 4 (1983) 363-381.

[2] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.

[3] G. Pruesse and F. Ruskey, Generating linear extensions fast, SIAM Journal on Computing, Vol.23 No. 2 (1994)
373-386.

[4] F. Ruskey, J. Sawada and A. Williams, Binary bubble languages and cool-lex Gray codes, submitted.

[5] T. Saitoh, K. Yamanaka, M. Kiyomi and R. Uehara, Random generation and enumeration of proper interval graphs,
WALCOM ’09: Third International Workshop on Algorithms and Computation, LNCS 5431 (2009) 177-189.

16

[6] N. Sloane, The on-line encyclopedia of integer sequences, http://www.research.att.com/njas/
sequences, sequence numbers A000071, A004070, A008937, A055216, A107066, A107065.

[7] R. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997.

[8] T. Ueda, Gray codes for necklaces, Discrete Math., Vol. 219 No. 1-3 (2000) 235-248.

[9] T. Wang and F. Ruskey, Generating neckties: algorithms Gray codes and parity differences, (1993), preprint.

[10] T. Wang and C. Savage, A Gray code for necklaces of fixed density, SIAM J. Discrete Math., Vol. 9 No. 4 (1996)
654-673.

[11] A. Williams, Shift Gray codes, PhD thesis in Computer Science, University of Victoria, 2009.

17

