
Concatenation trees: A framework for efficient universal
cycle and de Bruijn sequence constructions
Joe Sawada
University of Guelph, Canada

Jackson Sears
University of Guelph, Canada

Andrew Trautrim
University of Guelph, Canada

Aaron Williams
Williams College, USA

Abstract
Classic cycle-joining techniques have found widespread application in creating universal cycles for a diverse range of combinatorial

objects, such as shorthand permutations, weak orders, orientable sequences, and various subsets of k-ary strings, including de Bruijn
sequences. In the most favorable scenarios, these algorithms operate with a space complexity of O(n) and require O(n) time to generate
each symbol in the sequences. In contrast, concatenation-based methods have been developed for a limited selection of universal cycles.
In each of these instances, the universal cycles can be generated far more efficiently, with an amortized time complexity of O(1) per
symbol, while still using O(n) space. This paper introduces concatenation trees, which serve as the fundamental structures needed to
bridge the gap between cycle-joining constructions based on the pure cycle register and corresponding concatenation-based approaches.
They immediately demystify the relationship between the classic Lyndon word concatenation construction of de Bruijn sequences and a
corresponding cycle-joining based construction. To underscore their significance, concatenation trees are applied to construct universal
cycles for shorthand permutations and weak orders in O(1)-amortized time per symbol. Moreover, we provide insights as to how similar
results can be obtained for other universal cycles including cut-down de Bruijn sequences and orientable sequences.

1

1 Introduction

Readers are likely familiar with the concept of a de Bruijn sequence, which is a circular string of length kn in which every
n-bit k-ary string appears once as a substring. For example, a binary de Bruijn sequence for n = 4 is 0000100110101111.
The study of these sequences dates back to Pingala’s Chandahśāstra (’A Treatise on Prosody’) over two thousand
years ago (see [32, 48, 49, 50]). They have a wide variety of well-known modern-day applications [1] and their theory is even
being applied to de novo assembly of read sequences into a genome [4, 9, 34, 47, 52]. More broadly, when the underlying
objects are not k-ary strings, the analogous concept is often called a universal cycle [8], and they have been studied for many
fundamental objects including permutations [31, 26, 40, 51], combinations [10, 28, 29], set partitions [25], and graphs [6].

In this paper we wish to establish a new high-water mark for the efficient generation of de Bruijn sequences and universal
cycles. To illustrate our approach, it is helpful to consider a slightly more complex object. A weak order is a way competitors
can rank in an event, where ties are allowed. For example, in a horse race with five horses labeled h1, h2, h3, h4, h5, the weak
order (using a rank representation) 22451 indicates h5 finished first, the horses h1 and h2 tied for second, horse h3 finished
fourth, and horse h4 finished fifth. No horse finished third as a result of the tie for second. Let W(n) denote the set of weak
orders of order n. For example, the thirteen weak orders for n = 3 are given below:

W(3) = {111, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321}.

Note that W(n) is closed under rotation. For this reason, we can construct a universal cycle by applying the pure cycling
register (PCR) to induce small cycles, and then repeatedly join them together. In this approach, we partition W(n) into
equivalence classes under rotation. These classes are called necklaces and we use the lexicographically smallest member of
each class as its representative. So {113, 131, 311} is one class with representative 113, and {111} is another class. Each class
of size t has a simple universal cycle of length t, namely the representative’s aperiodic prefix (i.e., the shortest prefix of a string
that can be concatenated some number of times to create the entire string). So 113 is a universal cycle for {113, 131, 311},
and 1 is a universal cycle for {111} (since 1 is viewed cyclically). Each necklace class can be viewed as a directed cycle
induced by the PCR, where each edge corresponds to a rotation (i.e., the leftmost symbol is shifted out and then shifted back in
as the new rightmost symbol), as seen in Figure 1a for n = 3. Two cycles can be joined together via a conjugate pair (formally
defined in Section 2.1) to create a larger cycle as illustrated in Figure 1b. This is done by replacing a pair of rotation edges
with a pair of edges that shift in a new symbol. Repeating this process yields a universal cycle 1113213122123 for W(3).

113

131311
113

122

221212
122

123

231312
123

132

321213
132

111

1

(a) Necklace cycles for W(3), where the representative of each class is at
the top of its cycle, and the universal cycle is in the middle.

122

212221
122

312

231123
123

122123

(b) Necklace cycles 122 and 123 are joined into a single
cycle. The universal cycle for these strings is 122123.

Figure 1 Initial steps to building a universal cycle for W3.

In many cases, pairs of cycles can be joined together to form a cycle-joining tree. For example, Figure 2a illustrates a
cycle-joining tree for W(4) based on an explicit parent rule stated in Section 5.2. Given a cycle-joining tree, existing results
in the literature [22, 23] allow us to generate a corresponding universal cycle one symbol at a time. But what if we want to
generate the universal cycle faster? For instance, suppose that instead of generating one symbol at a time, we can generate
necklaces one at a time.1 How can we do this? This goal of generating one necklace at a time has been achieved in only a
handful of cases [12, 18, 21, 39, 42]. Most notably, the de Bruijn sequence known as the Ford sequence, or the granddaddy
(see Knuth [33]), can be created by concatenating the associated representatives in lexicographic order [19], matching the de
Bruijn sequence given earlier: 0 0001 0011 01 0111 1. But these concatenation constructions have been the exception rather

1 In practice, a de Bruijn sequence (or universal cycle) does not need to be returned to an application one symbol at a time, but rather a word of
length t can be shared between the generation algorithm and the application. The algorithm repeatedly informs the application that the next batch
of t symbols in the sequence is ready. This allows the generation algorithm to slightly modify the shared word and provide t symbols to the
application as efficiently as O(1)-amortized time [12].

2 Concatenation Trees

1314

1323

1313

1134

1342

1332 1224

1222

1233

12341324

1111

1114

1133

1143

1243

1242

1432 1423

1422

(a) A cycle-joining tree for weak orders when n = 4. The precise
parent rule appears in Section 5.2.

1314
10

1323
7

1313
9

1134
14

2134
16

2133
15

1224
18

1222
17

1233
19

1234
20

1324
8

1111

1114

1

2

1133
13

3114

3124

2124

6

4

5

3214
3

2314
12

2214
11

(b) A concatenation tree Tweak for weak orders when n = 4 illus-
trating the RCL order.

Figure 2 Two tree structures for creating a universal cycle for W4.

than the rule, and there has been no theoretical framework for understanding why they work. Here, we provide the missing
link. For example, the unordered cycle joining tree in Figure 2a is redrawn in Figure 2b. The new diagram is a bifurcated
ordered tree, meaning that children are ordered and partitioned into left and right classes, and importantly some representatives
have changed. If the tree is explored using an RCL traversal (i.e., right children, then current, then left children), then —
presto! — a concatenation construction of a universal cycle for W(4) is created:

1 1114 3214 3124 2124 3114 1323 1324 13 1314 2214 2314 1133 1134 2133 2134 1222 1224 1233 1234.

This paper introduces concatenation trees and RCL traversals, which bridge the gap between PCR-based cycle-joining
trees and concatenation constructions for the corresponding universal cycle. The resulting concatenations can often
be generated in O(1)-amortized time per symbol using polynomial space. The framework applies to k-ary alphabets
allowing for the broadest possible application.

While our focus here is on PCR-based cycle-joining trees, preliminary evidence indicates that it can be generalized
(though non-trivially) to other underlying feedback functions. This will unify a large body of independent results enabling
new and interesting results. In particular, the recently introduced pure run-length register (PRR) [41] is conjectured to be the
underlying feedback function used in a lexicographic composition construction [18]. Furthermore, the PRR is proved to be
the underlying function used in the greedy prefer-same [13] and prefer-opposite [3] constructions; however, no concatenation
construction is known. The first shift-rule based on the complementing cycling register (CCR) is noted to have a very good
local 0-1 balance [27]; however, no corresponding concatenation construction is known. There are two known CCR-based
concatenation constructions [20, 21], but there is no clear correlation to an underlying cycle-joining approach, even though one
appears to be equivalent to a shift rule from [22]. The cool-lex concatenation constructions [39] have equivalent underlying
shift rules based on the pure summing register (PSR) and the complementing summing register (CSR). This correspondence
was not observed until considering larger alphabets [42], though little insight to the correspondence is provided in the proof.
Cycle-joining constructions based on the PSR/CSR are also considered in [15, 16].

Outline. In Section 2, we present the necessary background definitions and notation along with a detailed discussion of
cycle-joining trees and their corresponding successor rules. In Section 3, we introduce bifurcated ordered trees, which are
the structure underlying concatenation trees. In Section 4, we introduce concatenation trees along with a statement of our
main result. In Section 5, we apply our framework to a wide variety of interesting combinatorial objects, including de Bruijn
sequences. In Section 6, we prove our main result.

3

2 Preliminaries

Let Σ = {0, 1, 2, . . . , k − 1} denote an alphabet with k symbols. Let Σn denote the set of all length n strings over Σ. Let
α = a1a2 · · · an denote a string in Σn. The notation αt denotes t copies of α concatenated together. The aperiodic prefix of α,
denoted ap(α), is the shortest string β such that α = βt for some t ≥ 1; the period of α is |β|. For example, if α = 01010101
then ap(α) = 01 and α has period equal to 2. If the period of α is n, then α is said to be aperiodic; otherwise, it is said to be
periodic. When k = 2, let ai denote the complement of a bit ai.

A necklace class is an equivalence class of strings under rotation. A necklace is the lexicographically smallest representative
of a necklace class. A Lyndon word is an aperiodic necklace. Let Nk(n) denote the set of all k-ary necklaces of order n. As
an example, the six binary necklaces for n = 4 are: N2(4) = {0000, 0001, 0011, 0101, 0111, 1111}. Let [α] denote the set
of all strings in α’s necklace class. For example, [0001] = [1000] = {0001, 0010, 0100, 1000} and [0101] = {0101, 1010}.
The pure cycling register (PCR) is a shift register with feedback function f(a1a2 · · · an) = a1. Starting with α, it induces a
cycle containing the strings in α’s necklace class. For example,

001101→ 011010→ 110100→ 101001→ 010011→ 100110→ 001101

is a cycle induced by the PCR that can be represented by any string in the cycle. Given a tree T with nodes (cycles induced by
the PCR) labeled by necklace representatives {α1, α2, . . . , αt}, let ST = [α1] ∪ [α2] ∪ · · · ∪ [αt].

Given S ⊆ Σn, a universal cycle U for S is a cyclic sequence of length |S| that contains each string in S as a substring
(exactly once). Given a universal cycle U for a set S ⊆ Σn, a UC-successor for U is a function f : S→ Σ such that f(α)
is the symbol following α in U . If S = Σn then U is a de Bruijn sequence (DB sequence), and we call a UC-successor a
DB-successor. A UC-successor can be thought of as a shift rule where the underlying object is a universal cycle.

2.1 Cycle joining trees

In this section we review how two universal cycles can be joined to obtain a larger universal cycle. Let x, y be distinct symbols
in Σ. If α = xa2 · · · an and α̂ = ya2 · · · an, then α and α̂ are said to be conjugates of each other, and (α, α̂) is called a
conjugate pair. The following well-known result (see for instance Lemma 3 in [43]) based on conjugate pairs is the crux of
the cycle-joining approach.2

I Theorem 1. Let S1 and S2 be disjoint subsets of Σn such that α = xa2 · · · an ∈ S1 and α̂ = ya2 · · · an ∈ S2; (α, α̂) is
a conjugate pair. If U1 is a universal cycle for S1 with suffix α and U2 is a universal cycle for S2 with suffix α̂ then U = U1U2
is a universal cycle for S1 ∪ S2.

Let Ui denote a universal cycle for Si ⊆ Σn. Two universal cycles U1 and U2 are said to be disjoint if S1 ∩ S2 = ∅. A
cycle-joining tree T is an unordered tree where the nodes correspond to a disjoint set of universal cycles U1, U2, . . . , Ut; an
edge between Ui and Uj is defined by a conjugate pair (α, α̂) such that α ∈ Si and α̂ ∈ Sj . For our purposes, we consider
cycle-joining trees to be rooted. If the cycles are induced by the PCR, i.e., the cycles correspond to necklace classes, then T is
said to be a PCR-based cycle-joining tree. As examples, four PCR-based cycle-joining trees are illustrated in Figure 3; their
nodes are labeled by the necklaces N2(6). They are defined by the following parent-rules, which determines the parent of
given non-root node.

Four “simplest” parent rules defining binary PCR-based cycle-joining trees

T1: rooted at 1n and the parent of every other node α ∈ N2(n) is obtained by flipping the last 0.
T2: rooted at 0n and the parent of every other node α ∈ N2(n) is obtained by flipping the first 1.
T3: rooted at 0n and the parent of every other node α ∈ N2(n) is obtained by flipping the last 1.
T4: rooted at 1n and the parent of every other node α ∈ N2(n) is obtained by flipping the first 0.

2 The cycle-joining approach has graph theoretic underpinnings related to Hierholzer’s algorithm for constructing Euler cycles [24].

4 Concatenation Trees

Note that for T3 and T4, the parent of a node α is obtained by first flipping the named bit and then rotating the string to its
lexicographically least rotation to obtain a necklace. Each node α and its parent β are joined by a conjugate pair where the
highlighted bit in α is the first bit in one of the conjugates. For example, the nodes α = 011011 and β = 001011 in T2 from
Figure 3 are joined by the conjugate pair (110110, 010110).

T4: First 0

111111

011111

011011 010111 001111

000111

000011

000001

000000

001011010101001101

000101001001

T3: Last 1

000000

000001

000011

000111

001111

011111

111111

011011

001101

000101 001001

001011 010101

010111

000000

000001

000011000101001001

000111001011001101010101

001111010111011011

011111

111111T2: First 1

111111

011111

001111 010111 011011

001011 001101 010101000111

000011 000101 001001

000001

000000 T1: Last 0

Figure 3 Cycle-joining trees for n = 6 derived from simple parent rules. The node 001101 joined to a different parent cycle in each
tree. In particular, the edge 001101–001111 in T1 is obtained by flipping its last 0.

When two adjacent nodes Ui and Uj in a cycle-joining tree T are joined to obtain U via Theorem 1 (rotating the cycles as
appropriate), the nodes are unified and replaced with U (the edge between Ui and Uj is contracted). Repeating this process
until only one node remains produces a universal cycle for S1 ∪ S2 ∪ · · · ∪ St. In the binary case, the same universal cycle is
produced, no matter the order in which the cycles are joined. This is because no string can belong to more than one conjugate
pair in the underlying definition of T. However, when k > 2, the order can be important.

Example 1 The following illustrates two (of several) different ways to join the cycles in a PCR-based cycle-joining tree T
for n = 5 and k = 5 with four nodes represented by 00014, 00024, 00034, 00044 joined via conjugate pairs (14000, 24000),
(24000, 34000), (34000, 44000).

00014

00024

00034

00044

1400024000

00034

00044

140002400034000

00044

14000240003400044000 = U1

00014

00024

00034

00044

4400034000

00024

00014

440003400024000

00014

44000340002400014000 = U2

T

T

The resulting universal cycle for ST = [00014] ∪ [00024] ∪ [00034] ∪ [00044] is different in each case.

In upcoming discussion regarding both successor rules and concatenation trees, we require the following assumption about
underlying cycle-joining trees when k > 2.

I Assumption 2. If a node in a cycle-joining tree has two children joined via conjugate pairs (xa2 · · · an, ya2 · · · an) and
(x′b2 · · · bn, y′b2 · · · bn) then a2 · · · an 6= b2 · · · bn.

Observe that this assumption is satisfied in our previous example, and is always satisfied when k = 2.

5

2.2 Successor-rule constructions

Let T be a PCR-based cycle-joining tree where the nodes are joined by a set C of conjugate pairs. We say γ belongs to a
conjugate pair (α, α̂) if either γ = α or γ = α̂. If k = 2, then from [22], the following function f0 is a UC-successor for ST,
where α = a1a2 · · · an:

f0(α) =
{

a1 if α belongs to some conjugate pair in C;
a1 otherwise.

More generally, let k ≥ 2. Let T satisfy Assumption 2, which implies a string can belong to at most two conjugate pairs
(joining a node to its parent and/or a child). Let α1, α2, . . . , αm denote a maximal length path of nodes in T such that for each
1 ≤ i < m, the node αi is the parent of αi+1 and they are joined via a conjugate pair of the form (xiβ, xi+1β); β is the same
in each conjugate pair. We call such a path a chain of length m. Suppose α = xiβ belongs to a conjugate pair that joins two
nodes in a chain of length m for some 1 ≤ i ≤ m. Let first(α) = x1 and let last(α) = xm. Define g1(α) = xi+1, where
xm+1 = first(α), and let g2(α) = xi−1, where x0 = last(α). Then the following functions f1 and f2 are both UC-successors
for ST (see Theorem 2.8 and Theorem 2.9 from [23]):

f1(α) =
{
g1(α) if α belongs to a conjugate pair in C;
a1 otherwise,

f2(α) =
{
g2(α) if α belongs to a conjugate pair in C;
a1 otherwise.

If k = 2 then f0 = f1 = f2.

Example 2 Continuing Example 1, let α = 44000; it belongs to a conjugate pair. Note that α1 = 00014, α2 = 00024,
α3 = 00034, α4 = 00044 form a chain of length m = 4 where first(α) = 1 and last(α) = 4. Then g1(α) = 1 and g2(α) = 3.
Observe that f1 is a UC-successor for U1; it joins the cycles top-down and the symbol following α = 44000 is f1(α) = g1(α) = 1.
Similarly, f2 is a UC-successor for U2; it joins the cycles bottom-up and the symbol following α = 44000 is f2(α) = g2(α) = 3.

Applying a UC-successor f0, f1, or f2 directly requires an exponential amount of memory to store the conjugate pairs.
However, a cycle-joining tree defined by a simple parent rule may allow for a much more efficient implementation, using as
little as O(n) space and running in O(n) time. Recall the four parent rules stated for the trees T1, T2, T3, T4. The upcoming
four shift rules pcr1,pcr2,pcr3,pcr4, which correspond to f0, are stated generally for any subtree T of the corresponding
cycle-joining tree. Previously, these shift rules were stated for the entire trees in [22], and then for subtrees that included
all nodes up to a given level [23] putting a restriction on the minimum or maximum weight (number of 1s) of any length-n
substring.

T1 (Last 0) Let j be the smallest index of α = a1a2 · · · an such that aj = 0 and j > 1, or j = n+1 if no such index exists. Let
γ = ajaj+1 · · · an0a2 · · · aj−1 = ajaj+1 · · · an01j−2.

pcr1(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

T2 (First 1) Let j be the largest index of α = a1a2 · · · an such that aj = 1, or j = 0 if no such index exists. Let γ =
aj+1aj+2 · · · an1a2 · · · aj = 0n−j1a2 · · · aj .

pcr2(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

6 Concatenation Trees

T3 (Last 1) Let α = a1a2 · · · an and let γ = a2a3 · · · an1.

pcr3(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

T4 (First 0) Let α = a1a2 · · · an and let γ = 0a2a3 · · · an.

pcr4(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

The DB sequences obtained by applying the four shift rules for n = 6 are provided in Table 1. The spacing between some
symbols are used to illustrate the correspondence to upcoming concatenation constructions.

Shift rule DB sequence for n = 6
pcr1 0 000001 000011 000101 000111 001 001011 001101 001111 01 010111 011 011111 1
pcr2 0 000001 001 000101 01 001101 000011 001011 011 000111 010111 001111 011111 1
pcr3 1 111110 111100 111000 110 110100 110000 101110 101100 10 101000 100 100000 0
pcr4 1 111110 110 100 100110 111010 10 110010 100010 111100 111000 110000 100000 0

Table 1 DB sequences resulting from the shift rules corresponding to the cycle-joining trees T1, T2, T3, T4 from Figure 3.

The DB sequence generated by pcr1 is the well-known Ford sequence [17], and is called the Granddaddy by Knuth [33].
It is the lexicographically smallest DB sequence, and it can also be generated by a prefer-0 greedy approach attributed to
Martin [35]. Furthermore, Fredricksen and Maiorana [19] demonstrate an equivalent necklace (or Lyndon word) concatenation
construction that can generate the sequence in O(1)-amortized time per bit. The DB sequence generated by pcr2 can also be
generated inO(1)-amortized time per bit by concatenating necklaces in co-lexicographic order. The DB sequence generated by
pcr3, was first discovered by Jansen [30] for k = 2, then generalized in [45]. It is conjectured to have a simple concatenation
construction by Gabric and Sawada [21], a fact we prove in this paper. The DB sequence generated by pcr4, was first
discovered by Gabric, Sawada, Williams, and Wong [22]. No concatenation construction for this sequence was previously
known which served as the initial motivation for this work.

2.3 Insights into concatenation trees

The sequence in Table 1 generated by pcr1 starting with 0n has an interesting property: It corresponds to concatenating the
aperiodic prefixes of each necklace in the corresponding cycle-joining tree T1 (see Figure 3) as they are visited in post-order.
Notice also, that a post-order traversal visits the necklaces as they appear in lexicographic order; this corresponds to the
well-known necklace concatenation construction [19]. Similarly, the sequence generated by the shift rule pcr2 starting with
0n corresponds to concatenating the aperiodic prefixes of each node in the corresponding cycle-joining tree T2 as they are
visited in pre-order. This traversal visits the necklaces as they appear in colex order, which is another known concatenation
construction [12]. Unfortunately, this magic does not carry over to the trees T3 and T4, no matter how we order the children;
the existing proofs for T1 and T2 offer no higher-level insights or pathways towards generalization.

Our discovery to finding a concatenation construction for a given UC-successor is to tweak the corresponding cycle-joining
tree by: (i) determining the appropriate representative of each cycle, (ii) determining an ordering of the children, and (iii)
determining how the tree is traversed. The resulting concatenation trees for T1,T2,T3, and T4, which are formally defined
in Section 4, are illustrated in Figure 7 for n = 6. The concatenation trees derived from T1 and T2 look very similar to
the original cycle-joining trees. For the concatenation tree derived from T3, the representatives are obtained by rotating the
initial prefix of 0s of a necklace to the suffix; a post-order traversal produces the corresponding DB sequence in Table 1.
This traversal corresponds to visiting these representatives in reverse lexicographic order that is equivalent to a construction
defined in [21]. The concatenation tree derived from T4 is non-trivial and proved to be the basis for discovering our more
general result. Each representative is determined from its parent, and the tree differentiates “left-children” (blue dots) from
“right-children” (red dots). A concatenation construction corresponding to pcr4 is obtained by a somewhat unconventional
traversal that recursively visits right-children, followed by the current node, followed by the left-children.

7

3 Bifurcated ordered trees

Our new “concatenation-tree” approach to generating DB sequences relies on tree structures that mix together ordered trees
and binary trees. First we review basic tree concepts. Then we introduce our notion of a bifurcated ordered tree together with
a traversal called an RCL traversal.

An ordered tree is a rooted tree in which the children of each node are given a total order. For example, a node in an
ordered tree with three children has a first child, a second child, and a third (last) child. In contrast, a cardinal tree is a rooted
tree in which the children of each node occupy specific positions. In particular, a k-ary tree has k positions for the children of
each node. For example, each child of a node in a 3-ary tree is either a left-child, a middle child, or a right-child.

We consider a new type of tree that is both ordinal and cardinal; while ordered trees have one “type” of child, our trees will
have two types of children. We refer to such a tree as a bifurcated ordered tree (BOT), with the two types of children being
left-children and right-children. To illustrate bifurcated ordered trees, Figure 4 provides all BOTs with n = 3 nodes. This type

Figure 4 All eight bifurcated ordered trees (BOTs) with n=3 nodes. Each left-child descends from a blue •, while each right-child
descends from a red •.

of “ordinal-cardinal” tree seems quite natural3, and it is very likely to have been used in previous academic investigations.
Nevertheless, the authors have not been able to find an exact match in the literature. In particular, 2-tuplet trees use a different
notion of a root, and correspond more closely to ordered forests of BOTs. A computer program4 to enumerate all BOTs
demonstrates that the total number for n from 1 to 12 are:

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480.
When extended for larger n, the sequence corresponds to all 23 entries for sequence A006013 in the Online Encyclopedia of
Integer Sequence [2]; however, no obvious relationship to such a tree is noted.

3.1 Right-Current-Left (RCL) traversals

The distinction between left-children and right-children in a BOT allows for a very natural notion of an in-order traversal:
visit the left-children from first to last, then the current node, then the right-children from first to last. During our work with
concatenation trees (see Section 4) it will be more natural to use a modified traversal, in which the right-children are visited
before the left-children. Formally, we recursively define a Right-Current-Left (RCL) traversal of a bifurcated ordered tree
starting from the root as follows:

5

6 11 12

7 8 9 10

3

4 2

1

Figure 5 A BOT with its n=12 nodes
labeled as they appear in RCL order.

visit all right-children of the current node from first to last;
visit the current node;
visit all left-children of the current node from first to last.

Note that the resulting RCL order is not the same as a reverse in-order traversal
(i.e., an in-order traversal written in reverse), since the children of each type are
visited in the usual order (i.e., first to last) rather than in reverse order (i.e., last
to first). An example of an RCL traversal is shown in Figure 5.

3 More broadly, one can consider ordered trees with k ≥ 2 types of children. Experimentally, we have found that the number of these trees are
counted by the Fuss-Catalan sequence a(n, p, r) = r ·

(
np+r

n

)
/(np+ r) with p = k and r = k − 1, including unifurcated (OEIS A000108),

bifurcated, trifurcated (OEIS A006632), quadfurcated (OEIS A118971), and even decemfurcated (OEIS A234573).
4 This program was surprisingly non-trivial to implement, and is the topic of future work. A dynamic programming implementation in C used to

construct the listing is given in Appendix A.

8 Concatenation Trees

4 Concatenation trees

Let T be a PCR-based cycle-joining tree rooted at r satisfying Assumption 2. In this section we describe how T can be
converted into a labeled BOT T we call a concatenation tree. The nodes and the parent-child relationship in T are the same
as in T; however, the labels (representatives) of the nodes may change. The definitions of these labels are defined recursively
along with a corresponding change index, the unique index where a node’s label differs from that of its parent. The root of
T is r, and it is assigned an arbitrary change index c.5 The label of a non-root node γ depends on the label of its parent
α = a1a2 · · · an, which can be written as β1xβ2 where (xβ2β1, yβ2β1) is the conjugate pair joining α and γ in T. If α is
aperiodic, there is only one possible index i for x; however, if it is periodic, there will be multiple such indices possible. If
α = (a1 · · · ap)q has period p with change index c where jp < c ≤ jp + p for some integer 0 ≤ j < q, then we say the
acceptable range of α is {jp+1, . . . , jp+p}. Note, if α is aperiodic, its acceptable range is {1, 2, . . . , n}. Now, α = β1xβ2
can be written uniquely such that x is found at an index i in α’s acceptable range. The label of γ is defined to be β1yβ2 with
change index i.

Example 3 Let x = 001001001 be the parent of y = 001002001 in a PCR-based cycle-joining tree T joined via the conjugate
pair (100100100, 200100100). Let α and γ denote the corresponding nodes in the concatenation tree T . Suppose α = 100100100 (a
rotation of x) with change index 8. Since α has period p = 3, its acceptable range is {7, 8, 9}. Thus, β1 = 100100, x = 1, β2 = 00,
α = β1xβ2, and γ = 100100200 (a rotation of y) with change index 7.

To complete the definition of T , we must specify how the children of a node with change index c are partitioned into
ordered left-children and right-children: The left-children are those with change index less than c, and the right-children are
those with change index greater than c. Both are ordered by increasing change index. A child with change index c can be
considered to be either a left-child or right-child. We say T is a left concatenation tree if every node that has the same change
index as its parent is considered to be a left-child; T is a right concatenation tree if every node that has the same change index
as its parent is considered to be a right-child. Let concat(T, c, left) denote the left concatenation tree derived from T and let
concat(T, c, right) denote the corresponding right concatenation tree derived from T, where in each case the root is assigned
change index c. See Figure 6 for example concatenation trees, where the small gray box on top of each node indicates the
node’s change index.

011111

011211

011311 001121

113113

011114

112114

112112

T

011111

011211

011311 011210

311311

011114

411211

211211

concat(T, 4, right)

1

2

3

4

5

6

7

8

011111

011211

011311 011210

311311

011114

411211

211211

concat(T, 6, left)

Figure 6 Left and right concatenation trees for a given cycle-joining tree T. The right concatenation tree indicates the RCL order.

Let RCL(T) denote the RCL sequence produced by traversing the concatenation tree T in RCL order, outputting the
aperiodic prefix of the node label when it is visited. For example, the RCL sequence for concat(T, 4, right) in Figure 6 is:

011311 311 011210 011211 411211 211 011114 011111.

100011001100

110011001100

110011001110

1

2

3

It is critical how we defined the acceptable range, since our goal is to demonstrate that RCL(T) produces
a universal cycle. For example, consider three necklace class representatives (a) 11001100110, (b)
110011001100, and (c) 100011001100 where n = 12. They can be joined by flipping the second last
0 in (b) and flipping the first 0 in (c); (a) is the parent of (b) and (b) is the parent of (c). A BOT for
this cycle-joining tree is shown on the right. It is not a concatenation tree since the change index for

5 Though the change index of the root is arbitrary, its choice may impact the “niceness” of the upcoming RCL sequence.

9

the bottom node is outside the acceptable range of its periodic parent. Outputting the aperiodic prefixes of the nodes when
visited in RCL order produces 1100 100110011001100 11001110. Since the substring 110011001100 appears twice, it is not
a universal cycle.

The concatenation trees for the four cycle-joining trees in Figure 3 are given in Figure 7; the RCL sequence for each
tree matches the sequences in Table 1. The only concatenation tree with both left-children and right-children is the one
corresponding to concat(T4, 6, left). In fact, it was the discovery of this tree that lead us to the introduction of BOTs and our
definition of concatenation trees.

concat(T1, 1, right)

111111

011111

010111001111

001011

001001

000111

000011

000001

000000

010101001101

000101

011011

concat(T2, 6, left)

000000

000001

000101 000011

010111

011111

001011

011011

111111

000111010101 001101

001111

001001

concat(T3, 1, right)

000000

100000

101000110000

110100

110110

111000

111100

111110

111111

101100 101010

101110

100100

111111

111110

111010110110 111100

100110

100100

111000

110000

100000

000000

101010 110010

100010

concat(T4, 6, left)

Figure 7 Concatenation trees for n = 6 based on T1, T2, T3, T4. These bifurcated ordered trees (BOTs) provide additional structure to
the unordered cycle-joining trees from Figure 3. This structure provides the missing information for fully understanding the corresponding
concatenation constructions. The gray box above each node indicates its change index.

We are ready to present our main result which we prove in Section 6.

I Theorem 3. Let T be a PCR-based cycle-joining tree satisfying Assumption 2. Let T1 = concat(T, c, left) and let
T2 = concat(T, c, right). Then

RCL(T1) is a universal cycle for ST with shift rule f1, and
RCL(T2) is a universal cycle for ST with shift rule f2.

Recall that pcr1, pcr2, pcr3, and pcr4 were stated generally for subtrees of their corresponding cycle-joining tree.

I Corollary 4. Let T1, T2, T3, T4 be subtrees of T1,T2,T3,T4, respectively. For any 1 ≤ c ≤ n and ` ∈ {left, right}:

RCL(concat(T1, c, `)) is a UC-successor for ST1 with shift rule pcr1.
RCL(concat(T2, c, `)) is a UC-successor for ST2 with shift rule pcr2.
RCL(concat(T3, c, `)) is a UC-successor for ST3 with shift rule pcr3.
RCL(concat(T4, c, `)) is a UC-successor for ST4 with shift rule pcr4.

Efficient implementations of these concatenation constructions are presented in Section 5.4.

4.1 Algorithmic details and analysis

A concatenation tree can be traversed to produce a universal cycle in O(1)-amortized time per symbol; but, it requires
exponential space to store the tree. However, if the children of a given node α can be computed without knowledge of the
entire tree, then we can apply Algorithm 1 to traverse a concatenation tree T in a space-efficient manner. The initial call is
RCL(α,c, `) where α = a1a2 · · · an is the root node with change index c. The variable ` is set to 1 for left concatenation
trees; ` is set to 0 for right concatenation trees. The crux of the algorithm is the function CHILD(α, i) which returns x if
there exists x ∈ Σ such that a1 · · · ai−1xai+1 · · · an is a child of α, or −1 otherwise. Since the underlying cycle-joining tree
satisfies Assumption 2, if such an x exists then it is unique. In practice, the function will concern itself with the acceptable
range of α as per the construction of concatenation trees.

10 Concatenation Trees

Algorithm 1 Traversing a concatenation tree T in RCL order rooted at α with change index c

1: procedure RCL(α = a1 · · · an, c, `)
2: for i← c+ ` to n do . Visit right-children
3: x← CHILD(α, i)
4: if x 6= −1 then RCL(a1 · · · ai−1xai+1 · · · an, i, `)
5: p← period of α
6: PRINT(a1 · · · ap)
7: for i← 1 to c− 1 + ` do . Visit left-children
8: x← CHILD(α, i)
9: if x 6= −1 then RCL(a1 · · · ai−1xai+1 · · · an, i, `)

The running time of the Algorithm 1 depends on how efficiently the function CHILD(α, i) can be computed for each index
i. Provided each call to CHILD(α, i) uses at most O(n) space, the overall algorithm will also require O(n) space assuming α
is passed by reference (or stored globally) and restored appropriately after each recursive call.

I Theorem 5. Let T be a concatenation rooted at α with change index c. The sequence resulting from a call to RCL(α, c,
`) is generated in O(1)-amortized time per symbol if (i) at each recursive step the work required by all calls to CHILD(α, i)
is O((t+ 1)n), where t is the number of α’s children, and (ii) the number of nodes in T that are periodic is less than some
constant times the number of nodes that are aperiodic.

Proof. The work done at each recursive step is O(n) plus the cost associated to all calls to CHILD(α, i). If condition (i) is
satisfied, then the work can be amortized over the t children if t ≥ 1, or onto the node itself if there are no children. Thus,
each recursive node is the result of O(n) work. By condition (ii), the total number of symbols output will be proportional to n
times the number of nodes. Thus, each symbol is output in O(1)-amortized time. J

5 Applications

In this section we highlight how our concatenation tree framework can be applied to a variety of interesting objects including
de Bruijn sequences.

5.1 Universal cycles for shorthand permutations

A shorthand permutation is a length n−1 prefix of some permutation p1p2 · · · pn. Let SP(n) denote the set of shorthand per-
mutations of order n. For example, SP(3) = {12, 13, 21, 23, 31, 32}. An inversion of a shorthand permutation p1p2 · · · pn−1
is an ordered pair (pi, pj) such that i < j and pi > pj . Note that SP(n) is closed under rotation. The necklace classes of
SP(n) can be joined into a PCR-based cycle-joining tree via the following parent rule [23], where each cycle representative is
a necklace. If σ contains 1, its representative is the rotation that begins with 1; otherwise, it is the rotation beginning with 2.

Parent rule for cycle-joining: Let r denote the root 12 · · · (n− 1). Let σ denote a non-root node where z is the missing symbol. If
z = n, let j denote the smallest index such that there exists an inversion (pi, pj) for some i < j; otherwise let j denote the index of
z + 1. Then

par(σ) = p1 · · · pj−1zpj+1 · · · pn−1.

Let T be the cycle-joining tree derived from the above parent rule and let Tperm = concat(T, n, left). Figure 8 illustrates
Tperm for n = 5; an RCL traversal of this tree produces the following universal cycle RCL(Tperm) of length 5! = 120:

1234 1235 1243 1254 1325 1435 2435 1425 1324 1354 2354 1253 1245 1342 1352
1432 1543 2543 1542 1532 1453 2453 1423 1524 1534 2534 1523 1452 1345 2345.

Let σ′ = q1 · · · qn−1 denote the cycle representative of σ. Let j be the smallest index such that there exists an inversion
(qi, qj) in σ′ for some i < j; let inv(σ) denote qj , or 0 if no such j exists. For example, if σ = 23146 then σ′ = 14623,
j = 4, and inv(σ) = 2. If σ = 23461, then inv(σ) = 0.

11

3

1234

1235

1245

1345

2345 1342

1352

1452

1453

2453

2354

1354

1253

1254

1243

1324

1325

2435

1435

1425

1423

2534

1534

1524

1523

1532

1432

2543

1543

1542

1

2

13

29

30 14 12

4

10

11 9

5

8

6

725

24

27

2322

21

28

15

16

20

19

17

18

26

Figure 8 Concatenation tree Tperm for shorthand permutations when n = 5 illustrating the RCL order.

The following UC-successor is derived from the above parent rule for cycle-joining the cycle representatives of shorthand
permutations. Naïvely, it can be computed in O(n) time using O(n) space; however with some optimizations, it can be
applied to generate successive symbols in O(1)-amortized time [23].

UC-successor: Let σ = p1p2 · · · pn−1. Then:

fperm(σ) =

 z if (z = n and p1 = inv(σ)) or (p1 = n and z = inv(zp2 · · · pn−1));
z if z ∈ {p1 − 1, p1 + 1};
p1 otherwise.

The children of a cycle representative σ can easily be determined in a single scan of σ in O(n) time. Thus, Theorem 3 and
Theorem 5 imply the following result.

I Theorem 6. RCL(Tperm) is a universal cycle for SP(n) with shift rule fperm. Moreover, RCL(Tperm) can be constructed
in O(1)-amortized time per symbol using O(n) space.

Efficient concatenation constructions of universal cycles for shorthand permutations are known [40]; however (i) there is no
clear connection between their construction and corresponding UC-successor and (ii) they do not have underlying PCR-based
cycle-joining trees. A next step for the framework presented in this paper is to extend it to other underlying feedback functions
that will ultimately demystify the relationship between the concatenation constructions and their corresponding UC-successors
in [40, 26].

12 Concatenation Trees

5.2 Universal cycles for weak orders

Recall that W(n) denotes the set of weak orders of order n; it is closed under rotation.6 The first construction of a universal
cycle for W(n) defined the upcoming PCR-based cycle-joining tree, where the cycle-representatives (nodes) are the lex-
smallest representatives [46]. Let ω = w1w2 · · · wn denote a string in W(n). Let nω(i) denote the number of occurrences of
the symbol i in ω. Let W1(n) denote the set of all weak orders of order n with no repeating symbols other than perhaps 1.

Parent rule for cycle-joining: Let r denote the root 1n. Let ω = w1w2 · · · wn denote a non-root node. If ω ∈W1(n), let j denote
the index of the symbol nω(1) + 1 and let x = 1; otherwise let j be the largest index containing a repeated (non-1) symbol and let
x = wj + nω(wj)− 1. Then

par(ω) = w1 · · · wj−1xwj+1 · · · wn.

Let T be the cycle-joining tree derived from the above parent rule and let Tweak = concat(T, n, left). Figure 2 illustrates both
the cycle-joining tree and Tweak for n = 4. The following UC-successor is derived T; It can be computed in O(n) time [46].

UC-successor: Let ω = w1w2 · · · wn and let p be the largest symbol in ω less than w1. Let j be the smallest index such that
wj · · · wnw1 · · · wj−1 is a cycle representative and let j′ be the smallest index such that wj′ · · · wnpw2 · · · wj′−1 is a cycle representative.
Then:

fweak(ω) =


1 if ω ∈W1(n) and w1 = nω(1) + 1,
nω(1) if ω ∈W1(n) and w1 = 1,
w1 + nω(w1)− 1 if ω /∈W1(n), nω(w1) > 1, w1 > 1, (nω(wi) = 1 or wi = 1) for all 2 ≤ i ≤ j − 1,
p if nω(w1) = 1, w1 > 1, p 6= 1, (wi 6= p and (nω(wi) = 1 or wi = 1)) for all 2 ≤ i ≤ j′ − 1;
w1 otherwise.

Though not as trivial as with shorthand permutations, the t children of a given cycle representative has been implemented
in O((t+ 1)n) time. Once proved, then Theorem 5 implies that RCL(Tweak) can be constructed in O(1)-amortized time per
symbol using O(n) space.

I Theorem 7. RCL(Tweak) is a universal cycle for W(n) with shift rule fweak.

5.3 Orientable sequences

An orientable sequence is a universal cycle for a set S ⊆ {0, 1}n such that if a1a2 · · · an ∈ S, then its reverse an · · · a2a1 /∈ S.
Thus, S does not contain palindromes. Orientable sequences do not exist for n < 5, and a maximal length orientable
sequence for n = 5 is 001011. Somewhat surprisingly, the maximal length of binary orientable sequences are known only
for n = 5, 6, 7. Orientable sequences were introduced in [11] with applications related to robotic position sensing. They
established upper and lower bounds for their maximal length; the lower bound is based on the existence of a PCR-based
cycle-joining tree, though no construction of such a tree was provided. Subsequently, a recursive construction based on
Lempel’s lift constructs orientable sequences with length that are asymptotic to a trivial upper bound, though less than the
established lower bound [36].

Motivated by the concatenation framework, a cycle-joining tree T for necklaces that are lexicographically smaller than
any of their reversed rotations was recently discovered. It applies three of the four “simplest” parent rules defined earlier for
PCR-based cycle joining trees. As an example, the concatenation tree in Figure 9 can be traversed to produce the following
orientable sequence for n = 9 of length 126:

111001011 011001011 110011011 110001011 100101011 100011011 101011011
100001001 110001001 010001001 100001011 001001011 000101011 000001011.

6 Weak orders of order n are counted by the ordered Bell or Fubini numbers (OEIS A000670).

13

Preliminary findings indicate that the RCL sequence produced by traversing the corresponding concatenation tree can be
computed in O(1)-amortized time per bit using polynomial space; it generates the longest known orientable sequences
efficiently. This result will be presented in a follow up to this work. It will be the first known efficient construction to attain
the lower bound derived in [11].

110001011

4

100011011
6

100001011
11

001001011
12

000101011
13

100001001
8

110001001
9

010001001
10

011001011
2

101011011
7

111001011
1

100101011
5

110011011
3

000001011
14

Figure 9 A right concatenation tree that yields an orientable sequence for n = 9. The nodes correspond to all necklace classes, where
the necklace of each class is strictly less than all reversed rotations. The small blue numbers indicate the order a node is visited in RCL-order.

5.4 De Bruijn sequences

Recall the cycle-joining trees T1, T2, T3, and T4 for binary stings of length n. These trees can be generalized to larger
alphabets following the theory in [23]. For instance, the parent rule used to create T1 can be generalized to “increment the
last non-(k−1)” where the alphabet is Σ = {0, 1, . . . , k − 1}. Though we do not provide details here, most of the following
discussion can also be applied to arbitrary sized alphabets.

Recall Corollary 4 and the concatenation constructions producing DB sequences. To obtain the ultimate goal of construc-
tions that run in O(1)-amortized time, we apply Algorithm 1 and Theorem 5 to demonstrate that the children of a node can be
efficiently computed, in an amortized sense. To simplify our analysis, we define an array child[] initialized to 0’s such that the
function ISCHILD(α, j) simply returns child[j]. Since the depth of each tree is at most n, this results in O(n2) space when
recursion is applied. Without using the array, the algorithm could be implemented using O(n) space. In our running time
analysis, we implicitly apply the fact that number of periodic necklaces is not more than the number of aperiodic necklaces (of
order n) [38, Lemma 4.4]. We will apply a boolean function ISNECKLACE(α) that returns whether or not α is a necklace; it
can be implemented to run in O(n) time [5]. For each of the four upcoming concatenation trees, computing the lone child of
the root is trivial. Thus, we focus on a non-root node α = a1a2 · · · an with change index c. In each case, the indices being
updated are clearly within the acceptable range of α.

Let T1 = concat(T1, 1, right). The following remark is easily verified by applying the definition of a necklace.

I Remark 8. If j is the largest index such that aj = 0 (the last 0), then a1 · · · aj−11aj+1 · · · an is a necklace.

Recall the root of T1 is 1n. Since the change index of the root in T1 is set to c = 1, Remark 8 implies that all the representatives
in T1 will be necklaces. Thus, c is the largest index in α such that ac = 0 and any children of α must come from flipping a 1
at an index greater than c and less than n (in order for the index to hold the “last 0” in the resulting necklace). Thus, applying
the following pseudocode will accurately determine the children of α.

for j ← c+ 1 to n− 1 do child[j]← ISNECKLACE(a1 · · · aj−10aj+1 · · · an)

I Theorem 9. RCL(T1) is a DB sequence with shift rule pcr1 that can be constructed in O(1)-amortized time using O(n2)
space.

14 Concatenation Trees

Proof. The fact that RCL(T1) is a DB sequence with shift rule pcr1 follows immediately from Theorem 3. Interestingly,
there can be many failed tests to ISNECKLACE. We ignore the single case when j = c+ 1 as it uses only O(n) time. Suppose
β = a1 · · · aj−10aj+1 · · · an is not a necklace where j > c+ 1, and let i denote the first index in α such that i = 1. Since
α is a necklace there does not exist a substring 0i in β since j > c+ 1. Thus, clearly γ = 0a1 · · · aj−10aj+1 · · · an−1 is a
necklace; it begins with a prefix 0i. The mapping of each failed β to its corresponding γ is clearly 1-1. Thus, the total number
of failed calls to ISNECKLACE is bounded by the number of nodes in the tree. Amortizing this work over these nodes and
applying Theorem 5 implies that RCL(T1) can be generated in O(1)-amortized time. J

Recall pcr1 is a DB-successor of the “Granddaddy” sequence presented in [19]. Thus, an immediate consequence of the
above theorem (and straightforward observation) is that an RCL traversal of T1 corresponds to visiting the necklaces in N2(n)
in lexicographic order.

Let T2 = concat(T2, n, left). The following remark is easily verified by applying the definition of a necklace.

I Remark 10. If j is the smallest index such that aj = 1 (the first 1), then a1 · · · aj−10aj+1 · · · an is a necklace.

Recall the root of T2 is 0n. Since the change index of the root in T1 is set to c = n, Remark 10 implies that all the
representatives in T2 are be necklaces. Thus, c is the smallest index in α such that ac = 1 and any the children of α must
come from flipping a 1 at an index less than c (so the resulting index becomes the “first 1” in the resulting necklace). Clearly a
longest run of 0’s appears as a prefix in a necklace. Thus, the “first 1” in a child of α cannot come until an index after the
maximum of bc/2c and the longest run of 0’s. Similarly, the resulting prefix of 0’s must be at least z, the maximal length run
of 0’s in α after the initial run of 0’s. Thus, applying the following pseudocode will accurately determine the children of α.

z ← max length run of 0’s in ac+1 · · · an

for j ← MAX(z, bc/2c)) +1 to c− 1 do child[j]← ISNECKLACE(a1 · · · aj−11aj+1 · · · an)

I Theorem 11. RCL(T2) is a DB sequence with shift rule pcr2 that can be constructed in O(1)-amortized time using
O(n2) space.

Proof. The fact that RCL(T2) is a DB sequence with shift rule pcr2 follows immediately from Theorem 3. To analyze the
running time, observe that there will be at most one failed call to ISNECKLACE – the first one. After that, flipping ai from a
0 to a 1 will leave the maximal run of 0’s in the resulting string at a1 · · · aj−1. Thus, Theorem 5 implies RCL(T2) can be
generated in O(1)-amortized time. J

Recall pcr2 is a DB-successor of the “Grandmama” sequence presented in [12]. Thus, an immediate consequence of the
above theorem (and straightforward observation) is that an RCL traversal of T2 corresponds to visiting the necklaces in N2(n)
in co-lexicographic order.

Let T3 = concat(T3, 1, right). The following remark follows by applying the fact that a longest run of 0’s must appear as a
prefix in a necklace.

I Remark 12. If j is the smallest index such that aj = 1 (the first 1), then ai+1 · · · ana1 · · · ai−11 is a necklace where
ai = 0 only if i < j.

Recall the root of T3 is 0n. From the parent rule, ac+1 · · · ana1 · · · ac is a necklace representative of α; ac corresponds to the
“last 1”. Since the change index of the root is set to c = 1, α will start with a 1 and ac+1 · · · an = 0n−c because any children
of α must come from flipping a 0 at an index greater than c from Remark 12. Since ac+1 · · · an represents a longest run of 0’s
in α, flipping any 0 outside this range will not result in a necklace. Since flipping a 0 at index j after c must be the “last 1” in
a necklace for it to be a child, it must that aj+1 · · · an is a longest run of 0’s in the resulting string. Thus, applying a similar
logic as with T2, the following pseudocode will accurately determine the children of α.

z ← max length run of 0’s in a1 · · · ac−1
for j ← c+ 1 to MIN(n− b(n− c)/2c, n− z)) do child[j]← ISNECKLACE(aj+1 · · · ana1 · · · aj−11)

15

I Theorem 13. RCL(T3) is a DB sequence with shift rule pcr3 that can be constructed in O(1)-amortized time using
O(n2) space.

Proof. The fact that RCL(T3) is a DB sequence with shift rule pcr3 follows immediately from Theorem 3. The analysis
follows the same logic as the proof of Theorem 11: there will be at most one failed call to ISNECKLACE (the last one). J

It is relatively straightforward to see that RCL(T3) is the same concatenation sequence as the one presented in [21], thus
answering an unproved claim regarding its equivalence to the UC-successor pcr3. It is the first O(1)-amortized time algorithm
for this sequence which we can immediately apply to cutdown de Bruijn sequences discussed in Section 5.5.

Let T4 = concat(T4, n, left). It remains an open question as to whether or not RCL(T4) can be generated in O(1)-amortized
time; experimental evidence indicate that it is possible with some more intricate arguments as to exactly which indices need to
be tested for children. The following theorem follows immediately from Theorem 3.

I Theorem 14. RCL(T4) is a DB sequence with shift rule pcr4.

Let the weight of a string denote the sum of its symbols. To conclude this section, we consider specific subtrees of T1, T2,
and T3 whose nodes have bounded weight. The running time analysis of the above concatenation trees also applies to these
cases. Let T1 be the subtree of T1 where the nodes have weight less than or equal to some constant w. Let T2, T3 be the
subtrees of T2 and T3, respectively, where the nodes have weight greater than or equal to some constant w.

I Corollary 15. RCL(T1), RCL(T2), and RCL(T3) are universal cycle for ST1 , ST3 , and ST3 , respectively, that can be
generated in O(1)-amortized time using O(n2) space, with corresponding UC-successors pcr1, pcr2, and pcr3.

Universal cycles for strings with bounded weight are considered in [44].

5.5 Cut-down de Bruijn sequences

A cut-down de Bruijn sequence of length m is a universal cycle for a set S ⊆ Σn, where |S| = m. They are known to exist
for all m, and their most efficient construction is based on a PCR-based cycle joining tree [14, 7]; it requires O(n) time per
symbol using O(n) space. In the binary case, the underlying tree described in [7] is a subtree of T3 with bounded weight.
Thus, Corollary 4 can be applied along with added theory to cut-out small cycles, to construct the same cut-down de Bruijn
sequence in O(1)-amortized time per bit using O(n)-space. This result will be presented in a follow up to this work. A recent
result attains the same time complexity, but requires exponential space [37].

6 Proof of Theorem 3

Our proof relies on properties exhibited between successive nodes in an RCL traversal. To aid the discussion, we define the
following relationships given a node x in a BOT.

A right-descendant of x is a node obtained by traversing down zero or more right-children.
A left-descendant of x is a node obtained by traversing down zero or more left-children.
The rightmost left-descendant of x is the node obtained by repeatedly traversing down the last left-child as long as one exists.
The leftmost right-descendant of x is the node obtained by repeatedly traversing down the first right-child as long as one exists.

Note that a node is its own leftmost right-descendent if it has no right-children. Similarly, a node is its own rightmost
left-descendent if it has no left-children. The following remark details the three cases for when two nodes from a BOT appear
consecutively in RCL order; they are illustrated in Figure 10.

I Remark 16. If a bifurcated ordered tree has RCL traversal . . . , x, y, . . ., then one of the following three cases holds:

(a) x is an ancestor of y: y is the leftmost right-descendant of x’s first left-child;
(b) x is a descendant of y: x is the rightmost left-descendent of y’s last right-child;
(c) x and y are descendants of a common ancestor a (other than x and y): x is the rightmost left-descendant and y is the

leftmost right-descendant of consecutive left-children or right-children of a.

Moreover, if the traversal sequence is cyclic (i.e., x is last in the ordering and y is first), there are three additional cases:

16 Concatenation Trees

(d) x is an ancestor of y: x is the root and y is its leftmost right-descendant;
(e) x is a descendant of y: y is the root and x is its rightmost left-descendant;
(f) x and y are descendants of a common ancestor a (other than x and y): x is the rightmost left-descendant of the root, and y

is the leftmost right-descendant of the root.

The three cases provided for cyclic sequences are stated in a way to convince the reader that all options are considered;
however, they can be collapsed to the single case (f) if we allow the common ancestor a to be x or y.

Theorem 3 restated: Let T be a PCR-based cycle-joining tree satisfying Assumption 2. Let T1 = concat(T, c, left)
and let T2 = concat(T, c, right). Then

RCL(T1) is a universal cycle for ST with shift rule f1, and
RCL(T2) is a universal cycle for ST with shift rule f2.

Let T represent either T1 or T2, and let α1, α2, . . . , αt denote the nodes of T as they are visited in RCL order; U =
RCL(T) = ap(α1) ap(α2) · · · ap(αt). The proof of Theorem 3 is by induction on t. We specify whether T is a left-
concatenation tree T1 or a right-concatenation tree T2 only when necessary. In the base case case when t = 1, the result is
immediate; T contains a single cycle and in each case the UC-successor simplifies to f(a1a2 · · · an) = a1. Suppose t > 1.
Let αj = a1a2 · · · an denote an arbitrary leaf of T with change index c. Let β1 = a1 · · · ac−1, y = ac, and β2 = ac+1 · · · an.
Then αj = β1yβ2 and its parent is β1y′β2 for some y′ ∈ Σ; the corresponding nodes in T are joined via the conjugate pair
(yβ1β2, y′β1β2). If T = T1, let x = y′; if T = T2, let x = first(y′β1β2) with respect to T. Let T ′ denote the concatenation
tree obtained by removing αj from T. Similarly, let T′ denote the cycle-joining tree T with the leaf corresponding to αj

removed. Let U1 = ap(αj+1) · · · ap(αt) ap(α1) · · · ap(αj−1) denote a rotation of RCL(T ′). By induction, U1 is a universal
cycle for S′ = S − [αj]. Let U2 = ap(αj); it is a universal cycle for [αj]. Note that U1 contains xβ2β1 and U2 contains
yβ2β1. The following claim will be proved later.

B Claim 17. U1 (considered cyclically) has prefix β1 and suffix xβ2.

Let U ′1 = · · · xβ2β1 and let U ′2 = · · · yβ2β1 be rotations of U1 and U2, respectively. Then by Theorem 1 and Claim 17, U1
and U2 can be joined via the conjugate pair (xβ2β1, yβ2β1) to produce universal cycle U ′1U

′
2, which is a rotation of U1U2, for

S. Since U1U2 is a rotation of U , the latter is also a universal cycle for S.
Clearly f1 = f2, with respect to the single PCR cycle [αj]; both functions are UC-successors for U2. Suppose T = T1.

From the induction hypothesis, f1 (with respect to T′) is a UC-successor for U1. Since the two cycles U1 and U2 were joined
via the conjugate pair (xβ2β1, yβ2β1) to obtain U ; the successors of only these two strings are altered. By the joining, the
successor of yβ2β1 becomes the successor of xβ2β1 in U1 which is precisely g1(yβ2β1) with respect to T. The successor of
xβ2β1 is y, which is the same as g1(xβ2β1) with respect to T. Thus, f1 (with respect to T) is a UC-successor for U . A similar
argument applies for T = T2.

It remains to prove Claim 17.

6.0.1 Proof of Claim 17

Recall, U1 = ap(αj+1) · · · ap(αt) ap(α1) · · · ap(αj−1), αj = β1yβ2, and ancestor(αj) = β1xβ2. We first demonstrate
αj+1 has prefix β1 and αj−1 has suffix xβ2 by tracing the six cases from Remark 16 as illustrated in Figure 10. Assume
operations of the indices are taken modulo t, i.e., α0 = αt and αt+1 = α1. For each 1 ≤ i ≤ t, let ci denote the change index
of αi.

B Claim 18. αj+1 has prefix β1.

Proof. Since αj is a leaf we need only consider the four cases (b)(c)(e)(f) from Remark 16 following the notation from
Figure 10. Let x = αj and y = αj+1.

(b) rm clearly has prefix β1. Since the change index of rm is less than or equal to cj , and rm only differs from its parent y at
its change index, y must also have the prefix β1.

17

x

. . .

`1

y

y

. . .

x

rm

.

a

`i `i+1

yx

x=root

y

y=root

x

root

yx

(cyclic)

(a) (b) (c) (d) (e) (f)

Figure 10 Illustrating the six cases outlined in Remark 16 for when y follows x in an RCL traversal. The final three cases hold when
the traversal sequence is considered to be cyclic (i.e., x comes last and y comes first). In these images, `i and ri refer to the ith left and
right-child of their parent, respectively, and rm refers to the last right-child of its parent. Dashed lines indicate leftmost right-descendants
(red) and rightmost left-descendants (blue).

(c) `i clearly has prefix β1. The change index of `i is strictly less than the change index of `i+1 and the two nodes differ only
at those two indices. Thus, β1 is a prefix of `i+1. Since y can only differ from `i+1 in indices between the change index of
`i+1 and cj+1, it must also have the prefix β1.

(e) Trivial.
(f) All the nodes on the path from x up to the root and down to y must have change index greater than or equal to cj . Thus

each node, including y will have prefix β1.

J

B Claim 19. αj−1 has suffix xβ2.

Proof. Since αj is a leaf, we consider the four cases (a)(c)(d)(f) from Remark 16 following notation from Figure 10. Let
x = αj−1 and y = αj . Recall the parent of αj is β1y′β2. First, suppose T is a left concatenation tree, recalling x = y′.

(a) If `1 = y, the result is immediate. Suppose `1 6= y. From the definition of x, `1 has suffix xβ2 and change index strictly
less than cj . Since `1 differs from its parent x only at its change index, x must also have suffix xβ2.

(c) If `i+1 = y, then it is already established that its parent a has suffix xβ2. Otherwise, `i+1 has suffix xβ2 and change index
less than cj , which means that a again has suffix xβ2. Since the change index of `i is less than the change index of `i+1,
clearly x also has suffix xβ2.

(d) Follows since T is a left concatenation tree.
(f) Let αr be the root of T. Clearly, αr has suffix xβ2 and cr < cj . Thus, x also will have suffix xβ2.

Now suppose T is a right concatenation tree recalling x = first(y′β1β2). This implies that all nodes on the path from β1xβ2
to y = αj have change index cj and the change index of β1xβ2 is not equal to cj .

(a) If `1 = y, then the change index of `1 is strictly less than the change index of x and the result follows as x = y′. Suppose
`1 6= y. If the change index of `1 is strictly less than cj , then by the definition of x, `1 has suffix xβ2. Thus, clearly x also
has suffix xβ2. Otherwise, the change index of `1 must be equal to cj , and since it is a left-child of x, the change index of
x is not equal to cj . Thus, by the definition of x, x will be precisely β1xβ2.

(c) Recall this covers two cases where the children of a can be either be both left-children or both right-children. In either
case, the change index of a can not be the same as the change index for `i+ 1. Thus, following the same argument from
(a), the node a will have suffix xβ2. Since the change index of `i is less than the change index of `i+1, clearly x also has
suffix xβ2.

(d) Follows since T is a right concatenation tree.
(f) Let αr be the root of T . Clearly, αr has suffix xβ2 and cr ≤ cj . Since all left descendants of the root will have change

index strictly less than cr, it follows that x also will have suffix xβ2.

18 Concatenation Trees

J

If αj−1 and αj+1 are aperiodic, then by Claim 18 and Claim 19 we are done. If t = 2, then we are also done since U1 is
considered cyclically. It remains to be considered the cases where αj−1 or αj+1 is periodic and t > 2. These cases apply the
“acceptable range”.

Case: αj+1 is periodic
Suppose αj+1 has period p and acceptable range kp+1, . . . , kp+p. To handle this case, we demonstrate the following:
(i) cj ≤ kp+ p, and (ii) ap(αj+1)k+1 is a prefix of U1. The first point implies that β1 is a prefix of ap(αj+1)k+1 since
β1 is a prefix of αj+1 from Claim 18. This, in combination with the second point, implies β1 is a prefix of U1.

Proof of (i). Since αj is a leaf, we step through cases (b), (c), (e), and (f) from Remark 16 following notation from
Figure 10 where x = αj and y = αj+1. (b) The change index for rm must be less than or equal to kp+ p, and because
αj is a left descendant of rm, cj must be less than or equal to the change index of rm. Thus, cj ≤ kp+ p. (c) cj is less
than or equal to the change index of `i, which is less than the change index of `i+1, which is less than or equal to cj+1.
Thus, cj < cj+1 ≤ kp+ p. (e) αj is a left-descendant of αj+1 so clearly cj < cj+1 ≤ kp+ p. (f) cj is less than or
equal to the change index of the root, which is less than or equal to cj+1. Thus, cj < cj+1 ≤ kp+ p. J

Proof of (ii). We start by proving a general claim for consecutive nodes in the RCL traversal of T and use that to
prove a stronger claim. For convenience, consider the notation used in acceptable ranges to be independent of earlier
definitions.

B Claim 20. If αi is periodic with period p and acceptable range kp+ 1, . . . , kp+ p, then ap(αi)k is a prefix
of αi+1.

Proof. If αi is not an ancestor of αi+1, the inequality kp < ci and Claim 18 together imply ap(αi)k is a prefix
of αi+1. It remains to consider cases (a) and (d) from Remark 16 where x = αi is an ancestor of y = αi+1. For
case (a), y is the leftmost right-descendent of x’s first left-child `1. Since x is periodic, the change index of `1 is
in αi’s acceptable range; it is greater than kp. y is a right descendant of `1 and thus ci+1 > kp, which means y
differs from `1 only in indices greater than kp. For (d) clearly y differs only in indices greater than or equal to ci,
which means ci+1 > kp. Thus, for each case, ap(αi)k is a prefix of αi+1. J

B Claim 21. If αi is periodic with period p and acceptable range kp + 1, . . . , kp + p, then ap(αi)k+1 is a
prefix of ap(αi) · · · ap(αt)ap(α1) · · · ap(αi−1), which is a rotation of RCL(T), considered cyclically.

Proof. Note that |ap(αi)k+1| ≤ n. The proof is by induction on the number of nodes t. If t = 1, the result is
trivial. Suppose the claim holds for any tree with less than t > 1 nodes. Let T have t nodes and let αi be a leaf
node of T . If there are no periodic nodes, we are done. Otherwise, we first consider αi, then all other periodic
nodes in T .

Suppose αi is periodic with period p and acceptable range kp+ 1, . . . , kp+ p. From Claim 20, ap(αi)k is a
prefix of αi+1. If αi+1 is aperiodic, then we are done. Suppose, then, that αi+1 is periodic with period p′ and
acceptable range k′p′+ 1, . . . , k′p′+ p′. Let T ′ be the tree resulting from T when αi is removed. It follows from
(i) that kp < ci ≤ k′p′ + p′, which implies ap(αi)k is a prefix of ap(αi+1)k′+1. Additionally, since T ′ has less
than t nodes and αi+1 is periodic, ap(αi+1)k′+1 is a prefix of ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi−1) by our
inductive assumption. Therefore, ap(αi)k+1 is a prefix of ap(αi)ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi−1).

Now consider αi−1. If it is aperiodic, then by induction, the claim clearly holds for all periodic nodes
in T ′. Thus, assume αi−1 is periodic. By showing that ap(αi−1)ap(αi) · · · ap(αt)ap(α1) · · · ap(αi−2) has
the desired prefix, then repeating the same arguments will prove the claim holds for every other periodic
node in T ′. Let αi−1 have period p′′ and acceptable range k′′p′′ + 1, . . . , k′′p′′ + p′′. If αi is aperiodic,
Claim 20 implies that ap(αi−1)k′′

is a prefix of αi = ap(αi) and thus the claim holds for αi−1. If αi is
periodic with period p and acceptable range kp + 1, . . . , kp + p, we already demonstrated that ap(αi)k+1 is

19

a prefix of ap(αi) · · · ap(αt)ap(α1) · · · ap(αi−1). From Claim 20, ap(αi−1)k′′
is a prefix of αi. Note that (i)

and its proof handles cases (b)(c)(e)(f) from Remark 16 implying that ci−1 < kp + p for these cases. Since
αi−1 is not necessarily a leaf, we must also consider (a) and (d). In both cases, clearly k′′p′′ < ci. Either
way, k′′p′′ < kp + p, which means ap(αi−1)k′′

is a prefix of ap(αi)k+1. Thus, ap(αi−1)k′′+1 is a prefix of
ap(αi−1)ap(αi) · · · ap(αt)ap(α1) · · · ap(αi−2). J

Applying Claim 21 to αj+1 gives the desired result. J

Case: αj−1 is periodic
The proof mirrors the case for αj+1. Suppose αj−1 has period p and acceptable range kp+ 1, . . . , kp+ p. To handle
this case we demonstrate the following: (i) cj > kp, and (ii) ap(αj−1)q−k is a suffix of U1. The first point implies that
β2 is a suffix of ap(αj−1)q−k since β2 is a suffix of αj−1 from Claim 19. This, in combination with the second point,
implies β2 is a suffix of U1.

Proof of (i). Since αj is a leaf, we step through cases (a), (c), (d), and (f) from Remark 16 following notation from
Figure 10 where x = αj−1 and y = αj . (a) By the acceptable range, the change index for `1 must be greater than
kp. Because αj is a right descendant of `1, cj must be greater than or equal to the change index of `1. Thus, cj > kp.
(c) cj−1 is less than or equal to the change index of `i, which is less than the change index of `i+1, which is less than
or equal to cj . Thus, kp < cj−1 < cj . (d) αj is a right-descendant of αj−1 so clearly kp < cj−1 < cj . (f) cj−1 is less
than or equal to the change index of the root, which is less than cj . Thus, kp < cj−1 < cj . J

Proof of (ii). As with the prefix section, we start by proving a general claim for consecutive nodes in the RCL
traversal of T and use that to prove a stronger claim. For convenience, consider the notation used in acceptable ranges
to be independent of earlier definitions.

B Claim 22. If αi is periodic with period p and acceptable range kp+ 1, . . . , kp+ p, then ap(αi)q−k−1, where
q = n/p, is a suffix of αi−1.

Proof. If αi is not an descendant of αi−1, the inequality ci ≤ kp + p and Claim 19 together imply ap(αi)k

is a prefix of αi−1. It remains to consider cases (b) and (e) from Remark 16 where y = αi is an ancestor of
x = αi−1. For case (b), x is the rightmost left-descendent of y’s last right-child rm. Since y is periodic, the
change index of rm is in αi’s acceptable range; it is less than or equal to kp+ p. x is a left descendant of rm and
thus ci−1 ≤ kp+ p, which means x differs from rm only in indices less than or equal to kp+ p. For (e) clearly
x differs only in indices less than or equal to ci, which means ci−1 ≤ kp+ p. Thus, for each case, ap(αi)q−k−1

is a suffix of αi−1. J

B Claim 23. If αi is periodic with period p and acceptable range kp+ 1, . . . , kp+ p, then ap(αi)n/p−k, is a
suffix of ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi), which is a rotation of RCL(T), considered cyclically.

Proof. Let q = n/p. Note that |ap(αi)q−k| ≤ n. The proof is by induction on t. If t = 1, the result is trivial.
Suppose the claim holds for any tree with less than t > 1 nodes. Let T have t nodes and let αi be a leaf node of
T . If there are no periodic nodes, we are done. Otherwise, we first consider αi, then all other periodic nodes in
T .

Suppose αi is periodic with period p and acceptable range kp+ 1, . . . , kp+ p. From Claim 22, ap(αi)q−k−1

is a suffix of αi−1. If αi−1 is aperiodic, then we are done. Suppose, then, that αi−1 is periodic with period p′ and
acceptable range k′p′+ 1, . . . , k′p′+p′. Let T ′ be the tree resulting from T when αi is removed. It follows from
(i) that k′p′ < ci ≤ kp+ p, or n− kp− p < n− k′p′, which implies ap(αi)q−k−1 is a suffix of ap(αi−1)q′−k′

,
where q′ = n/p′. Additionally, since T ′ has less than t nodes and αi−1 is periodic, ap(αj−1)q′−k′

is a suffix
of ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi−1) by our inductive assumption. Therefore, ap(αi)q−k is a suffix of
ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi−1)ap(αi).

20 Concatenation Trees

Now consider αi+1. If it is aperiodic, then by induction the claim clearly holds for all periodic nodes
in T ′. Thus, assume αi+1 is periodic. By showing ap(αi+2) · · · ap(αt)ap(α1) · · · ap(αi)ap(αi+1) has the
desired suffix, then repeating the same arguments will prove the claim holds for every other periodic node in
T ′. Let αi+1 have period p′′ and acceptable range k′′p′′ + 1, . . . , k′′p′′ + p′′. If αi is aperiodic, Claim 22
implies that ap(αi+1)q′′−k′′−1 is a suffix of αi = ap(αi) and thus the claim holds for αi+1. If αi is periodic
with period p and acceptable range kp+ 1, . . . , kp+ p, we already demonstrated that ap(αi)q−k is a suffix of
ap(αi+1) · · · ap(αt)ap(α1) · · · ap(αi). From Claim 22, ap(αi+1)q′′−k′′−1 is a suffix of αi. Note that (i) and
its proof handles cases (a)(c)(d)(f) from Remark 16 implying that ci+1 > kp for these cases. Since αi+1 is
not necessarily a leaf, we must also consider (b) and (e). In both cases, clearly ci ≤ k′′p′′ + p′′. Either way,
kp < k′′p′′ + p′′, which means ap(αi+1)q′′−k′′−1 is a suffix of ap(αi)q−p. Thus, ap(αi+1)q′′−k′′

is a suffix of
ap(αi+2) · · · ap(αt)ap(α1) · · · ap(αi)ap(αi+1). J

Applying Claim 23 to αj−1 gives the desired result. J

References

1 De Bruijn sequence and universal cycle constructions (2023). http://debruijnsequence.org.
2 The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2010, sequence A006013.
3 ALHAKIM, A. A simple combinatorial algorithm for de Bruijn sequences. The American Mathematical Monthly 117, 8 (2010),

728–732.
4 BANKEVICH, A., BZIKADZE, A. V., KOLMOGOROV, M., ANTIPOV, D., AND PEVZNER, P. A. Multiplex de bruijn graphs enable

genome assembly from long, high-fidelity reads. Nature Biotechnology 40, 7 (Jul 2022), 1075–1081.
5 BOOTH, K. S. Lexicographically least circular substrings. Inform. Process. Lett. 10, 4/5 (1980), 240–242.
6 BROCKMAN, G., KAY, B., AND SNIVELY, E. On universal cycles of labeled graphs. Electronic Journal of Combinatorics 17 (200),

R4.
7 CAMERON, B., GÜ̈NDOĞAN, A., AND SAWADA, J. Cut-down de Bruijn sequences, https://arxiv.org/abs/2205.02815, 2022.
8 CHUNG, F., DIACONIS, P., AND GRAHAM, R. Universal cycles for combinatorial structures. Discrete Mathematics 110, 1-3 (1992),

43–59.
9 COMPEAU, P. E., PEVZNER, P. A., AND TESLER, G. How to apply de bruijn graphs to genome assembly. Nature biotechnology 29,

11 (2011), 987–991.
10 CURTIS, D., HINES, T., HURLBERT, G., AND MOYER, T. Near-universal cycles for subsets exist. SIAM Journal on Discrete

Mathematics 23, 3 (2009), 1441–1449.
11 DAI, Z.-D., MARTIN, K., ROBSHAW, B., AND WILD, P. Orientable sequences. In Cryptography and Coding III (M.J.Ganley, ed.)

(1993), Oxford University Press, pp. 97–115.
12 DRAGON, P. B., HERNANDEZ, O. I., SAWADA, J., WILLIAMS, A., AND WONG, D. Constructing de Bruijn sequences with

co-lexicographic order: The k-ary Grandmama sequence. European Journal of Combinatorics 72 (2018), 1–11.
13 ELDERT, C., GRAY, H., GURK, H., AND RUBINOFF, M. Shifting counters. AIEE Trans. 77 (1958), 70–74.
14 ETZION, T. An algorithm for generating shift-register cycles. Theoret. Comput. Sci. 44, 2 (1986), 209–224.
15 ETZION, T. Self-dual sequences. Journal of Combinatorial Theory, Series A 44, 2 (1987), 288 – 298.
16 ETZION, T., AND LEMPEL, A. Construction of de Bruijn sequences of minimal complexity. IEEE Transactions on Information

Theory 30, 5 (September 1984), 705–709.
17 FREDRICKSEN, H. Generation of the Ford sequence of length 2n, n large. J. Combin. Theory Ser. A 12, 1 (1972), 153–154.
18 FREDRICKSEN, H., AND KESSLER, I. Lexicographic compositions and de Bruijn sequences. J. Combin. Theory Ser. A 22, 1 (1977),

17 – 30.
19 FREDRICKSEN, H., AND MAIORANA, J. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23 (1978),

207–210.
20 GABRIC, D., AND SAWADA, J. A de Bruijn sequence construction by concatenating cycles of the complemented cycling register.

In Combinatorics on Words - 11th International Conference, WORDS 2017, Montréal, QC, Canada, September 11-15, 2017,
Proceedings (2017), pp. 49–58.

21 GABRIC, D., AND SAWADA, J. Constructing de Bruijn sequences by concatenating smaller universal cycles. Theoretical Computer
Science 743 (2018), 12–22.

22 GABRIC, D., SAWADA, J., WILLIAMS, A., AND WONG, D. A framework for constructing de Bruijn sequences via simple successor
rules. Discrete Mathematics 241, 11 (2018), 2977–2987.

21

23 GABRIC, D., SAWADA, J., WILLIAMS, A., AND WONG, D. A successor rule framework for constructing k -ary de Bruijn sequences
and universal cycles. IEEE Transactions on Information Theory 66, 1 (2020), 679–687.

24 HIERHOLZER, C. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische
Annalen 6 (1873), 30–32.

25 HIGGNS, Z., KELLEY, E SIEBEN, B., AND GODBOLE, A. Universal and near-universal cycles of set partitions. Electronic Journal
of Combinatorics 22, 4 (2015), P4.48.

26 HOLROYD, A. E., RUSKEY, F., AND WILLIAMS, A. Shorthand universal cycles for permutations. Algorithmica 64, 2 (2012),
215–245.

27 HUANG, Y. A new algorithm for the generation of binary de Bruijn sequences. J. Algorithms 11, 1 (1990), 44–51.
28 HURLBERT, G. On universal cycles for k-subsets of an n-set. SIAM Journal on Discrete Mathematics 7, 4 (1994), 598–604.
29 JACKSON, B. W. Universal cycles of k-subsets and k-permutations. Discrete mathematics 117, 1 (1993), 141–150.
30 JANSEN, C. J. A., FRANX, W. G., AND BOEKEE, D. E. An efficient algorithm for the generation of DeBruijn cycles. IEEE

Transactions on Information Theory 37, 5 (Sep 1991), 1475–1478.
31 JOHNSON, J. R. Universal cycles for permutations. Discrete Mathematics 309, 17 (2009), 5264–5270.
32 KAK, S. Yamatarajabhanasalagam: an interesting combinatoric sutra. Indian Journal of History of Science 35, 2 (2000), 123–128.
33 KNUTH, D. E. The Art of Computer Programming, Volume 4A, Combinatorial Algorithms. Addison-Wesley Professional, 2011.
34 MAHADIK, K., WRIGHT, C., KULKARNI, M., BAGCHI, S., AND CHATERJI, S. Scalable genome assembly through parallel de

Bruijn graph construction for multiple k-mers. Scientific Reports 9, 1 (Oct 2019), 14882.
35 MARTIN, M. H. A problem in arrangements. Bull. Amer. Math. Soc. 40, 12 (1934), 859–864.
36 MITCHELL, C. J., AND WILD, P. R. Constructing orientable sequences. IEEE Trans. Inf. Theory 68, 7 (2022), 4782–4789.
37 NELLORE, A., AND WARD, R. Arbitrary-length analogs to de Bruijn sequences. In 33rd Annual Symposium on Combinatorial

Pattern Matching (CPM 2022) (Dagstuhl, Germany, 2022), H. Bannai and J. Holub, Eds., vol. 223 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 9:1–9:20.

38 RUSKEY, F., AND SAWADA, J. An efficient algorithm for generating necklaces with fixed density. SIAM Journal on Computing 29,
2 (1999), 671–684.

39 RUSKEY, F., SAWADA, J., AND WILLIAMS, A. De Bruijn sequences for fixed-weight binary strings. SIAM J. Discrete Math. 26, 2
(2012), 605–617.

40 RUSKEY, F., AND WILLIAMS, A. An explicit universal cycle for the (n-1)-permutations of an n-set. ACM Trans. Algorithms 6, 3
(July 2010), 1–12.

41 SALA, E., SAWADA, J., AND ALHAKIM, A. Efficient constructions of the Prefer-same and Prefer-opposite de Bruijn sequences.
CoRR abs/2010.07960 (2020).

42 SAWADA, J., AND WILLIAMS, A. Constructing the first (and coolest) fixed-content universal cycle. Algorithmica 85, 6 (Jun 2023),
1754–1785.

43 SAWADA, J., WILLIAMS, A., AND WONG, D. Universal cycles for weight-range binary strings. In Combinatorial Algorithms - 24th
International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, LNCS 8288 (2013), pp. 388–401.

44 SAWADA, J., WILLIAMS, A., AND WONG, D. The lexicographically smallest universal cycle for binary strings with minimum
specified weight. Journal of Discrete Algorithms 28 (2014), 31–40.

45 SAWADA, J., WILLIAMS, A., AND WONG, D. A surprisingly simple de Bruijn sequence construction. Discrete Math. 339 (2016),
127–131.

46 SAWADA, J., AND WONG, D. Efficient universal cycle constructions for weak orders. Discrete Mathematics 343, 10 (2020), 112022.
47 SONG, L., GENG, F., GONG, Z.-Y., CHEN, X., TANG, J., GONG, C., ZHOU, L., XIA, R., HAN, M.-Z., XU, J.-Y., LI, B.-Z.,

AND YUAN, Y.-J. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nature Communications 13, 1
(Sep 2022), 5361.

48 STEIN, S. K. The mathematician as an explorer. Scientific American 204, 5 (1961), 148–161.
49 STEIN, S. K. Mathematics: the man-made universe. Courier Corporation, 2013.
50 VAN NOOTEN, B. Binary numbers in indian antiquity. Journal of Indian philosophy (1993), 31–50.
51 WONG, D. A new universal cycle for permutations. Graph. Comb. 33, 6 (Nov. 2017), 1393–1399.
52 ZERBINO, D. R., AND BIRNEY, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 5

(May 2008), 821–829.

22 Concatenation Trees

A Enumeration of bifurcated ordered trees (BOTs)

In OEIS A006013 [2], the enumeration sequence for BOTs computed in the following C program is equivalent to the
enumeration sequence for the following objects (among others):

enumerates pairs of ternary trees,
permutations avoiding 213 in the classical sense which can be realized as labels on an increasing strict binary tree with
2n− 1 nodes,
connections of 2n− 2 points labeled 1, 2, ..., 2n− 2 in a line with 0 or more noncrossing arcs above the line such that
each maximal contiguous sequence of isolated points has even length, and
projective dependency trees with n nodes.

Discovering a mapping between BOTs and these objects is the topic of current research.

//==
// Dynamic Programming Approach to Enumerating Bifurcated Ordered Trees (BOTs)
// The sequence matches all entries to the sequence https://oeis.org/A006013
//==

#include<stdio.h>
long int T[100], total, a[100];

void BOT(int t, int n, int m) {
long int i,temp=0;

if (n > 0) {
for (i=1; i<=n; i++) { a[t] = i; BOT(t+1,n-i, m); }

}
else if (m > 0) {

for (i=1; i<=m; i++) { a[t] = i; BOT(t+1,n, m-i); }
}
else {

temp = T[a[1]];
for (i=2;i<=t-1; i++) temp = temp * T[a[i]];
total += temp;

}
}
//-------------------------------------
int main() {
int i,j;

T[1] = 1; T[2] = 2; // Base cases
for (i=3; i<=23; i++) {

total = 0;
for (j=0; j<=i-1; j++) BOT(1,j,i-1-j);
T[i] = total;

}
for (i=1; i<=23; i++) printf("T[%d] = %ld\n", i, T[i]);

}

	Introduction
	Preliminaries
	Cycle joining trees
	Successor-rule constructions
	Insights into concatenation trees

	Bifurcated ordered trees
	Right-Current-Left (RCL) traversals

	Concatenation trees
	Algorithmic details and analysis

	Applications
	Universal cycles for shorthand permutations
	Universal cycles for weak orders
	Orientable sequences
	De Bruijn sequences
	Cut-down de Bruijn sequences

	Proof of Theorem 3
	Proof of Claim 17

	Enumeration of bifurcated ordered trees (BOTs)

