
Finding and listing induced paths and cycles1

Chı́nh T. Hoàng∗ Marcin Kamiński† Joe Sawada‡ R. Sritharan §2

January 13, 20123

Abstract4

Many recognition problems for special classes of graphs and cycles can be reduced to finding and listing5

induced paths and cycles in a graph. We design algorithms to list all P3’s in O(m1.5 + p3(G)) time, and for6

k ≥ 4 all Pk’s inO(nk−1+pk(G)+k ·ck(G)) time, where pk(G), respectively, ck(G), are the number of Pk’s,7

respectively, Ck’s, of a graphG. We also provide an algorithm to find a Pk, k ≥ 5, in timeO(k!! ·m(k−1)/2) if8

k is odd, and O(k!! ·nm(k/2)−1) if k is even. As applications of our findings, we give algorithms to recognize9

quasi-triangulated graphs and brittle graphs. Our algorithms’ time bounds are incomparable with previously10

known algorithms.11

1 Introduction12

Many recognition problems for special classes of graphs can be reduced to finding and listing induced paths and13

cycles in a graph. For example, if we can efficiently list all P3’s and their complements of a graph, then we14

can recognize quasi-triangulated graphs efficiently (definitions are given in Section 2). Also, recognizing brittle15

graphs is reduced to listing the P4’s of a graph. In this paper, we provide polynomial time algorithms for finding16

and listing induced paths of given length. The problems of finding a triangle and listing all triangles of a graph17

are well known. Our results show an intimate connection between listing triangles and listing P3’s.18

Let pk(G) and ck(G) denote the number of Pk’s andCk’s of a connected graphG. Our main results are:19

. a proof that listing the P3’s is as difficult as listing triangles,20

. an algorithm to list all P3’s in O(m1.5 + p3(G)) time,21

. an algorithm to list all Pk’s in O(nk−1 + pk(G) + k · ck(G)) time where k ≥ 4,22

. an algorithm to list all Ck’s in O(nk−1 + pk(G) + ck(G)) time, and23

. an algorithm to find a Pk, k ≥ 5, in time O(k!! ·m(k−1)/2) if k is odd, and O(k!! · nm(k/2)−1) if k is even,24

∗Physics and Computer Science, Wilfrid Laurier University, Canada. Research supported by NSERC. email:
choang@wlu.ca
†Algorithms Research Group, Département d’Informatique, Université Libre de Bruxelles O8.114, CP 212, Bvd. du Triomphe, 1050

Bruxelles email: Marcin.Kaminski@ulb.ac.be
‡School of Computer Science, University of Guelph, Canada. Research supported by NSERC. email:

jsawada@uoguelph.ca
§Computer Science Department, The University of Dayton, Dayton, OH 45469, email: srithara@notes.udayton.edu,

Acknowledges support from The National Security Agency, USA

1

e

Figure 1: A non-brittle graph with no Ck, k ≥ 5

where k!! denotes the product k(k − 2)(k − 4) As applications of our findings, we give algorithms to25

recognize quasi-triangulated graphs and brittle graphs. Our algorithms’ time bounds are incomparable with26

previously known algorithms.27

2 Definitions and background28

Throughout this paper we assume the graphs are without isolated vertices unless otherwise stated. Let G =29

(V,E) be a graph. Then co-G denotes the complement of G. Let x be a vertex of G. N(x) denotes the set of30

vertices adjacent to x in G. For a set S of vertices not containing x, we say x is non-adjacent to S if x is not31

adjacent to any vertex of S. Let Pk denote the induced path on k vertices, and v1v2 · · · vk the Pk with vertices32

v1, v2, . . . , vk and edges vivi+1 for i = 1, 2, . . . , k − 1. pk(G) denotes the number of Pk’s of G, and co-pk(G)33

denotes the number of co-Pk’s of G. Ck, k ≥ 3, denotes the chordless cycle with k vertices and ck(G) denotes34

the number of Ck’s of G. Kt denotes the complete graph on t vertices. The graph co-C4 is usually denoted by35

2K2 and we call co-P5 a house. C3 is referred to as a triangle. The paw is the graph with vertices a, b, c, d and36

edges ab, bc, ac, ad. The diamond is the K4 minus an edge. Let k3(G), respectively, c4(G), co-c4(G), paw(G),37

3(G), k4(G), denote the number of triangles, respectively, C4’s, co-C4’s, paws, diamonds, K4’s, of G.38

As usual, n denotes the number of vertices and m denotes the number of edges of the input graph. A vertex39

x is simplicial if its neighbors form a clique. A graph G is quasi-triangulated if each of its induced subgraphs H40

contains a simplicial vertex in H or in co-H . A graph is chordal if it does not contain an induced Ck for k ≥ 4.41

Chordal graphs are well studied (for more information, see [8].) It is well known that a chordal graph contains a42

simplicial vertex. Thus, all chordal graphs are quasi-triangulated. The C4 is quasi-triangulated but not chordal.43

For a Pk v1v2 · · · vk, k ≥ 4, the edges v1v2, vk−1vk are the wings of the Pk; the vertices v1, vk are the44

endpoints of the Pk. For a P4 abcd, the edge bc is the rib of the P4; b, c are the midpoints of the P4. A vertex45

of a graph G is soft if it is not a midpoint of any P4 or is not an endpoint of any P4. A graph is brittle if each46

of its induced subgraphs contains a soft vertex. Since a simplicial vertex is soft and P4 is self-complementary,47

quasi-triangulated graphs are brittle. Observe that any graph with a Ck where k > 4 is not brittle. The graph48

G in Figure 1 (with one edge labeled e) is a non-brittle graph containing no Ck, k > 4; G − e is brittle and49

not quasi-triagulated. Quasi-triangulated graphs and brittle graphs are subclasses of perfectly orderable graphs50

[2] and are well studied (see [7, 9]). While quasi-triangulated and brittle graphs (see [9]) can be recognized in51

polynomial time, to recognize a perfectly orderable graph is an NP-complete problem [10].52

Let O(nα) be the current best complexity of the algorithm to multiply two n × n matrices. It has been long53

known that α < 2.376 [3] and there is a recent unpublished improvement α < 2.3727 [14]. It is well known54

that finding a triangle in a graph can be reduced to matrix multiplication. Thus, a triangle can be found in O(nα)55

time. It follows from [1] that a triangle can be detected in timeO(m1.4) and all triangles can be listed inO(m1.5)56

time.57

2

3 Listing induced paths58

In this section we discuss the problem of efficiently listing all induced Pk’s in G. Naı̈vely, all Pk’s of a graph G59

can be listed in O(k2 · nk) time by considering the O(nk) sequences of k distinct vertices and testing whether60

or not each sequence forms a Pk in O(k2) time. Taking k to be a constant, this is the best bound we can hope61

for when pk(G) = Θ(nk). For example, if the vertices of G are partitioned into k equal sized sets V1, V2, . . . , Vk62

where each Vi, Vi+1 form a complete bipartite graph for i = 1, 2, . . . , k − 1 and there is no other edges, then63

pk(G) = Θ(nk). However, for many graphs we may expect a much smaller number for pk(G). In particular, for64

sparse graphs we can obtain a much better bound focusing on the number of edges m:65

Theorem 1 For k ≥ 1, a graph G has66

pk(G) =

{
O(nm(k−1)/2) if k is odd
O(mk/2) if k is even.

Moreover, for k ≥ 1, all Pk’s of a graph G can be listed in time O(k!! · nm(k−1)/2) if k is odd, or O(k!! ·mk/2)67

if k is even.68

Proof. By induction on k. Clearly p1(G) = O(n) and p2(G) = O(m). Since each Pk−2 of the form p1p2 · · · pk−269

can be extended to a Pk in at most m ways, this proves the first part of the theorem. Specifically, we consider70

each edge xy and test whether or not either p1p2 · · · pk−2xy or p1p2 · · · pk−2yx is a Pk. This test will take O(k)71

time for each edge, hence proving that we can list all Pk’s in the given time bound. 272

Ideally, we would like to list all Pk’s in time O(pk(G) +m); that is it should cost only constant time per Pk.73

This seems a very challenging task, even for k = 3. Thus, perhaps it is more reasonable to look for an algorithm74

with running time O(pk(G) + nt), where t ≤ k − 1.75

To begin, we consider a simple recursive algorithm to list all Pk’s for a graphG. Assume thatG is represented76

by the adjacency lists adj[v] for each vertex v ∈ V (G). If we consider each vertex as the starting point of a Pk,77

then we can generate all Pk’s with the algorithm ListPath shown below:78

function ListPath(int t)

for each u ∈ adj[pt−1] do vis[u] := vis[u] + 1
for each u ∈ adj[pt−1] do

if vis[u] = 1 then
pt := u
if t < k then ListPath(t+1)
else if p1 < pt then Process(p1p2 · · · pt)

for each u ∈ adj[pt−1] do vis[u] := vis[u]− 1
end.

At each recursive call, we attempt to extend the induced path p1p2 · · · pt−1. To make the algorithm more efficient,79

for each vertex u, we maintain the value vis[u] which is the number of vertices in p1p2 · · · pt−1 that are adjacent80

3

to u. This allows us to test whether or not a neighbour u of pt−1 can extend the induced path in constant time by81

checking if vis[u] = 1. To initialize the algorithm we set vis[v] := 0 for each vertex v ∈ V (G). Then, for vertex82

v ∈ V (G) we set p1 := v, set vis[v] := 1, make the call ListPath(2), and finally reset vis[v] := 0. To make sure83

we do not list the same path twice, we only visit an induced path p1p2 · · · pt if p1 < pt (given an initial ordering84

on the vertices). The function Process(Pk) is an application specific function to process the path. In particular,85

it can be written to simply output the vertices of the Pk.86

A naı̈ve analysis of the algorithm ListPath yields a worst case running time of O(nt). However, for sparse87

graphs this bound is not tight. A more detailed analysis for small values of k will be done in the following88

subsections, which measure the running time for a graph G with respect to the number of occurrences of certain89

induced subgraphs.90

3.1 Listing P3’s91

When k = 3, the algorithm ListPath is equivalent to considering each edge uv and then checking all neighbours92

w of u and v to see if we obtain a P3 of the form uvw or vuw. If a neighbour w does not form a P3 then it93

must be adjacent to both u and v and hence forms a triangle. Thus, an upper bound on the running time can be94

expressed as O(m + k3(G) + p3(G)). Each P3 will be found twice and the algorithm can be optimized so that95

each triangle will be found exactly 3 times (by visiting the ordered adjacency lists for u and v at the same time).96

Since k3(G) = O(m1.5), the above discussion proves the following:97

Theorem 2 There is an O(m+ k3(G) + p3(G)) = O(m1.5 + p3(G)) algorithm to list all P3’s of a graph G. 298

Observe that this bound is incomparable with the O(nm) approach from Theorem 1. Thus, the algorithm99

ListPath will be an improvement of this simpler approach in sparse graphs where p3(G) = o(m2). We now100

mention a class of graphs for which Theorem 2 gives a better time bound than O(nm). Consider the class Pn of101

induced paths on n vertices. With n and m being the number of respectively vertices and edges of Pn, we have102

m = O(n), p3(Pn) = O(n). So, Theorem 2’s time bound is O(n1.5) which is better than O(nm) = O(n2).103

Note that some sparse graphs do admit Θ(m2) P3’s as observed in the n-star, i.e., a graph on n vertices and104

n − 1 edges with a vertex of degree n − 1 (every other vertex has degree one). Thus, we consider one more105

approach that does not visit any triangles, as follows.106

Theorem 3 For any graph G, there is a O(n+m+ p3(G)+ co-p3(G)) algorithm to list:107

. all P3’s of G,108

. all co-P3’s of G,109

. all P3’s and co-P3’s of G.110

Proof. We first, for each isolated vertex, generate the co-P3’s containing that vertex at the cost of constant time111

per generated co-P3. (This is the only time in the paper when we need to consider isolated vertices.) We remove112

all isolated vertices and apply the following algorithm.113

4

for each x ∈ V do
for each y ∈ V −N(x)− {x} do

for each z ∈ N(y) do
if xz ∈ E and y < x then Process(yzx)
if xz /∈ E and y < z then Process({x, y, z})

In the above algorithm, the innermost for loop always iterates at least once and for each iteration either finds a114

P3 (if xz ∈ E) or a co-P3 (if xz /∈ E). To remove duplicates, we only process those where y < x or y < z for115

an initial vertex ordering. 2116

For certain special classes of graphs, we can list P3’s more efficiently. For example, the following result117

applies to (diamond, house)-free graphs.118

Theorem 4 There is an O(m
2
3 n+ p3(G))-time algorithm to list all P3’s of a (diamond, house)-free graph G.119

Proof. From [5] all maximal cliques of a (diamond, house)-free graph G can be listed in O(m
2
3 n) time. For a120

vertex v, N(v) is the union of disjoint cliques C1, . . . , Ck and Ci ∪ {v} is a maximal clique of G. Observe that121

xvy is a P3 of G if and only if x ∈ Ci, y ∈ Cj where i 6= j. If each vertex is given a list of pointers to the cliques122

that contain it (built up as the cliques are found) and each clique is given a list of vertices it contains, then the123

result follows. 2124

3.1.1 Lower bound125

The following result shows, with an O(n2) reduction, listing P3’s is as hard as listing triangles, a well-known126

problem.127

Theorem 5 If there is an f(n,m)-time algorithm to list all P3’s of a graph, then there is an O(n2 + f(n,m))-128

time algorithm to list all triangles of a graph.129

Proof. Given G = (V,E), construct the bipartite graph H = (X,Y,E′) as follows: X = {w1 | w ∈ V },130

Y = {w2 | w ∈ V } (that is, for each vertex w ∈ V , put its copy w1 in X , and w2 in Y), and E′ = {w1z2 | wz ∈131

E} ∪ {w2z1 | wz ∈ E}. It is clear that abc is a triangle in G if and only if a1b2c1 is a P3 of H such that a is132

adjacent to c in G. As H can be constructed from G in linear time, listing all the P3 ’s of H in f(2n, 2m) time133

enables us to list all the triangles of G in O(n2 + f(n,m)) time. 2134

3.2 Listing P4’s135

In addition to analyzing the algorithm for ListPath when k = 4, we will also consider three other approaches for136

listing all P4’s of a graph G. These three approaches can be summarized as follows:137

1. Consider pairs of edges as potential wings of a P4 and test if exactly one endpoint of each edge is adjacent138

to some endpoint of the other edge.139

5

2. Consider all edges as a potential ribs of a P4 and visit the neighbourhoods of each endpoint.140

3. Consider each vertex as an endpoint of a P4, and perform a BFS (Breadth-First Search) 4 levels deep. By141

keeping track of cross edges use the BFS tree to find all P4’s.142

For the algorithm ListPath for k = 4, we consider the possible subgraphs at each level of computation. After143

three vertices have been added, we have exactly the analysis for generating P3’s: O(m+k3(G) + p3(G)). When144

adding a fourth vertex there are four possible induced subgraphs: a P4, C4, paw, or diamond. Thus, an upper145

bound on the running time can be expressed as:146

O(m+ k3(G) + p3(G) + c4(G) + paw(G) + 3(G) + p4(G)).

For the first alternate approach, we consider all pairs of edges uv and wx. If the two edges share a common147

endpoint, then we have either a P3 or a triangle. If all four vertices are distinct, then we will obtain one of the148

following induced subgraphs on the four vertices: a 2K2, P4, C4, paw, diamond, K4. A simple analysis yields149

Θ(m2), but using occurrences of these subgraphs we get:150

O(k3(G) + p3(G) + co-c4(G) + c4(G) + paw(G) + 3(G) + k4(G) + p4(G)).

Note this alternate approach gives a bound worse than that of the ListPath algorithm.151

For the second alternate approach, we consider each edge uv as potential rib of a P4, and then consider152

elements of the Cartesian product of the adjacency lists of u and v as the potential endpoints of a P4. For a P4153

to be possible, the size of each adjacency list must be greater than 1 to account for their shared edge. If this154

condition is satisfied, then the possible subgraphs are: P4, C4, paw, diamond, or K4. However, we can make155

a small improvement by first scanning the two adjacency lists concurrently (assuming the lists are ordered) and156

removing common vertices. Each vertex removed will correspond to a triangle. If each adjacency list still has157

more than one vertex, then we charge the non-removed vertices to the Cartesian product operation which will158

yield either a P4 or a C4. If after removing all shared vertices one of the adjacency lists has size 1, then we need159

to account for the vertices visited that are not shared. Since each such vertex forms a P3, we can use the number160

of P3’s as an upper bound. Once this step is completed, we must make one more pass through the adjacency lists161

to insert back the removed vertices. This algorithm will take:162

O(m+ k3(G) + p3(G) + c4(G) + p4(G)) = O(m1.5 + p3(G) + c4(G) + p4(G)) = O(nm+ c4(G) + p4(G)).

Thus, for C4-free graphs, we have the following result:163

Theorem 6 There is an O(nm+ p4(G)) algorithm to list all P4’s of a C4-free graph G. 2164

The final approach uses some pre-processing that will be beneficial in a paw-free graph. We consider each165

vertex u as the potential endpoint of a P4. Then we perform a BFS starting from u up to 4 levels that constructs a166

parent list for each vertex v visited containing all neighbors of v in the previous level. Clearly by following any167

path from a vertex in the 4th level back to u we obtain a P4, and all such paths can be easily found recursively168

using the parent pointer. In addition to such P4’s, a P4 may also exist with two vertices in the third level. Thus169

when we perform our BFS, we must also keep track of all edges whose endpoints are both in the third level. For170

each such edge xw we scan the parent lists of each vertex. If they share a parent then we have a paw, but for each171

6

parent of one vertex that is not in the parent list of the other, we find a P4. To handle equivalent P4’s, we only172

list those where the first vertex is greater than the last vertex for some given vertex ordering. This algorithm will173

take:174

O(nm+ paw(G) + p4(G)).

Thus, we have the following result:175

Theorem 7 There is an O(nm+ p4(G)) algorithm to list all P4’s of a paw-free graph G. 2176

If a graph is either paw-free or C4-free then we have algorithms that run in time O(nm + p4(G)). An open177

question is whether or not there exists an algorithm that runs in timeO(n3+p4(G)) to list all P4’s for an arbitrary178

graph G.179

3.3 Listing Pk’s180

In this subsection, we consider two general approaches to list all Pk’s of a graphG. First, recall that the algorithm181

ListPath for k = 3 runs in time O(m1.5 + p3(G)). Extending this algorithm to k = 4, observe that in the worst182

case we perform O(n) extra work for each P3. Thus, we can generate all P4’s in O(m1.5 + n · p3(G)). The183

following generalizes this observation for larger k.184

Theorem 8 There is an O(m1.5 + nk−3 · p3(G)) algorithm to list all Pk’s of a graph G. 2185

Our second approach extends the rib approach we used to list all P4’s; however instead of a rib we start by186

considering a Pk−2. If L is a list of all Pk−2’s in G (k ≥ 4), the following approach will list all Pk’s:187

for each P := p1p2 · · · pk−2 ∈ L do
A := set of vertices adjacent to p1 and non-adjacent to P−{p1}
B := set of vertices adjacent to pk−2 and non-adjacent to P−{pk−2}
for each (a, b) ∈ A×B do

if ab /∈ E then Process(aPb)

To analyze this algorithm, observe that A and B can be computed in O(kn) time and the nested for loop either188

generates a Pk or a Ck (when ab ∈ E). Also note that each Ck will be generated k times. Thus, using the upper189

bound of O(nk−2) for the number pk−2(G), we obtain an overall running time bound of O(knk−1 + pk(G) + k ·190

ck(G)) for this algorithm. The factor k in front of the term nk−1 is somewhat undesirable; however, this factor191

can be eliminated by modifying the algorithm to start with Pk−4’s. In the following algorithm, L is a list of all192

Pk−4’s in G and k ≥ 6:193

for each P := p1p2 · · · pk−4 ∈ L do
A := set of vertices adjacent to p1 and non-adjacent to P−{p1}
B := set of vertices adjacent to pk−4 and non-adjacent to P−{pk−4}

7

C := set of vertices non-adjacent to P
for each (a, b) ∈ A×B do

if ab /∈ E then
A′ := subset of C adjacent to a but not b
B′ := subset of C adjacent to b but not a
for each (u, v) ∈ A′ ×B′ do

if uv /∈ E then Process(uaPbv)

In the case when k = 4 and k = 5 we can consider k to be constant. Thus, we obtain the following theorem.194

Theorem 9 There is an O(nk−1 + pk(G) + k · ck(G)) algorithm to list all Pk’s of a graph G, where k ≥ 4.195

Proof. When k = 4 and k = 5 we can consider k to be constant. Thus, as discussed the first algorithm presented196

in this section attains the time bound. When k ≥ 6, the factor of k in front of the term nk−1 is handled by197

the latter algorithm. In that algorithm we note that each Ck−2 will be considered k−2 times (when ab ∈ E);198

however, this work is contained in the term nk−1. 2199

Corollary 1 There is an O(nk−1 + pk(G)) algorithm to list all Pk’s of a Ck-free graph G. 2200

Note that the bounds in Theorem 9, Corollary 1, and the upcoming Theorem 10, can be tightened for sparse201

graphs by applying Theorem 1.202

3.4 Listing Ck203

Observe that many of the algorithms for listing Pk’s can easily be modified to list all Ck’s. In particular, to204

apply the algorithm immediately preceding Theorem 9, observe that we will find all Ck’s if uv ∈ E in the final205

statement of the algorithm. However, one extra challenge for cycles is to easily identify duplicates. This can be206

done by ensuring that we only list cycles of the form C = c1c2 · · · ck where c1 is the smallest vertex in C and207

c2 < ck. There are three steps to doing this efficiently. First, when we list the Pk−4, we must keep track of208

the smallest vertex in the induced path as the path gets generated. This can easily be done in constant time (per209

added vertex). Second, we do not consider a Pk−4 unless the smallest vertex is p1. Finally, when we consider210

(u, v) in the final for loop, we will find a representative Ck of the form Pbvua if and only if p1 is smaller than211

each of b, v, u, a and p2 < a. Observe that each Ck will be tested at most a constant number of times. Thus, the212

algorithm for listing Ck’s yields an improved bound compared to the one we give to list Pk’s.213

Theorem 10 There is an O(nk−1 + pk(G) + ck(G)) algorithm to list all Ck’s of a graph G. 2214

For the special case of k = 4, observe that the algorithm used to prove Theorem 6 can also be adapted to obtain215

the following result (which is an improvement for sparse graphs).216

Theorem 11 There is an O(nm+ p4(G) + c4(G)) algorithm to list all C4’s of a graph G. 2217

8

For sparse graphs, we can also make simple modifications to the proof of Theorem 1 to obtain similar results218

for cycles. Using the techniques just described, we can easily obtain only the representative cycles with constant219

time testing.220

Theorem 12 All Ck’s of a graph G can be listed in time O(k!! · nm(k−1)/2) if k is odd, or O(k!! ·mk/2) if k is221

even.222

4 Finding induced paths223

One can find a P3 in linear time since a graph contains a P3 if and only if it has a component that is not a clique.224

It is also known that finding a P4 (if one exists) in a graph can be done in linear time [4]. In this section, we give225

an algorithm for finding a Pk, k ≥ 5, that is better than the naı̈ve O(nk) algorithm. We first consider an auxiliary226

problem:227

Problem P1. Let a be a vertex of G and let B be a subset of V − {a}. Is there a P4 of the form abcd where228

b, c, d ∈ B?229

This problem can be answered in O(nm) time using the following approach: for each b ∈ N(a) and each230

cd ∈ E with b, c, d ∈ B, test if abcd is a P4. However, it is possible to achieve a more efficient algorithm for231

Problem P1 by computing certain components. In particular, if B′ is the subset of vertices in B that are not232

adjacent to a, then compute the components C1, C2, . . . , Ct for the subgraph of G induced by B′. The desired233

P4 exists if and only if there is a vertex b ∈ N(a) ∩ B that is adjacent to some but not all vertices of some Ci.234

The following provides a detailed explanation of how we efficiently test each b:235

B′ := B −N(a)
C1, C2, . . . , Ct := components of the subgraph of G induced by B′

initialize counters c1, c2, . . . , ct to 0
L := an empty list
for each b ∈ N(a) ∩B do

for each c ∈ N(b) ∩B′ do
j := index of component containing c
cj := cj + 1
if cj = 1 then add j to L

for each j ∈ L do
if cj < |Cj | then return “yes”
cj := 0
remove j from L

return “no”

The components can be computed in O(m) time and it is easy to maintain which component each vertex belongs236

to. The first nested for loop visits a unique edge bc, and the second nested for loop is executed at most the237

same number of times as the first for loop. Thus, the overall running time is O(m). Observe that if we did not238

maintain the list L , the second nested for loop could be altered to test if 0 < cj < |Cj | for each 1 ≤ j ≤ t.239

9

However, in the worst case there may be O(n) components and hence the running time would be O(n2). When240

the algorithm returns “yes”, we can produce a P4 as follows. Retrieve the current vertex b and component Cj . Let241

X , respectively, Y , be the set of vertices of Cj adjacent, respectively, non-adjacent, to b. Find an edge xy with242

x ∈ X , y ∈ Y . Since Cj is connected, such an edge exists. Then, abxy is the desired P4. The above discussion243

establishes the following theorem:244

Theorem 13 Problem P1 can be solved in O(m) time. 2245

Theorem 14 There is an O(m2) algorithm to find a P5 in a graph G if one exists.246

Proof. For each edge uv, we test if uv extends into a P5 of the form uvwxy or vuwxy for some vertices w, x, y.247

This is done by solving Problem P1 with a = v and B = V−N(u) (respectively, a = u and B = V−N(v)). 2248

Theorem 15 For k ≥ 5, a Pk, if one exists, can be found in a graph G in time249

(i) O(k!! ·m(k−1)/2) if k is odd,250

(ii) O(k!! · nm(k/2)−1) if k is even.251

Proof. We have seen the theorem holds for k = 5. Suppose k > 5. We list all Pk−3’s. For each of these paths,252

we test if it can be extended into a Pk. Consider a path v1v2 · · · vk−3. We test in time O(m) that this path can253

be extended into a Pk v1v2 · · · vk−3bcd by solving Problem P1 with a = vk−3 and B = V − (N(v1) ∪N(v2) ∪254

. . . ∪N(vk−4)). Using the bound to list all Pk−3’s given in Theorem 1, the result follows. 2255

4.1 A note on finding C4 and C5256

The purpose of this section is to show that finding C4 and C5 are related to finding certain P4’s in a graph. It is257

known a Ck, k ≥ 4, can be found in O(nk−3+α) time [12]. In particular, a C4, respectively, C5, can be found258

in O(n3.376), respectively, O(n4.376), time. Intuitively, finding a Ck (respectively, Pk) should be at least as hard259

as finding a Ck−1 (respectively, Pk−1), for k ≥ 4. But this seems to be a challenging problem. We do not even260

have a solution in the case k = 4. We will show that finding a C5 is at least as hard as finding a triangle. First,261

consider the following262

Problem P2. Let the vertices of a graphG be partitioned into two setsA,B. Is there a P4 of the form abcd where263

a, d ∈ A, and b, c ∈ B?264

We can find a C5 as follows: For each vertex x, define A = N(x), B = V − A− {x}. Then x belongs to a265

C5 if and only if Problem P2 has a positive answer on the sets A,B. So, if we can solve Problem P2 in O(n3)266

time, then we can find a C5 in O(n4) time.267

Theorem 16 If there is an f(n,m)-time algorithm for Problem P2, then there is an O(n2 + f(n,m))- time268

algorithm to find a C4.269

Proof. Let G be an instance of the problem of finding a C4. We will construct an instance H of Problem P2. Let270

B be a copy of G and A be a copy of the complement of G. For a vertex x ∈ A and a vertex y ∈ B, add the edge271

10

xy if x = y (x and y are the same vertex in G), or xy is an edge in G. Suppose G contains a C4 abcd. Then H272

contains a P4 abcd with a, d ∈ A, b, c ∈ B (actually, H contains four such P4’s). Now, suppose H contains a273

P4 abcd with a, d ∈ A, b, c ∈ B. a and b cannot be the same vertex in G, for otherwise a would be adjacent to c274

in H , a contradiction. Similarly, c and d are different vertices in G. Thus, G contains the C4 abcd. 2275

The above shows it will be difficult to solve Problem P2 in O(n3) time since finding a C4 in O(n3) time is276

a well-known open problem. Can we prove that finding a C5 is at least as hard as finding a C4? Consider the277

following problem:278

Problem P3. Given a graph G and a vertex x. Is there a C5 of G containing x?279

Note that Problems P2 and P3 are linear-time equivalent.280

Theorem 17 If there is an f(n,m)-time algorithm for Problem P3, then there is an O(n2 + f(n,m))- time281

algorithm to find a triangle.282

Proof. Given G with vertex set V = {1, 2, . . . , n}, construct H as follows. Make four copies H1, H2, H3, H4283

of V . For t = 1, 2, 3, and for vertices i ∈ Ht, j ∈ Ht+1, if ij is an edge of G, then add the edge between the284

copy of i ∈ Ht and the copy of j ∈ Ht+1. For vertices i ∈ H1, j ∈ H4, i 6= j, add the edge between the copy of285

i ∈ H1 and j ∈ H4. Observe that the graph constructed so far is bipartite. Add a vertex x adjacent to all vertices286

in H1 ∪H4. Call the resulting graph H .287

Suppose there is a C5 = xpqrs containing x in H . It is easy to see that each of {p, q, r, s} is in a distinct288

Hi. Without loss of generality, we may assume p ∈ H1, s ∈ H4. p and s must be copy of the same vertex of G.289

Therefore, p, q, r form a triangle in G.290

Suppose G contains a triangle pqr. Then H contains the C5 xpqrp. 2291

Note that in the above proof, any C5 of H must contain x. So, testing for a C5 is at least as hard as testing292

for a triangle. Now, one may want to prove the converse of Theorem 16. But this would mean that finding a C4293

is at least as hard as finding a triangle, which is a long-standing open problem.294

A modification of the construction in [12] shows that deciding whether there is a C5 containing a given edge295

can be solved in O(nα) time. Therefore Problem P3 can be solved in time O(nα+1) by testing, for each edge296

incident to x, if there is a C5 containing it.297

5 Applications298

The ability to recognize whether or not a graph G belongs to a class C has been widely studied for many graph299

classes. Many classes of graphs, including chordal graphs, strongly chordal graphs, quasi-triangulated graphs300

and brittle graphs have particular “special vertices” that can be used to solve the recognition problem. For such a301

class C and its corresponding special vertex definition, the following generic approach can be used to determine302

if G belongs to C:303

11

L:= list of “special vertices”
while L not empty do

remove a vertex v from L
remove v from G
update L

if G is empty then return G ∈ C
return G /∈ C

The overall running time of this approach is dependent on the time to initialize and update L. For quasi-304

triangulated graphs and brittle graphs, we will use listings of appropriate Pk’s that will optimize these steps.305

5.1 Recognizing quasi-triangulated graphs306

For quasi-triangulated graphs, the “special vertices” are those that are either simplicial (not a middle vertex of307

any P3) or co-simplicial (not an isolated vertex in any co-P3). Using the generic recognition algorithm, we can308

optimize the initialization and maintenance of these special vertices as follows:309

. List and store all P3’s and co-P3’s in a table T ,310

. for each vertex v let Q[v] be a list of pointers to all items in T containing v,311

. for each vertex v let mid[v] hold the number of P3 with v as a midpoint312

. for each vertex v let iso[v] hold the number of co-P3 with v as the isolated vertex313

. store all special vertices v (those with mid[v] = 0 or iso[v] = 0) in a list L.314

While constructing the table T it is easy to update the values for Q, mid, and iso in constant time per table315

element. Observe that this pre-computation runs in time proportional to the time it takes to list the P3’s and316

co-P3’s. To maintain these data structures as a special vertex s is removed from L andG, remove all the elements317

from T pointed to by any element of Q[s]. When removing a P3 avb, the value mid[v] is decremented; when318

removing a co-P3 with v as the isolated vertex, the value iso[v] is decremented. If eithermid[v] = 0 or iso[v] = 0319

after an update, insert v into L. Observe that each item in T is removed at most once, and thus quasi-triangulated320

graphs can be recognized in the time it takes to list all P3’s and co-P3’s. Thus, Theorem 3 leads to the following321

result:322

Theorem 18 There is a O(n+m+ p3(G)+ co-p3(G)) algorithm to recognize quasi-triangulated graphs. 2323

The above result gives a time bound for recognition of quasi-triangulated graphs that is incomparable to324

the bound of O(n2.77) given in [13]. We now mention a specific class of graphs for which Theorem 18’s time325

bound is better than O(n2.77). Consider the class Pn of induced paths on n vertices. With n and m being the326

number of respectively vertices and edges of Pn, we have m = O(n), p3(Pn) = O(n), co-p3(D) = O(n2). So,327

Theorem 18’s time bound of O(n2) is better than O(n2.77).328

5.2 Recognizing brittle graphs329

The following simple approach, which is folklore ([11], page 31), can be used to recognize brittle graphs:330

12

If there exists a soft vertex, remove it. Repeat this process until there is no soft vertex or the graph is331

empty. If the graph is empty, the original graph was brittle; otherwise, it was not brittle.332

The key to this algorithm is to detect soft vertices. The following method uses significant pre-computation:333

. List and store all P4’s in a table,334

. for each vertex v let Q[v] be a list of pointers to all the P4’s containing v,335

. for each vertex v let mid[v] hold the number of P4’s with v as a midpoint,336

. for each vertex v let end[v] hold the number of P4’s with v as an endpoint,337

. store all soft vertices v (those with mid[v] = 0 or end[v] = 0) in a list L.338

While computing the P4’s, it is easy to update the values for Q, mid and end in constant time per P4. Observe339

that this pre-computation runs in time proportional to the time it takes to list the P4’s. To maintain these data340

structures as a soft vertex s is removed from L and the graph, remove all the P4’s pointed to by any element of341

Q[s] from the table. When removing a P4, the values mid[u], end[u] are updated for each u (not equal to s) in342

the P4. If u becomes soft, it is inserted into L. Observe that each P4 is removed at most once, and thus brittle343

graphs can be recognized in the time it takes to list all P4’s. The results from Section 3 lead to the following three344

theorems:345

Theorem 19 A brittle graph G can be recognized in O(m1.5 + n · p3(G)) time. 2346

Theorem 20 A brittle graph G can be recognized in O(nm+ p4(G) + paw(G)) time. 2347

Theorem 21 A brittle graph G can be recognized in O(nm+ p4(G) + c4(G)) time. 2348

The above results give time bounds for recognition of brittle graphs that are incomparable to the bounds349

of O(n3.376) or O(n3 log n log n) given in [6], and the bound O(m2) given in [11]. Consider the class Pn of350

induced paths on n vertices. With n and m being the number of respectively vertices and edges of Pn, we have351

m = O(n), p3(Pn) = O(n), p4(Pn) = O(n), paw(Pn) = 0, c4(Pn) = 0. So the bounds of Theorems 19, 20, 21352

are O(n2) which is better than those of [6, 11].353

6 Open Problems354

In our discussion, we have mentioned the following 3 open problems:355

1. Does there exist an algorithm that runs in time O(n3 + p4(G)) to list all P4’s for an arbitrary graph G?356

2. Is finding a C5 at least as hard as finding a C4 in an arbitrary graph G?357

3. Is finding a C4 at least as hard as finding a C3 in an arbitrary graph G?358

The last question is a long-standing open problem.359

13

References360

[1] N. Alon, R Yuster, U. Zwick, Finding and counting given length cycles, Algorithmica 17 (1997) 209–223.361

[2] V. Chvátal, Perfectly orderable graphs, in: C. Berge, V. Chvátal, Topics in Perfect Graphs, Annals of362

Discrete Mathematics, 21 (1984), Amsterdam: North-Holland, pp. 63–68.363

[3] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Com-364

putation 9:3 (1990) 251–280.365

[4] D. G. Corneil, Y. Perl, L. K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Com-366

puting 14 (1985) 926–934.367

[5] E. M. Eschen, C. T. Hoàng, J. P. Spinrad, R. Sritharan, On graphs without a C4 or a diamond, to appear in368

Discrete Applied Mathamatics 159(7) (2011) 581–587.369

[6] E. M. Eschen, J. L. Johnson, J. P. Spinrad, R. Sritharan, Recognition of some classes of perfectly orderable370

graphs, Discrete Applied Mathamatics 128 (2003) 355–373.371

[7] I. Gorgos, C. Hoàng, V. Voloshin, A note on quasi-triangulated graphs, SIAM J. Discrete Math. 20:3 (2006)372

597–602.373

[8] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.374

[9] C. T. Hoàng. Perfectly orderable graphs: a survey. In: Perfect Graphs. J. L. Ramirez-Alfonsin and B. A.375

Reed (Editors), pp 145–169. Wiley, 2001.376

[10] M. Middendorf, F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Math.377

80 (1990) 327–33.378

[11] A. A. Schäffer, Recognizing brittle graphs: remarks on a paper of Hoàng and Khouzam, Discrete Applied379

Mathematics 31 (1991) 29–35.380

[12] J. P. Spinrad, Finding large holes, Information Processing Letters 39 (1991) 227–229.381

[13] J. P. Spinrad, Recognizing quasi-triangulated graphs, Discrete Applied Mathematics 139 (2004) 203–213.382

[14] Virginia Vassilevska Williams, Breaking the Coppersmith-Winograd barrier, http://www.cs.383

berkeley.edu/∼virgi/matrixmult.pdf384

14

