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Abstract
The design of automatic systems dedicated to satellite image classification has received considerable attention.
However, the current systems still cannot compare with human photo-interpreters. A promising approach consists in
integrating structural knowledge into the classification process, i.e., using information about the shape of and the
spatial relations between the regions that are to be determined. The present work tackles this issue, and relies on soft
computing techniques. First, a fuzzy classifier produces a fuzzy partition of the image. Then, the defuzzified (crisp)
partition is tried to be improved. According to the membership degrees in the fuzzy partition, the system selects a set
of pixels and associates a set of candidate classes with each of them. The initial crisp partition is improved by
reassigning each selected pixel to one of the classes it may belong to. This is performed by a combinatorial
optimization strategy. The aim is to maximize the adequacy between the regions defined by the crisp partition and
the structural knowledge which is available. First experiments on remote sensing data show the applicability of our
approach.
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1.   Introduction

The design of automatic systems dedicated to satellit e image classification has received considerable attention.
Although important results have been achieved, the current systems still cannot compare with human photo-
interpreters. Numerous classifiers based on the spectral analysis of individual pixels have been proposed. However,
the limitations when only using spectral information are apparent, and in most cases the classification results are
unsatisfactory.

With the aim of achieving higher accuracy, integration of additional data has been investigated. The multisource
classification model is based on pixel-by-pixel classification techniques that combine spectral information with
various forms of data related to individual pixels (e.g., multisensor data, multitemporal data, ancill ary data like



digital elevation models, geological and topographic maps, symbolic data such as model-based knowledge
represented by if-then rules, etc.) [1][2][3]. The data obtained from different sources is generally described by
different models and contains uncertain and incomplete information. Therefore, data fusion methods relying on
Dempster-Shafer’s theory [4] and fuzzy set theory [5] have been successfully employed [6][7][8]. However, as
expressed by the contextual classification model, each pixel should not be classified independently from its
neighboring pixels [9]. Relaxation methods [10] and smoothing methods (sometimes referred to as generalization)
[11] are representative of this concept. Finally, it is natural to utilize both the multisource and the contextual models
to achieve higher classification accuracy [12][13].

Nevertheless, human photo-interpreters also implicitly use structural knowledge in the manual classification
process. They not only consider contextual information but also information about the shape of and the spatial
relations between the image regions. This type of knowledge has not been utili zed in former systems. Several studies
have exploited structural knowledge for classifying image segments produced by spectral image segmentation. The
classes are described by knowledge-based rules, and each segment is classified according to its geometric and
morphological properties [14]. But the results totally depend on the segmentation stage, which does not consider
structural knowledge.

In this paper, we present an approach that integrates structural knowledge into the image classification process.
First, a fuzzy classifier generates a fuzzy partition of the image. The partition can be either probabili stic or
possibili stic. Its defuzzification produces a traditional crisp partition. The system then selects certain pixels, and a
set of candidate classes is associated with each selected pixel. The pixels and classes are chosen according to the
membership degrees in the fuzzy partition. Finally, the system tries to improve the initial classification by
reassigning each pixel to one of the classes it may belong to. For these reassignments, it is assumed that some
structural knowledge about the classes to be found in the image has been collected. We are faced with three
fundamental problems: (1) How to represent the expert knowledge? (2) How to measure the adequacy between an
image region and the knowledge that is supposed to concern it? (3) How to exploit such a measurement in the
classification process? The first two problems are discussed briefly in Section 2. Our main interest is in the third
problem. In Section 3, we describe a Region Modification Approach (RMA) by Simulated Annealing (SA). In
Section 4, we present first experiments on remote sensing data: a Landsat 7 multispectral image of Tikehau atoll i n
French Polynesia. Conclusions and further comments are given in Section 5.

2.   Knowledge Representation

Expert knowledge contains uncertain, incomplete and vague information. Consequently, the use of a fuzzy
inference system appears to be justified. Fuzzy production rules for image classification are typically of the
following form (although the premise and consequent could sometimes be reversed) [3][6][13]:

If ( class k ), then ( V1 is A1 ) and ... and ( Vi is Ai ) and ... and ( VN is AN ).

The consequent term characterizes the environmental context of the class. It is composed of elementary propositions
such as “Vi is Ai” , where Vi denotes a variable and Ai a fuzzy subset. These propositions are connected by logical
ANDs (ORs are also admitted). Generally Ai’s are defined a priori, by interviewing experts, or a posteriori, using
experimental methods [15].

2.1.   Pixel-Related Knowledge

When the Vi ’s are related to pixels (i.e., when each pixel can be considered independently of the others), the
production rule represents “pixel-related knowledge” . This knowledge may use pixel-related features (spectral data,
altitude, etc.). This type of knowledge has already been studied [6].

2.2.   Structural Knowledge

Now, consider the following expert knowledge: “class 1 appears principally in the shape of lit tle circular
regions” . At this point, the pixels can no longer be classified independently from the others. This type of knowledge
is called structural knowledge. In the example above, there are two elemental knowledge terms, “circular region”
and “ little region” , which implicitly involve specific features (e.g., aspect ratio, area, etc.). In this paper, we assume
that we know how to relate an appropriate set of variables to all of the elemental structural knowledge, and further,
how to measure these variables, whether the considered region in the image is crisp or fuzzy (see, e.g., [16]). To



represent structural knowledge and to measure its adequacy with image objects, a multisource fuzzy inference
system can be used [2][12][13]. For example, in the framework of hierarchical fuzzy production rules, the structural
knowledge SKk about the class k is represented as follows:

Upper level rule: If (class k), then (ESK1) and ... and (ESKj) and ... and (ESKN).

Lower level rule: If (ESKj), then (V1

j
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j
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The consequent term of the upper level rule is composed of elemental knowledge terms ESKj connected by logical
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Note that Binaghi et al. [13] use a similar system to represent contextual information (in the upper level) and to
evaluate multisource information (in the lower level). Also note that, in this paper, we do not describe how to handle
adverbs (such as “principally” ) in the formulation of knowledge.

3.   Structural Knowledge Integration

Suppose we are able to evaluate the degree of adequacy between any region and the structural knowledge that is
available (Section 2). How can we utili ze this abili ty to improve classification accuracy? We refer to this problem as
the problem of structural knowledge integration. To answer it, we propose the Region Modification Approach.

3.1.   Region Modification Approach (RMA)

Assume that a partition of the studied image has been output by some fuzzy classifier. We call this preliminary
process pre-classification. The partition can be either probabili stic (the sum of the membership degrees is equal to 1)
or possibili stic (the previous equali ty does not necessarily hold). Its defuzzification produces a traditional crisp
partition. At first glance, by looking at this crisp partition, a human photo-interpreter may question the “class k”
label assigned to a given region R, simply because R does not obviously conform to “class k”  structural knowledge.
The label might have been assigned by mistake (for instance, R is a region of “class m”  whose spectral features
resemble those of “class k” ), or some boundary pixels (particularly mixed pixels) might have been misclassified.
The human photo-interpreter will then revise the pre-classification output and reassign some pixels to other classes.
The Region Modification Approach (RMA) imitates this process. Consider Fig. 1(a). It represents the crisp partition
issued from some pre-classification. The black pixels are assigned to “class 1”  and form the region R1.

Fig. 1.   Is the region R1 rectangular?

(a) qSK1(R1) is low (b) qSK1(R1) is high (c) qSK1(R1) is maximum

R1 R1 R1



Suppose now that we have the structural knowledge SK1: “class 1 appears in the shape of rectangular regions” . It
is obvious that the reassignment of some pixels (marked with white bordered squares) enables a significant increase
of qSK

1(R1), the degree of adequacy between R1 and SK1 (Fig. 1(b)(c)). Of course, if structural knowledge about the
other classes is also available, this reassignment may simultaneously cause the decrease of adequacy degrees for
neighboring regions. This is why we should consider a global adequacy degree Q(X), the degree of adequacy
between the partition and all the structural knowledge that is available. We have: Q(X) = F(q1, ..., qr, ..., qn), where X
denotes the considered partition, F a combination operator, qr the adequacy degree associated with the r-th region,
and n the total number of regions in X. In our experiment (Section 4), the classical arithmetic mean operator has
been chosen, but other operators (e.g., min operator) may also be considered.

The objective of the RMA is to reassign some pixels in order to globally increase the adequacy degrees of the
regions. The problem corresponds to a combinatorial optimization problem. It aims at finding an optimal
reassignment of pixels, i.e., a partition X that maximizes Q(X). Three heuristic iterative methods are well known as
efficient methods for answering optimization problems and have been successfully applied to clustering and image
classification [17][18][19]: Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithm (GA). Their
performances depend on the context of the problem (size and structure of search space, complexity of neighbor
structure, etc.). In a previous study [20], we tested the RMA on a simple test image, and compared the use of the
three heuristic methods. SA seemed to be the most appropriate. In this paper, we present the RMA by SA.

3.2.   Simulated Annealing Strategy

The SA algorithm can be schematically described as follows:  (I) From the current solution Xnow, produce an
alternative candidate solution Xcand.  (II) I f  Q(Xnow) < Q(Xcand),  replace Xnow by Xcand.  (III) Repeat (I) and (II ) until
there are no solutions Xcand satisfying  Q(Xnow) < Q(Xcand).  Unfortunately, the output of this algorithm may not be an
optimal solution (local maximum only). This is why destructive solutions should sometimes be accepted, i.e.,
candidate solutions Xcand that do not satisfy the inequali ty  Q(Xnow) < Q(Xcand).  In SA, this concept is implemented
by introducing a parameter called temperature, and a cooling schedule.

In fact, the RMA requires a fuzzy pre-classification process. The initial solution Xinit utili zed in the RMA is a
crisp partition obtained by defuzzifying the fuzzy partition X

~
 issued from the pre-classification. Then, from a

partition Xnow (current solution), which is equal to Xinit at the first iteration, an alternative partition Xcand is generated
(in this paper, unless otherwise stated, the term “partition”  always denotes a crisp partition). For any pixel P and any
class i, let µi(P) be the membership value of P to class i in X

~
, CLinit(P) the class of P in Xinit, and CLnow(P) the class

of P in Xnow. For any i,  µCLinit(P)(P) ≥ µi(P)  is satisfied. The alternative partition Xcand is generated from Xnow by

reassigning a pixel P (chosen randomly) to a class CLcand(P) ≠ CLnow(P) (chosen randomly too). However, it is
obvious that a pixel P satisfying  µCLinit(P)(P)>>µi(P)  for any  i ≠ CLinit(P)  would not constitute a judicious choice.

Similarly, CLcand(P) should not satisfy  µCLinit(P)(P)>>µCLcand(P)(P).  Finally, Xcand is generated as follows:

[Step 1]    Randomly choose a pixel P that satisfies
                 min i≠CLinit(P){ µCLinit(P)(P)−µi(P)}  ≤ σ
                 (where σ ∈[0,1] designates a predefined threshold).
[Step 2]    Randomly choose a class CLcand(P) that satisfies
                 µCLinit(P)(P)−µ CLcand(P)(P) ≤ σ.

                 If CLcand(P) = CLnow(P), return to Step 1.
[Step 3]    Reassign P to class CLcand(P). The obtained partition is Xcand.

However, we can further refine the process. “Random” choices can be restrained so that (i) the lower
min i≠CLinit(P){ µCLinit(P)(P)−µi(P)} , the higher the probabilit y of choosing P, and (ii) the lower µCLinit(P)(P)−µCLcand(P)(P),

the higher the probabili ty of choosing CLcand(P). For instance, Step 2 can be rewritten as follows:

[Step 2]   Select CLcand(P) by roulette selection: the probabili ty of assigning P to a given class k
                               is set to µk(P) / Σi µ*

i (P), where µ*
i (P) equals µi (P) if µCLinit(P)(P)−µi(P) ≤ σ

                               and equals 0 otherwise. If CLcand(P) = CLnow(P), return to Step 1.



Note that the fuzzy pre-classification may give a possibili stic partition [21]. In that case, Σi µ*
i (P) is not

necessarily equal to 1, even if σ =1. Also note that the output Xinit of a crisp pre-classification can be used to produce
a fuzzy partition. Let P be a pixel, and let R be a region assigned to class k in Xinit. If P belongs to R, we can give
µk(P) a value directly proportional to the distance of P from the boundary of R. Otherwise, we can give µk(P) a value
inversely proportional to the distance of P from all regions assigned to class k. Then, the RMA would tend to round
the regions which are expected to be round, to elongate those which are expected to be elongated, etc. The detailed
algorithm is given below:

Initialization:
Set the iteration counter t to 1. Select a value for it_max (maximum number of iterations for loop 2), IT_max
(maximum number of iterations for loop 1), and T0 (initial temperature). Select a cooling schedule α(T) (in our
experiments, we use α(T) = T0 / t). Initialize Xnow ← Xinit , where Xinit denotes the partition issued from the pre-
classification, and calculate Q(Xnow).

Iteration loop 1
Iteration loop 2

1. Using Xnow, generate a candidate partition Xcand.
2. Calculate δ = Q(Xnow) - Q(Xcand). If δ < 0, replace Xnow by Xcand.

        Otherwise, select a random number r ∈ [0,1], and if r < exp(δ /Τ ), replace Xnow by Xcand.
Repeat loop 2 it_max times,
Update t ← t + 1 and  T ← α(T).

Repeat loop 1 until t exceeds IT_max or Q reaches a predefined value. Xnow is the final partition.

4.   Experiments

4.1.   Data and Pre-Classification Algorithm

In [23], we tested our approach on a 1D synthetic image and on a RGB image of a knife. In the present paper, for
our first experiments on remote sensing data, we use a Landsat 7 multispectral image of Tikehau atoll i n French
Polynesia. The image was acquired on the 7th of August 1999. We exploit the first five bands (visible and infra-red)
of the Enhanced Thematic Mapper Plus (ETM+) sensor onboard the Landsat 7 satellit e. For each band, the spatial
resolution is 30 meters. The images in Figures 2 and 3(a)(b) are obtained by attaching Red, Green and Blue values to
the 4th, 2nd and 1st channels respectively.

The classifier that produces the fuzzy partition we need is a supervised fuzzy classifier. It derives from the
unsupervised FCM (Fuzzy C-Means) [24] algorithm proposed by Gath and Geva [25]. It uses the Mahalanobis
distance, and requires that each class be previously characterized by a prototype made of a mean vector and a
covariance matrix. Fig. 3(c) shows the set of training pixels. The fuzzy partition is into 8 classes. These classes
describe the morphology of a typical atoll rim of the Pacific Ocean (Fig. 2(b)(c)). Fig. 3(d) and Fig. 4(a) show the
crisp partition attached to the fuzzy partition (i.e., obtained by "defuzzification").

Because they are both situated in a submerged domain of the atoll rim (shallow depth structures of the rim), the
classes “spil lway”  and “reef flat” (classes 4 and 5) constitute one of the most important sources of misclassification.
In general, their spectral characteristics are very similar, and they cannot be distinguished one from the other by
conventional classifiers which utili ze only spectral information and pixel-related knowledge [26][27]. For instance,
in Fig. 4(b)(c), the next highest membership degree of most of the pixels assigned to “spill way” is the membership
degree in class “reef flat” , and vice versa. The fundamental differences between the two classes are in their
orientations—transversal for “spil lway” , parallel to the coast line for “ reef flat”  (Fig. 2(b)(c))—and locations—
“spillway”  is generally located before “reef flat” in the transversal direction from the lagoon to the ocean. Reef f lats
do not link ocean and lagoon. They may be encountered even in closed atolls, along the oceanic side of the rim.
Conversely, spil lways work as a link between the ocean and the lagoon. Their role is critical for the renewal rate of
lagoonal waters and the water quality inside lagoons [28]. Consequently, estimation of water renewal rate requires a
clear discrimination and accurate quantification of the extent of spil lways and reef flats along the atoll rim. For
obtaining a high accuracy, consideration of geomorphological expertise is indispensable.



4.2.   Expert Structural Knowledge

Knowledge 1
According to experts, along any cross section of the atoll rim, from the lagoon to the ocean, the geomorphological
classes are situated not in random order, but in the following specific order:

“ lagoon”  ⇒ (“ intertidal” ) ⇒ ( (“ rubble” ) ⇒ (“vegetation” ) ⇒ “ rubble”  ⇒ (“ intertidal” ) ) ⇒ (“spil lway”)
⇒ (“ intertidal” ) ⇒ “ reef flat” / “ intertidal”  ⇒ (“ intertidal” ) ⇒ (“breaking wave”) ⇒ “outer slope” ,

where ( ) means facultative appearance and / means alternative appearance.

Knowledge 2
In addition to Knowledge 1, in order to distinguish between “spillway”  and “reef flat” , experts implicitly carry out
the following alternative reasoning:

1) Pick out a region that is potentially classifiable into “spil lway”  or “ reef flat” .
2) Generate a section parallel to the coast line (about 1 km long) and a cross section

that both pass through the chosen region.
3) A. If the parallel section includes “rubble”  or “vegetation” , then the region is “spil lway” .

B. Otherwise, if the sequence along the cross section (cf. Knowledge 1) includes “rubble”
or “vegetation” , then the region is “ reef flat” . Otherwise, the region is “spillway” .

4.3.   Knowledge Representation and Adequacy Degrees

In this paper, we simplify the classification problem described above by considering cross sections of the atoll
rim and performing the RMA on "one-dimensional" partitions. Fifteen representative cross sections were selected
(Fig. 4(a)). To each section corresponds a one-dimensional fuzzy partition (Fig. 4(b)(c)), and a one-dimensional
crisp partition P (obtained by defuzzification). P is composed of a certain number of regions (segments). For each
region R assigned to “spillway”  or “ reef flat” , two state flags p_flag(R) and v_flag(R) are defined:

1)  If P contains “rubble”  or “vegetation” , p_flag(R) is set true. Otherwise, p_flag(R) is set false.
2)  If any parallel section passing through R contains “rubble”  or “vegetation” , v_flag(R) is set true.
     Otherwise, v_flag(R) is set false.

Knowledge 1 and Knowledge 2 can be represented by the following If-Then production rules:

1)  If (“spil lway”), then (ESK1:  “R conforms to the order in Knowledge 1” )
                              and (ESK2:  “v_flag(R) is true”  or (“v_flag(R) is false”  and “p_flag(R) is false” )).
2)  If (“ reef flat” ), then (ESK1:  “R conforms to the order in Knowledge 1” )
                              and (ESK3:  “v_flag(R) is false”  and “p_flag(R) is true” ).
3)  If (not “spil lway” and not “ reef flat” ), then (ESK1:  “R conforms to the order in Knowledge 1” ).

The computation of qESK1(R), the degree of adequacy between R and Knowledge 1, raises a Sequence Comparison
Problem [29]. First, from the rule that represents Knowledge 1, the set S={ s1, ... , s512} of all possible sequences
(there are 512 possible sequences), is produced. For instance, the following sequence belongs to S:

“ lagoon”  ⇒ “spil lway”  ⇒ “ intertidal”  ⇒ “ reef flat”  ⇒ “breaking wave”  ⇒ “outer slope” .

Then qESK1(R) is calculated by using the Levenshtein distance [30], which is one of the most popular criteria for
evaluating a resemblance (similarity) between two words (sequences). Let P*  be the sequence of classes in P. For
instance, if P = [1,1,1,2,2,3,1,1] (8 pixels, from the lagoon to the ocean), then P* = [1,2,3,1]. For each possible order
sj∈S, the Levenshtein distance d(P*, sj) between P* and sj is calculated. The distance d(P*, S) between P* and S is
given by:  d(P*, S) = min{ d(P*, s1), ... , d(P*, s512)} . If  d(P*, S) is zero, P* corresponds to one sequence in S. The
value qESK1(R) is obtained by normalizing d(P*, S):  qESK1(R) = max { 0, 1−d(P*, S) / 20} . Note that this value only
depends on P.



To compute qESK2(R), we simply add a penalty distance to d(P*, S):  qESK2(R) = max{ 0,1–(d(P*,S)+PD2(R))/20} . If the
binary condition attached to ESK2 is true, the penalty distance PD2(R) is 0. Otherwise, PD2(R) is the number of
pixels of R. The same applies to ESK3. Finally, the degree of adequacy between R and the expert knowledge is
calculated as follows:

q(R) = qESK1(R),  when R is neither “spil lway”  nor “reef flat” ,
q(R) = min{ qESK1(R), qESK2(R)} ,  when R is “spillway” ,
q(R) = min{ qESK1(R), qESK3(R)} ,  when R is “ reef flat” ,

and the global adequacy degree of P is Q(P) = F(q(R1), ... , q(Rn)), where n is the total number of regions Ri in P,
and F( ) is the arithmetic mean operator.

4.4.   Selecting Parameter Values

Because the choice of values for T0 and it_max is critical (Section 3.2), we first processed a test section (Fig.
4(a)) with different pairs of values for these parameters. For each pair, RMA was executed 10 times, and the average
CPU time required for reaching Q(P)>0.9 was computed. Any experiment longer than 10 seconds induced the
considered pair to be rejected. Note that the programs have been written in Java, and were executed on a P300
MMX laptop. Table 1 shows the result of this preliminary experimentation. From this table, it appears that an
appropriate selection should be such that:  T0<0.01  and  it_max<100. For our experiments in Section 4.5, we chose
the following values: T0 = 0.008, it_max = 10, IT_max = 100, and σ = 0.99.

TABLE 1.   Selecting Values for T0 and it_max. The CPU Times Are in Milliseconds.

it_max

T0

rejected

rejected

rejected

rejected

rejected rejectedrejected

4.5.   Results

We applied the RMA to the 15 representative cross sections shown in Fig. 4(a). Table 2 shows the evolution of Q
and PA (“Percentage Agreement” ) for each section. From this table, we can see that Q and PA always increased,
never decreased. Q rose up to 1.0, and PA up to 37.94%. Tables 3 and 4 show the confusion matrices between the
control partition and the initial partition, and between the control partition and the final partition, considering all the
pixels in the different sections. Thanks to the RMA, the percentage agreement PA rose from 73.07% to 87.64%.
When considering the classes “reef flat”  and “spillway” only, it rose from 50.72% to 81.64%.

Fig. 5 to Fig. 10 show detailed results on the test section, and on sections 1, 3, 5, 7 and 8. In these figures, correct
reassignments performed by the RMA are highlighted in cream, incorrect reassignments are highlighted in pink, and
desired and however impossible reassignments (because of the strong and wrong opinion expressed by the fuzzy
partition) in light gray. The majority of the pixels “spillway”  (“ reef flat” ) initiall y misclassified “reef flat”
(“spil lway”) were correctly reassigned by the RMA: 14th to 17th pixels in the test section (Fig. 5), 13th to 22nd in
section 1 (Fig. 6), 30th in section 3 (Fig. 7), 16th to 17th, 20th to 23rd and 26th to 32nd in section 5 (Fig. 8), 15th, 17th to
19th, 21st to 24th, and 28th in section 8 (Fig. 10). The last figure, Fig. 11, shows the results on sections 4-1 to 4-7,
which are adjacent. We can see that all of the 17th to 25th initially misclassified pixels were correctly reassigned.
Although some of the 26th to 33rd pixels were changed for worse, the classification of this 42×7 extracted image was
globally improved (initial PA 72.95%, final PA 87.92%).



(a)

(b)

(c)

Fig. 2.   Tikehau atoll and classes.  (a) Location of Tikehau atoll. (b) Location, inside a typical portion
of atoll rim (bloc diagram from [23]), of the 8 classes considered in this paper. (c) The classes are readily

visible on a Landsat 7 image of the rim.
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1/ Vegetation

2/ Rubble

3/ Intertidal

4/ Spillway

5/ Reef flat

6/ Lagoon

7/ Outer slope

8/ Breaking waves

Fig. 3.   Landsat 7 image and classification.  (a) Landsat 7 image of Tikehau atoll. (b) The studied portion.
(c) Training pixels. (d) Result of the supervised classification. The lagoon and the ocean were masked (in white).
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Region 4

Fig. 4.   Partitions and cross sections.  (a) Initial 2D crisp partition, and location of the sections considered.
(b) 1D fuzzy partition at section 8. (c) Cumulative bar graph representation of (b).
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class 1 2 3 4 5 6 7 8 total
1 24 0 0 0 0 0 0 0 24
2 0 15 0 0 0 0 0 0 15
3 5 0 28 0 0 0 0 0 33
4 0 0 0 77 24 4 0 0 105
5 1 0 0 70 28 0 0 0 99
6 0 0 1 2 0 84 1 0 88
7 0 0 0 0 0 7 55 0 62
8 1 0 0 3 3 0 0 20 27

N 31 15 29 152 55 95 56 20 453

class 1 2 3 4 5 6 7 8 total
1 25 0 0 0 0 0 0 0 25
2 0 15 0 0 0 0 0 0 15
3 5 0 27 1 2 0 0 1 36
4 0 0 1 148 26 3 0 0 178
5 0 0 0 2 21 0 0 0 23
6 0 0 0 1 0 87 1 0 89
7 0 0 0 0 0 5 55 0 60
8 1 0 1 0 6 0 0 19 27

N 31 15 29 152 55 95 56 20 453

TABLE 3.   Initial Partition versus Control Partition
In the confusion matrix below, the only pixels considered are the 453 pixels that belong to some section
(test section, and sections 1 to 8). N denotes the number of control pixels for each class. PA is 73.07%.

Note that PA for class 4 only is 50.66%, PA for class 5 only is 50.91%, and PA for both classes is 50.72%.

TABLE 2.   Evolution of Q and PA for Each Section

Section Control Q Initial Q Final Q Initial PA Final PA Improvement

test 0.919 0.721 0.9 69.23% 76.92% +7.69%
1 0.979 0.844 0.943 51.72% 89.66% +37.94%
2 0.941 0.775 0.945 75% 95.83% +20.83%
3 0.988 0.896 0.945 79.31% 79.31% +0%

4-1 1 0.85 1 89.29% 92.86% +3.57%
4-2 0.928 0.434 0.933 55.17% 82.76% +27.59%
4-3 0.975 0.814 1 79.31% 86.21% +6.9%
4-4 0.95 0.819 0.95 55.17% 75.86% +20.69%
4-5 0.957 0.81 0.993 66.67% 83.33% +16.66%
4-6 0.957 0.708 0.957 77.42% 93.55% +16.13%
4-7 0.9 0.743 0.9 87.1% 100% +12.9%

5 0.957 0.692 0.95 62.79% 86.05% +23.26%
6 1 0.846 0.95 92.86% 96.43% +3.57%
7 1 0.895 0.95 88% 88% +0%
8 0.877 0.463 0.925 73.81% 88.1% +14.29%

TABLE 4.   Final Partition versus Control Partition
In the confusion matrix below, the only pixels considered are the 453 pixels that belong to some section
(test section, and sections 1 to 8). N denotes the number of control pixels for each class. PA is 87.64%.

PA for class 4 only is 97.37%, PA for class 5 only is 38.18%, and PA for both classes is 81.64%.



Naturally, some pixels were not correctly reassigned by the RMA. Let us discuss some incorrect reassignments.
In general, “vegetation”  and “rubble”  are correctly preclassified. However in section 3, “ intertidal”  pixels appear in
the center of a region “vegetation”  with very high membership values (see pixels 13th to 17th, Fig. 7). These pixels
have no (or very little) chance to be correctly reassigned by the RMA. For the same reason, several pixels “ lagoon”
and “outer slope”  were not reassigned: 30th pixel in the test section (Fig. 5), 4th in section 1 (Fig. 6), 4th to 5th in
section 7 (Fig. 9), and 4th to 5th in section 8 (Fig. 10). Another reason for incorrect decisions is that the RMA always
accepts a modification of the partition when Q(Xcand) is equal to or higher than Q(Xnow). As a result, to get a higher
Q, correctly classified pixels in the initial crisp partition may be changed for worse. For instance, in section 8 (Fig.
10), the 30th pixel correctly assigned to “spil lway”  in the initial partition was reassigned to “ intertidal” , because the
sequence  ... ⇒ “spil lway”  ⇒ “ intertidal”  ⇒ “spil lway”  ⇒ “ reef flat”  ⇒ ...  that appears in the control partition is
not allowed by Knowledge 1 (note that the Q of the control partition is lower than the Q of the final partition). On
the same section, the 36th pixel was changed accidentally, because this modification gave Q the same value. The
same situation is observed at the 22nd pixel in the test section (Fig. 5). In section 5, the 35th pixel, initially
misclassified “spillway” , had no chance to be reassigned by the RMA. But the 33rd and 34th pixels, initiall y well
assigned to “reef flat” , were reassigned to “spil lway” , in order to get a higher Q. The last example we want to speak
about concerns the 29th pixel in section 3. It was incorrectly reassigned from “reef flat”  to “spillway” because one of
the extracted sections (the section parallel to the coast line) was badly oriented.

Finally, the efficiency of the Region Modification Approach depends on many factors. In particular, the quali ty
of the fuzzy partition (and it would be worth considering using fuzzy possibilistic partitions, as in [26]), the quali ty
of the structural knowledge and the quality of its representation are most important.

5.   Conclusion

In this paper, we have described a novel approach that aims at improving the automatic classification of remote
sensing images by exploiting expert structural knowledge. It is based on the computation of a fuzzy partition, and
the use of a combinatorial optimization strategy.

We have presented first experiments on remote sensing data, a Landsat 7 multispectral image of Tikehau atoll i n
French Polynesia. Fifteen representative cross sections of the atoll rim were considered. A "one-dimensional" fuzzy
partition, extracted from the partition produced by a supervised fuzzy classifier, was associated with each cross
section. Our region modification approach was applied to the fifteen 1D partitions by introducing expert structural
knowledge concerning the general order of the eight geomorphological classes along the cross sections, and spatial
relations on perpendicular sections. The results are very satisfying. For each cross section, the 1D crisp partition
attached to the 1D fuzzy partition was modified coherently by appropriately reassigning initiall y misclassified
pixels. The whole image can conceivably be processed in that way.

Much work still has to be done. First, we naturally intend to go one step farther and directly handle 2D regions
(instead of 1D sections). Also, we are aware that many factors can affect the results (e.g., the quali ty of the fuzzy
partition, the quali ty of the knowledge, the way to represent that knowledge and to evaluate its adequacy with image
regions). Finally, the computational time is a practical issue that cannot be ignored. Remote sensing images often
contain mil lions of pixels. For instance, how to choose the threshold that is used to select candidate classes? The
lower the threshold, the lower the computational time, but the less significant the potential improvement over the
initial crisp partition. Which value constitutes a good compromise? We intend to introduce a dynamic threshold
controlled with a decreasing function of the number of iterations. We also intend to integrate contextual information
into the pixel reassignment process. At the moment, only one pixel differentiates a candidate partition from its
parent partition. Many pixels could be simultaneously reassigned, especially neighbors with similar membership
values.
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