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Abstract
An orientable sequence of order n is a cyclic binary sequence such that each length-n substring appears at most once in either direction.
Maximal length orientable sequences are known only for n ≤ 7, and a trivial upper bound on their length is 2n−1 − 2⌊(n−1)/2⌋. This
paper presents the first efficient algorithm to construct orientable sequences with asymptotically optimal length; more specifically,
our algorithm constructs orientable sequences via cycle-joining and a successor-rule approach requiring O(n) time per symbol and
O(n) space. This answers a longstanding open question from Dai, Martin, Robshaw, Wild [Cryptography and Coding III (1993)]. Our
sequences are applied to find new longest-known orientable sequences for n ≤ 20.
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2 Orientable sequences

1 Introduction

Orientable sequences were introduced by Dai, Martin, Robshaw, and Wild [6] with applications related to robotic position
sensing. In particular, consider an autonomous robot with limited sensors. To determine its location on a cyclic track
labeled with black and white squares, the robot scans a window of n squares directly beneath it. For the position and
orientation to be uniquely determined, the track must designed with the property that each length n window can appear at
most once in either direction. A cyclic binary sequence (track) with such a property is called an orientable sequence of
order n (an OS(n)). By this definition, an orientable sequence does not contain a length-n substring that is a palindrome.

Example 1 Consider S = 001011. In the forward direction, including the wraparound, S contains the six 5-tuples
00101, 01011, 10110, 01100, 11001, and 10010; in the reverse direction S contains 11010, 10100, 01001, 10011,
00110, and 01101. Since each substring is unique, S is an OS(5) with length (period) six.

Orientable sequences do not exist for n < 5, and somewhat surprisingly, the maximum length Mn of an OS(n) is
known only for n = 5, 6, 7. Since the number of palindromes of length n is 2⌊(n+1)/2⌋, a trivial upper bound on Mn is
(2n − 2⌊(n+1)/2⌋)/2 = 2n−1 − 2⌊(n−1)/2⌋.

In addition to providing a tighter upper bound, Dai, Martin, Robshaw, and Wild [6] provide a lower bound on Mn by
demonstrating the existence of OS(n)s via cycle-joining with length Ln (defined in Section 1.1) asymptotic to their upper
bound. They conclude by stating the following open problem relating to orientable sequences whose lengths (periods)
attain the lower bound. See Section 1.1 for the explicit upper and lower bounds.

We note that the lower bound on the maximum period was obtained using an existence construction . . . It is an
open problem whether a more practical procedure exists for the construction of orientable sequences that have this
asymptotically optimal period.

Recently, some progress was made in this direction by Mitchell and Wild [25]. They apply Lempel’s lift [22] to obtain
an OS(n) recursively from an OS(n−1). This construction can generate orientable sequences in O(1)-amortized time per
symbol; however, it requires exponential space, and there is an exponential time delay before the first bit can be output.
Furthermore, they state that their work “only partially answer the question, since the periods/lengths of the sequences
produced are not asymptotically optimal.”

Main result: By developing a parent rule to define a cycle-joining tree, we construct an OS(n) of length Ln in O(n)
time per bit using O(n) space.

Outline. In Section 1.1, we review the lower bound Ln and upper bound Un from [6]. In Section 2, we present necessary
background definitions and notation, including a review of the cycle-joining technique. In Section 3, we provide a
parent rule for constructing a cycle-joining tree composed of “reverse-disjoint” cycles. This leads to our O(n) time
per bit construction of orientable sequences of length Ln. In Section 4 we discuss the algorithmic techniques used to
extend our constructed orientable sequences to find longer ones for n ≤ 20. We conclude in Section 5 with a summary
of our results and directions for future research. An implementation of our construction is available for download at
http://debruijnsequence.org/db/orientable.

http://debruijnsequence.org/db/orientable
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1.1 Bounds on Mn

Dai, Martin, Robshaw, and Wild [6] gave a lower bound Ln and an upper bound Un on the maximum length Mn of an
OS(n).1 Their lower bound Ln is the following, where µ is the Möbius function:

Ln =

2n−1 − 1
2

∑
d|n

µ(n/d)n

d
H(d)

 , where H(d) = 1
2
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i
(
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2 ⌋ + 2⌊ i
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)

.

Their upper bound Un is the following:1

Un =


2n−1 − 41

9 2 n
2 −1 + n

3 + 16
9 if n mod 4 = 0,

2n−1 − 31
9 2 n−1

2 + n
3 + 19

9 if n mod 4 = 1,
2n−1 − 41

9 2 n
2 −1 + n

6 + 20
9 if n mod 4 = 2,

2n−1 − 31
9 2 n−1

2 + n
6 + 43

18 if n mod 4 = 3.

These bounds are calculated in Table 1 for n up to 20. This table also illustrates the length Rn of the OS(n) produced by
the recursive construction by Mitchell and Wild [25], starting from an initial orientable sequence of length 80 for n = 8.
The column labeled L∗

n indicates the longest known orientable sequences we discovered by applying a combination of
techniques (discussed in Section 4) to our orientable sequences of length Ln.

n Rn Ln L∗
n Un

5 - 0 6 6
6 - 6 16 17
7 - 14 36 40
8 80 48 92 96
9 161 126 174 206

10 322 300 416 443
11 645 682 844 918
12 1290 1530 1844 1908
13 2581 3276 3700 3882
14 5162 6916 7694 7905
15 10325 14520 15394 15948
16 20650 29808 31483 32192
17 41301 61200 63135 64662
18 82602 124368 128639 129911
19 165205 252434 257272 260386
20 330410 509220 519160 521964

Table 1 Lower bounds Rn, Ln, L∗
n and upper bound Un for Mn.

1.2 Related work

Recall the problem of determining a robot’s position and orientation on a track. Suppose now that we allow the track to
be non-cyclic. That is, the beginning of the track and the end of the track are not connected. Then the corresponding
sequence that allows one to determine orientation and position is called an aperiodic orientable sequence. One does not

1 These bounds correspond to L̃n and Ũn, respectively, as they appear in [6].



4 Orientable sequences

consider the substrings in the wraparound for this variation of an orientable sequence. Note that one can always construct
an aperiodic OS(n) from a cyclic OS(n) by taking the cyclic OS(n) and appending its prefix of length n−1 to the end.
See the paper by Burns and Mitchell [4] for more on aperiodic orientable sequences, which they call aperiodic 2-orientable
window sequences. Alhakim et al. [2] generalize the recursive results of Mitchell and Wild [25] to construct orientable
sequences over an alphabet of arbitrary size k ≥ 2; they also generalize the upper bound, by Dai et al. [6], on the length of
an orientable sequence. Rampersad and Shallit [26] showed that for every alphabet size k ≥ 2 there is an infinite sequence
such that for every sufficiently long substring, the reversal of the substring does not appear in the sequence. Fleischer and
Shallit [11] later reproved the results of the previous paper using theorem-proving software. See [5, 23] for more work on
sequences avoiding reversals of substrings.

2 Preliminaries

Let B(n) denote the set of all length-n binary strings. Let α = a1a2 · · · an ∈ B(n) and γ = g1g2 · · · gm ∈ B(m) for some
m, n ≥ 0. Throughout this paper, we assume 0 < 1 and use lexicographic order when comparing two binary strings. More
specifically, we say that α < γ either if α is a prefix of γ or if ai < gi for the smallest i such that ai ̸= gi. The weight
(density) of a binary string is the number of 1s in the string. Let ai denote the complement of bit ai. Let αR denote the
reversal an · · · a2a1 of α; α is a palindrome if α = αR. For j ≥ 1, let αj denote j copies of α concatenated together. If
α = βj for some non-empty string β and some j > 1, then α is said to be periodic2; otherwise, α is said to be aperiodic3.
A necklace class is an equivalence class of strings under rotation; let [α] denote the set of strings in α’s necklace class. We
say α is a necklace if it is the lexicographically smallest string in [α]. Let N(n) denote the set of length-n necklaces. A
bracelet class is an equivalence class of strings under rotation and reversal; let ⟨α⟩ denote the set of strings in α’s bracelet
class. Thus, ⟨α⟩ = [α] ∪ [αR]. We say α is a bracelet if it is the lexicographically smallest string in ⟨α⟩.

A necklace α is palindromic if it belongs to the same necklace class as αR, i.e., both α and αR belong to [α]. By this
definition, a palindromic necklace is necessarily a bracelet. If a necklace or bracelet is not palindromic, it is said to be
apalindromic. Let A(n) denote the set of all apalindromic bracelets of order n. Table 2 lists all 60 necklaces of length
n = 9 partitioned into apalindromic necklace pairs and palindromic necklaces. The apalindromic necklace pairs belong
to the same bracelet class, and the first string in each pair is an apalindromic bracelet. Thus, |A(9)| = 14. In general,
|A(n)| is equal to the number of necklaces of length n minus the number of bracelets of length n; for n = 6, 7, . . . 15, this
sequence of values |A(n)| is given by 1, 2, 6, 14, 30, 62, 128, 252, 495, 968 and it corresponds to sequence A059076 in
The On-Line Encyclopedia of Integer Sequences [31]. Apalindromic bracelets have been studied previously in the context
of efficiently ranking/unranking bracelets [1]. One can test whether a string is an apalindromic bracelet in linear time using
linear space; see Theorem 1.

▶ Theorem 1. One can determine whether a string α is in A(n) in O(n) time using O(n) space.

Proof. A string α will belong to A(n) if α is a necklace and the necklace of [αR] is lexicographically larger than α. These
tests can be computed in O(n) time using O(n) space [3]. ◀

▶ Lemma 2. A necklace α is palindromic if and only if there exists palindromes β1 and β2 such that α = β1β2.

Proof. Suppose α is a palindromic necklace. By definition, it is equal to the necklace of [αR]. Thus, there exist strings
β1 and β2 such that α = β1β2 = (β2β1)R = βR

1 βR
2 . Therefore, β1 = βR

1 and β2 = βR
2 , which means β1 and β2 are

palindromes. Suppose there exists two palindromes β1 and β2 such that α = β1β2. Since β1 and β2 are palindromic, we
have that αR = (β1β2)R = βR

2 βR
1 = β2β1. So α belongs to the same necklace class as αR and hence is palindromic. ◀

▶ Corollary 3. If α = 0sβ is a palindromic bracelet such that the string β begins and ends with 1 and does not contain
0s as a substring, then β is a palindrome.

2 Periodic strings are sometimes called powers in the literature. The term periodic is sometimes used to denote a string of the form (αβ)iα
where α is non-empty, β is possibly empty, and i ≥ 1.

3 Aperiodic strings are sometimes called primitive in the literature.

https://oeis.org/A059076
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Apalindromic necklace pairs Palindromic necklaces
000001011 , 000001101 000000000 000100011 001110111
000010011 , 000011001 000000001 000101101 001111111
000010111 , 000011101 000000011 000110011 010101011
000100101 , 000101001 000000101 000111111 010101111
000100111 , 000111001 000000111 001001001 010111111
000101011 , 000110101 000001001 001001111 011011011
000101111 , 000111101 000001111 001010011 011011111
000110111 , 000111011 000010001 001010101 011101111
001001011 , 001001101 000010101 001011101 011111111
001010111 , 001110101 000011011 001100111 111111111
001011011 , 001101101 000011111 001101011
001011111 , 001111101
001101111 , 001111011
010110111 , 010111011

Table 2 A listing of all 60 necklaces in N(9) partitioned into apalindromic necklace pairs and palindromic necklaces. The first
column of the apalindromic necklaces corresponds to the 14 apalindromic bracelets A(9).

2.1 Cycle-joining

Given S ⊆ B(n), a universal cycle U for S is a cyclic sequence of length |S| that contains each string in S as a substring
(exactly once). Thus, an orientable sequence is a universal cycle. If S = B(n) then U is known as a de Bruijn sequence.
Given a universal cycle U for S, a UC-successor for U is a function f : S → {0, 1} such that f(α) is the symbol following
α in U .

Cycle-joining is perhaps the most fundamental technique applied to construct universal cycles; for some applications,
see [8, 9, 10, 12, 14, 16, 17, 29, 30]. If S is closed under rotation, then it can be partitioned into necklace classes (cycles);
each cycle is disjoint. Let α = a1a2 · · · an and α̂ = a1a2 · · · an; we say (α, α̂) is a conjugate pair. Two disjoint cycles can
be joined if they each contain one string of a conjugate pair as a substring. This approach resembles Hierholzer’s algorithm
to construct an Euler cycle in an Eulerian graph [15].

Example 2 Consider disjoint subsets S1 = [011111] ∪ [001111] and S2 = [010111] ∪ [010101]. Then U1 =
110011110111 is a universal cycle for S1 and U2 = 01010111 is a universal cycle for S2. Since (110111, 010111) is
a conjugate pair, U = 110011110111 · 01010111 is a universal cycle for S1 ∪ S2.

If all necklace cycles can be joined via conjugate pairs to form a cycle-joining tree, then the tree defines a universal U for S
with a corresponding UC-successor (see Section 3 for an example).

For most universal cycle constructions, a corresponding cycle-joining tree can be defined by a rather simple parent rule.
For example, when S = B(n), the following are perhaps the simplest parent rules that define how to construct cycle-joining
trees with nodes corresponding to N(n) [13, 27].

Last-0: rooted at 1n and the parent of every other node α ∈ N(n) is obtained by flipping the last 0.
First-1: rooted at 0n and the parent of every other node α ∈ N(n) is obtained by flipping the first 1.
Last-1: rooted at 0n and the parent of every other node α ∈ N(n) is obtained by flipping the last 1.
First-0: rooted at 1n and the parent of every other node α ∈ N(n) is obtained by flipping the first 0.

These rules induce the cycle-joining trees T1, T2, T3, T4 illustrated in Figure 1 for n = 6. Note that for T3 and T4, the
parent of a node α is obtained by first flipping the highlighted bit and then rotating the string to its lexicographically least
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rotation to obtain a necklace. Each node α and its parent β are joined by a conjugate pair, where the highlighted bit in α is
the first bit in one of the conjugates. For example, the nodes α = 011011 and β = 001011 in T2 from Figure 1 are joined
by the conjugate pair (110110, 010110).

111111

011111

001111 010111 011011

001011 001101 010101000111

000011 000101 001001

000001

000000

T1: Last 0

000000

000001

000011000101001001

000111001011001101010101

001111010111011011

011111

111111

T2: First 1

T3: Last 1 T4: First 0

111111

011111

011011 010111 001111

000111

000011

000001

000000

001011010101001101

000101001001

000000

000001

000011

000111

001111

011111

111111

011011

001101

000101 001001

001011 010101

010111

Figure 1 Cycle-joining trees for B(6) from simple parent rules.

3 An efficient cycle-joining construction of orientable sequences

Consider the set of apalindromic bracelets A(n) = {α1, α2, . . . , αt}. Recall, that each palindromic bracelet is a necklace.
Let S(n) = [α1] ∪ [α2] ∪ · · · ∪ [αt]. From [6], we have |S(n)| = Ln. By its definition, there is no string α ∈ S(n) such
that αR ∈ S(n). Thus, a universal cycle for S(n) is an OS(n). For the rest of this section, assume n ≥ 8.

To construct a cycle-joining tree with nodes A(n), we apply a combination of three of the four simple parent rules
described in the previous section. First, we demonstrate that there is no such parent rule, using at most two rules in
combination. Observe, there are no necklaces in A(n) with weight 0, 1, 2, n−2, n−1, or, n. Thus, 0n−41011 and
0n−510011 are both necklaces in A(n) with minimal weight three. Similarly, 00101n−4 and 001101n−5 are necklaces in
A(n) with maximal weight n−3. Therefore, when considering a simple parent rule for a cycle-joining tree with nodes
A(n), the rule must be able to flip a 0 to a 1, or a 1 to a 0, i.e., the rule must include one of First-0 or Last-0, and one of
First-1 and Last-1.

Let α = a1a2 · · · an denote a necklace in A(n); it must begin with 0 and end with 1. Then let
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first1(α) be the necklace a1 · · · ai−10ai+1 · · · an, where i is the index of the first 1 in α;
last1(α) be the necklace of [a1a2 · · · an−10];
first0(α) be the necklace of [1a2 · · · an];
last0(α) be the necklace a1 · · · aj−11aj+1 · · · an, where j is the index of the last 0 in α.

Note that first1(α) and last0(α) are necklaces (easily observed by definition) obtained by flipping the i-th and j-th bit in
α, respectively; last1(α) and first0(α) are the result of flipping a bit and rotating the resulting string to obtain a necklace.
The next example illustrates that no two of the simple parent rules can be applied in combination to obtain a spanning tree
with nodes in A(n).

Example 3 Suppose p(α) is a parent rule that applies a combination of the four simple parent rules to construct a
cycle-joining tree with nodes A(n). The following examples are for n = 10 but generalize to larger n. In both cases,
we see that at least three of the simple parent rules must be applied in p.

Suppose p does not use First-0; it must apply Last-0. Consider three apalindromic bracelets in A(10):
α1 = 0000001011, α2 = 0000010111, and α3 = 0011001011. Clearly, first1(α1), last1(α1), and last0(α1)
are palindromic. Thus, α1 must be the root. Both first1(α2) and last0(α2) are palindromic; thus, p must apply Last-1.
Note last0(α3) is palindromic and last1(α3) = 0001100101 is not a bracelet; thus, p must apply First-1.

Suppose p does not use Last-0; it must apply First-0. Consider three apalindromic bracelets in A(10):
β1 = 0000100011, β2 = 0001001111, and β3 = 0001100111. Clearly, first1(β1), last1(β1), and first0(β) are
palindromic. Thus, β1 must be the root. Both first1(β2) and first0(β2) are palindromic; thus, p must apply Last-1.
Both last1(β3) and first0(β3) are palindromic; thus, p must apply First-1.

Let rn denote the apalindromic bracelet 0n−41011.

Parent rule for cycle-joining A(n): Let rn be the root. Let α denote a non-root node in A(n). Then

par(α) =

 first1(α) if first1(α) ∈ A(n);
last1(α) if first1(α) /∈ A(n) and last1(α) ∈ A(n);
last0(α) otherwise.

(1)

▶ Theorem 4. The parent rule par(α) in (1) induces a cycle-joining tree with nodes A(n) rooted at rn.

Let Tn denote the cycle-joining tree with nodes A(n) induced by the parent rule in (1); Figure 2 illustrates T9. The proof
of Theorem 4 relies on the following lemma.

▶ Lemma 5. Let α ̸= rn be an apalindromic bracelet in A(n). If neither first1(α) nor last1(α) are in A(n), then the
last 0 in α is at index n−2 or n−1, and both last0(α) and last1(last0(α)) are in A(n).

Proof. Since α is an apalindromic bracelet, it must have the form α = 0s1β01v where s, v ≥ 1 and β0 does not contain
0s+1 as a substring. Furthermore, 1β01v < (1β01v)R, which implies β01v−1 < (β01v−1)R.
Suppose v > 2. Since last1(α) = 0s+11β01v−1 is not an apalindromic bracelet, we have 1β01v−1 ≥ (1β01v−1)R.
Thus, β begins with 1. Since first1(α) = 0s+1β01v is not an apalindromic bracelet, Lemma 2 implies β01v ≥ (β01v)R,
contradicting the earlier observation that β01v−1 < (β01v−1)R. Thus, the last 0 in α is at index n−2 or n−1.
Suppose v = 1 or v = 2. Let j be the index of the last 0 in α. Since α is a bracelet, it is straightforward to see that
last0(α) = a1 · · · an is also a bracelet. If it is palindromic, Lemma 2 implies there exists an index i such that β1 = a1 · · · ai

and β2 = ai+1 · · · an are both palindromes. However, flipping aj to 0 to obtain α implies that α is greater than or equal to
the necklace in [αR], contradicting the assumption that α is an apalindromic bracelet. Thus, last0(α) is an apalindromic
bracelet.
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000100101

000010011

000001011

000100111

000010111 000101011 001001011

000101111

001011011

000110111001010111

001011111 001101111 010110111

Figure 2 The cycle-joining tree T9. The black edges indicate that par(α) = first1(α); the blue edges indicate that par(α) =
last1(α); the red edges indicate that par(α) = last0(α).

Consider last1(last0(α)) = 0s+11β1v. Let β = b1b2 · · · bm. Suppose that m = 0. Then last1(last0(α)) =
0s+11v+1 =⇒ last0(α) = 0s1v+1. Since v = 1 or v = 2, we have that last0(α) = 0s11 or last0(α) = 0s111. Now
α is the result of flipping one of the 1s in last0(α) to a 0 and performing the appropriate rotation. But in every case,
we end up with α being a palindromic necklace, a contradiction. Thus, assume m ≥ 1. Suppose β = 1m. Then, α

is not an apalindromic bracelet, a contradiction. Suppose β = 0m. If v = 1, then α is palindromic, a contradiction;
if v = 2 then last1(last0(α)) = 0s+110m11 which is in A(n). For all other cases, β contains at least one 1 and at
least one 0; m ≥ 2. Since β does not contain 0s+1 as a substring, by Lemma 2, we must show that (i) b1 · · · bm1v−1

is less than its reversal 1v−1bm · · · b1, recalling that (ii) b1 · · · bm01v−1 is less than its reversal 1v−10bm · · · b1. Let ℓ

be the largest index of β such that bℓ = 1. Then bℓ+1 · · · bm = 0m−ℓ; note that bℓ+1 · · · bm is the empty string when
ℓ = m. Suppose v = 1. From (ii), b1 = 0. By (ii) we have b2 · · · bℓ−110m−ℓ < 0m−ℓ1bℓ−1 · · · b2. But this implies
that b2 · · · bm−ℓ+1 = 0m−ℓ. Therefore, we have b1 · · · bm = 0m−ℓ+1bm−ℓ+2 · · · bm < 0m−ℓ1bℓ−1 · · · b1 = bm · · · b1, hence
(i) is satisfied. Suppose v = 2. If b1 = 0, then (i) is satisfied. Otherwise b1 = 1 and from (ii) b2 = 0. From (ii), we
get that b3 · · · bℓ−110m−ℓ < 0m−ℓbℓ−1 · · · b3. This inequality implies that b3 · · · bm−ℓ+2 = 0m−ℓ. Therefore, we have
b1 · · · bm1 = 10m−ℓ+1bm−ℓ+3 · · · bm1 < 10m−ℓ1bℓ−1 · · · b1 = 1bm · · · b1, hence (i) is satisfied. Thus, last1(last0(α)) is
an apalindromic bracelet. ◀

Proof of Theorem 4. Let α be an apalindromic bracelet in A(n) \ {rn}. We demonstrate that the parent rule par from (1)
induces a path from α to rn, i.e., there exists an integer j such that parj(α) = rn. Note that rn is the lexicographically
smallest apalindromic bracelet of order n. By Lemma 5, par(α) ∈ A(n). In the first two cases of the parent rule,
par(α) is lexicographically smaller than α. If the third case applies, let α = 0s1β. From Lemma 5, last1(last0(α))
is an apalindromic bracelet. Thus, par(par(α)) is either first1(last0(α)) or last1(last0(α)); in each case the resulting
apalindromic bracelet has 0s+1 as a prefix and is therefore lexicographically smaller than α. Therefore, the parent rule
induces a path from α to rn.

3.1 A successor rule

Each application of the parent rule par(α) in (1) corresponds to a conjugate pair. For instance, consider the apalindromic
bracelet α = 000101111. The parent of α is obtained by flipping the last 1 to obtain 000101110 (see Figure 2). The
corresponding conjugate pair is (100010111, 000010111). Let C(n) denote the set of all strings belonging to a conjugate
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pair in the cycle-joining tree Tn. Then the following is a UC-successor for an OS(n):

f(α) =
{

a1 if α ∈ C(n);
a1 otherwise.

For example, if C(9) corresponds to the conjugate pairs to create the cycle-joining tree T9 shown in Figure 2, then the
corresponding universal cycle is:

000001011111001011011001011110011011110001011100101011100011011
101011011100001001110001001010001001100001011001001011000101011,

where the two underlined strings belong to the conjugate pair (100010111, 000010111). In general, this rule requires
exponential space to store the set C(n). However, in some cases, it is possible to test whether a string is in C(n) without
pre-computing and storing C(n). In our UC-successor for an OS(n), we use Theorem 1 to avoid pre-computing and
storing C(n), thereby reducing the space requirement from exponential in n to linear in n.

Successor-rule g to construct an OS(n) of length Ln

Let α = a1a2 · · · an ∈ S(n) and let

β1 = 0n−i1a2 · · · ai where i is the largest index of α such that ai = 1 (first 1);
β2 = a2a3 · · · an1 (last 1);
β3 = ajaj+1 · · · an01j−2 where j is the smallest index of α such that aj = 0 and j > 1 (last 0).

Let

g(α) =


a1 if β1 and first1(β1) are in A(n);
a1 if β2 and last1(β2) are in A(n), and first1(β2) is not in A(n);
a1 if β3 and last0(β3) are in A(n), and neither first1(β3) nor last1(β3) are in A(n);
a1 otherwise.

Starting with any string in α ∈ S(n), we can repeatedly apply g(α) to obtain the next bit in a universal cycle for S(n).

▶ Theorem 6. The function g is a UC-successor for S(n) and generates an OS(n) with length Ln in O(n)-time per bit
using O(n) space.

Proof. Consider α = a1a2 · · · an ∈ S(n). If α belongs to some conjugate pair in Tn, then it must satisfy one of three
possibilities stepping through the parent rule in 1:

Both β1 and first1(β1) must be in A(n). Note, β1 is a rotation of α when a1 = 1, where a1 corresponds to the first
one in β1.

Both β2 and last1(β2) must both be in A(n), but additionally, first1(β2) can not be in A(n). Note, β2 is a rotation of
α when a1 = 1, where a1 corresponds to the last one in β2.

Both β3 and last0(β3) must both be in A(n), but additionally, both first1(β3) and last1(β3) can not be in A(n). Note,
β3 is a rotation of α when a1 = 0, where a1 corresponds to the last zero in β3.

Thus, g is a UC-successor for S(n) and generates a cycle of length |S(n)| = Ln. By Theorem 1, one can determine
whether a string is in A(n) in O(n) time using O(n) space. Since there are a constant number of tests required by each
case of the UC-successor g, the corresponding OS(n) can be computed in O(n)-time per bit using O(n) space.

◀
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4 Extending orientable sequences

The values from the column labeled L∗
n in Table 1 were found by extending an OS(n) of length Ln constructed in the

previous section. Given an OS(n), o1 · · · om, the following approaches were applied to find longer OS(n)s for n ≤ 20:

1. For each index i, apply a standard backtracking search to see whether oi · · · omo1 · · · oi−1 can be extended to a longer
OS(n). We followed several heuristics: (a) find a maximal length extension for a given i, and then attempt to extend
starting from index i + 1; (b) find a maximal length extension over all i, then repeat; (c) find the “first” possible
extension for a given i, and then repeat for the next index i + 1. In each case, we repeat until no extension can be found
for any starting index. This approach was fairly successful for even n, but found shorter extensions for n odd. Steps (a)
and (b) were only applied to n up to 14 before the depth of search became infeasible.

2. Refine the search in the previous step so the resulting OS(n) of length m′ has an odd number of 1s and at most one
substring 0n−4. Then we can apply the recursive construction by Mitchell and Wild [25] to generate an OS(n + 1)
with length 2m′ or 2m′ + 1. Then, starting from the sequences generated by recursion, we again apply the exhaustive
search to find minor extensions (the depth of recursion is significantly reduced). This approach found significantly
longer extensions to obtain OS(n + 1)s when n + 1 is odd.

5 Future research directions

We present the first polynomial time and space algorithm to construct orientable sequences with asymptotically optimal
length; it is a successor-rule-based approach that requires O(n) time per bit and uses O(n) space. This answers a long-
standing open question by Dai, Martin, Robshaw, and Wild [6]. The following questions are currently being addressed. (1)
How can our parent rule be generalized to an arbitrary alphabet like {C, G, A, T}. The notion of orientation is especially
applicable in areas of computational biology [7, 18]. (2) Can the recent concatenation tree framework [27] be applied to
construct our OS(n)s in O(1)-amortized time per symbol? Additional interesting questions and problems include:

1. Can the lower bound of Ln for orientable sequences be improved?
2. Can small strings be inserted systematically into our constructed OS(n)s to obtain longer orientable sequences?
3. Can our OS(n)s be used to find longer aperiodic orientable sequences than reported in [4]?
4. A problem closely related to efficiently generating long OS(n)s is the problem of decoding or unranking orientable

sequences. That is, given an arbitrary length-n substring of an OS(n), efficiently determine where in the sequence this
substring is located. There has been little to no progress in this area. Even in the well-studied area of de Bruijn sequences,
only a few efficient decoding algorithms have been discovered. Most decoding algorithms are for specially constructed
de Bruijn sequences; for example, see [24, 32]. It seems hard to decode an arbitrary de Bruijn sequence. The only de
Bruijn sequence whose explicit construction was discovered before its decoding algorithm is the lexicographically
least de Bruijn sequence, sometimes called the Ford sequence in the binary case, or the Granddaddy sequence (see
Knuth [19]). Algorithms to efficiently decode this sequence were independently discovered by Kopparty et al. [21] and
Kociumaka et al. [20]. Later, Sawada and Williams [28] provided a practical implementation.
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