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Abstract

The design of automatic systems dedicated to satellite image classification has received considerable attention.
However, the current systems still cannot compare with human photo-interpreters. A promising approach consistsin
integrating structural knowledge into the classification process, i.e., using information about the shape of and the
gpatial relations between the regions that are to be determined. The present work tackles thisissue, and relies on soft
computing techniques. First, a fuzzy classifier produces a fuzzy partition of the image. Then, the defuzzfied (crisp)
partition istried to be improved. According to the membership degrees in the fuzzy partition, the system selects a set
of pixels and associates a set of candidate classes with each of them. The initial crisp partition is improved by
reassigning each selected pixel to one of the classes it may belong to. This is performed by a combinatorial
optimization strategy. The aim is to maximize the adequacy between the regions defined by the crisp partition and
the structural knowledge which is available. First experiments on remote sensing data show the applicability of our
approach.
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1. Introduction

The design of automatic systems dedicated to satellite image dassificaion has recéved considerable atention.
Although important results have been achieved, the airrent systems gill cannot compare with human photo-
interpreters. Numerous classfiers based on the spedral analysis of individual pixels have been proposed. However,
the limitations when only using spedral information are gparent, and in most cases the dassificaion results are
unsatisfadory.

With the am of achieving higher acairacy, integration of additional data has been investigated. The multisource
classficaion model is based on pixel-by-pixel classificaion techniques that combine spedral information with
various forms of data related to individual pixels (e.g., multisensor data, multitemporal data, ancill ary data like



digital elevation models, geological and topagraphic maps, symbolic data such as model-based knowledge
represented by if-then rules, etc.) [1][2][3]. The data obtained from different sources is generally described by
different models and contains uncertain and incomplete information. Therefore, data fusion methods relying on
Dempster-Shafer’s theory [4] and fuzzy set theory [5] have been successfully employed [6][7][8]. However, as
expresed by the contextual classficaion model, eat pixel should not be dassified independently from its
neighboring pixels [9]. Relaxation methods [10] and smoothing methods (sometimes referred to as generali zation)
[11] are representative of this concept. Finaly, it is natural to utilize both the multisource and the contextual models
to achieve higher classification accuracy [12][13].

Nevertheless human photo-interpreters also implicitly use structural knowledge in the manual classficaion
process They not only consider contextual information but also information about the shape of and the spatia
relations between the image regions. This type of knowledge has not been utili zed in former systems. Several studies
have exploited structural knowledge for classfying image segments produced by spedral image segmentation. The
clases are described by knowledge-based rules, and each segment is classified acwrding to its geometric and
morphologicd properties [14]. But the results totally depend on the segmentation stage, which does not consider
structural knowledge.

In this paper, we present an approach that integrates gructural knowledge into the image dassification process
First, a fuzzy classfier generates a fuzzy partition of the image. The partition can be dther probabilistic or
posshili stic. Its defuzzficaion produces a traditional crisp partition. The system then seleds certain pixels, and a
set of candidate classes is asciated with ead seleded pixel. The pixels and classes are thosen acarding to the
membership degrees in the fuzzy partition. Finaly, the system tries to improve the initial classficaion by
resssgning ead pixel to one of the dasses it may belong to. For these ressdgnments, it is assumed that some
structural knowledge aout the dasses to be found in the image has been colleded. We ae faced with three
fundamental problems: (1) How to represent the expert knowledge? (2) How to measure the alequacy between an
image region and the knowledge that is supposed to concern it? (3) How to exploit such a measurement in the
clasdficaion process? The first two problems are discussed briefly in Section 2. Our main interest is in the third
problem. In Sedion 3, we describe a Region Modificaion Approach (RMA) by Simulated Anneding (SA). In
Sedion 4, we present first experiments on remote sensing data: a Landsat 7 multispedral image of Tikehau atoll in
French Polynesia. Conclusions and further comments are given in Sedion 5.

2. Knowledge Representation

Expert knowledge cntains uncertain, incomplete and vague information. Consequently, the use of a fuzzy
inference system appeas to be justified. Fuzzy production rules for image dassficaion are typicdly of the
following form (although the premise and consequent could sometimes be reversed) [3][6][13]:

If (classk), then (ViisAy)and...and (V;isA) and...and ( VyiSAy).

The mnsequent term charaderizes the environmental context of the dass It iscompaosed of elementary propasitions
such as “V; is A", where V, denotes a variable and A a fuzzy subset. These propasitions are mnnected by logicd
ANDs (ORs are dso admitted). Generally A’s are defined a priori, by interviewing experts, or a posteriori, using
experimental methods [15].

2.1. Pixel-Related Knowledge

When the V, ’s are related to pixels (i.e., when each pixel can be @nsidered independently of the others), the
production rule represents “ pixel-related knowledge’. This knowledge may use pixel-related feaures (spedral data,
atitude, etc.). Thistype of knowledge has already been studied [6].

2.2. Structural Knowledge

Now, consider the following expert knowledge: “class 1 appeas principally in the shape of little circular
regions’. At this point, the pixels can no longer be dassfied independently from the others. This type of knowledge
is cdled structural knowledge. In the example &ove, there ae two elemental knowledge terms, “circular region”
and “little region”, which implicitly involve spedfic fedures (e.g., asped ratio, areg etc.). In this paper, we assume
that we know how to relate an appropriate set of variables to all of the demental structural knowledge, and further,
how to measure these variables, whether the considered region in the image is crisp o fuzzy (see, eg., [16]). To



represent structural knowledge and to measure its adequacy with image objeds, a multisource fuzzy inference
system can be used [2][12][13]. For example, in the framework of hierarchicd fuzzy production rules, the structural
knowledge SKy about the dassk is represented as foll ows:

Upper level rule: If (class k), then (ESK,) and ... and (ESK)) and ... and (ESKy). '
Lower level rule: If (ESKj), then (Vlj isAl') and ... and (Vi' isAiJ) and ... and (VMJ.' isAMj')

The onsequent term of the upper level rule is composed of elemental knowledge terms ESK; conneded by logicd
ANDs (ORs are aso admitted). In the lower level rule, ead ESK; is represented by measurable variables ViJ and
fuzzy subsets Ai]. Note that the ViJ are not concerned with pixels but with regions. Consider a region R that may be
asggned to class k. The membership degreein A,-J of the value V; " obtained at R corresponds to the degree of truth
Up)(R) of the propasition “V; 'is Ai]”. The logicd combination of the i, J(R) gives g°%(R), which is the degree of
adequacy between the region R and the demental structural knowledge ESK;. Finally, at the upper level, the logicd
combination of the gF(R) gives q™«(R), the degree of adequacy between R and K. Consider, for instance, the

knowledge SK,: “If (class 2), then (ES|§1) angi (EK,)”, where the lower level rules are “If (ESK}), then (Vl1 is All)
1 1
or (V, isAy )" and “If (ESK)), then (V; isA;)”. We get:

q™%(R) = min{max{ fia: (R), ta2 (R}, Haz (R) }.

Note that Binaghi et al. [13] use asimilar system to represent contextual information (in the upper level) and to
evaluate multisourceinformation (in the lower level). Also note that, in this paper, we do not describe how to handle
adverbs (such as “principally”) in the formulation of knowledge.

3. Structural Knowledge Integration

Suppose we are &le to evaluate the degreeof adequacy between any region and the structural knowledge that is
avail able (Sedion 2). How can we utili ze this abili ty to improve dassficaion acairacy? We refer to this problem as
the problem of structural knowledge integration. To answer it, we propcse the Region Modificaion Approach.

3.1. Region Modification Approach (RMA)

Assume that a partition of the studied image has been output by some fuzzy classifier. We cdl this preliminary
processpre-classification. The partition can be dther probabili stic (the sum of the membership degreesis equal to 1)
or posshilistic (the previous equality does not necessarily hold). Its defuzzificaion produces a traditional crisp
partition. At first glance, by looking at this crisp partition, a human photo-interpreter may question the “class k”
label assgned to a given region R, smply becaise R does not obviously conform to “class k” structural knowledge.
The label might have been assigned by mistake (for instance, R is a region of “classm” whose spedral feaures
resemble those of “class k), or some boundary pixels (particularly mixed pixels) might have been misclassified.
The human photo-interpreter will then revise the pre-classficaion output and resssgn some pixelsto cther classes.
The Region Modification Approach (RMA) imitates this process Consider Fig. 1(a). It represents the aisp partition
issued from some pre-classfication. The blad pixels are assgned to “class1” and form the region R;.
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Fig. 1. Istheregion R, rectangular?



Suppase now that we have the structural knowledge SK;: “class 1 appeas in the shape of redangular regions”’. It
is obvious that the reesssgnment of some pixels (marked with white bordered squares) enables a significant increese
of g¥1(Ry), the degree of adequacy between R, and K, (Fig. 1(b)(c)). Of course, if structural knowledge aout the
other classes is aso available, this resssgnment may simultaneoudly cause the deaease of adequacy degrees for
neighboring regions. This is why we should consider a global adequacy degree Q(X), the degree of adequacy
between the partition and all the structural knowledge that is available. We have: Q(X) = F(qy, .., G, .-, On), Where X
denotes the mnsidered partition, F a combination operator, g, the alequacy degree &sociated with the r-th region,
and n the total number of regions in X. In our experiment (Sedion 4), the dassicd arithmetic mean operator has
been chosen, but other operators (e.g., min operator) may also be wnsidered.

The objedive of the RMA is to reassgn some pixels in order to globally increase the alequacy degrees of the
regions. The problem corresponds to a combinatorial optimization problem. It aims at finding an optimal
reassgnment of pixels, i.e., a partition X that maximizes Q(X). Threeheurigtic iterative methods are well known as
efficient methods for answering optimizaion problems and have been successfully applied to clustering and image
clasdfication [17][18][19]: Simulated Annealing (SA), Tabu Seach (TS), and Genetic Algorithm (GA). Their
performances depend on the context of the problem (size and structure of seach space complexity of neighbor
structure, etc.). In a previous gudy [20], we tested the RMA on a simple test image, and compared the use of the
threeheuristic methods. SA seemed to be the most appropriate. In this paper, we present the RMA by SA.

3.2. Simulated Annealing Strategy

The SA agorithm can be schematicaly described as follows: (I) From the current solution X™", produce an
aternative candidate solution X2, (I1) 1f Q(X™") < Q(X®, replaceX™ by X", (I1l) Repea (1) and (II) until
there ae no solutions X®™ satisfying Q(X™") < Q(X®). Unfortunately, the output of this algorithm may not be an
optimal solution (locd maximum only). This is why destructive solutions should sometimes be acceted, i.e.,
candidate solutions X®™ that do not satisfy the inequality Q(X™) < Q(X®"™). In SA, this concept is implemented
by introducing a parameter cdl ed temperature, and a coaoling schedule. N

In fad, the RMA requires a fuzzy pre-classfication process The initial solution X™ utilized in the RMA is a
crisp partition obtained by defuzzifying the fuzzy partition X isaied from the pre-classification. Then, from a
partition X™ (current solution), which is equal to X™ at the first iteration, an alternative partition X*"™ is generated
(in this paper, unlessotherwise stated, the term “partition” always denotes a aisp partition). For any pixel P and any
classi, let 14(P) be the membership value of P to classi in X , CL™(P) the dassof P in X™, and CL"™(P) the class
of P in X™. For any i, pcinte(P) = w(P) is stisfied. The dternative partition X®™ is generated from X" by
reassgning a pixel P (chosen randomly) to a dass CL®™(P) # CL™"(P) (chosen randomly too). However, it is
obvious that a pixel P satisfying pc,initp)(P)>>14(P) for any i # CL™(P) would not constitute ajudicious choice

Similarly, CL®(P) should not satisfy picyinite)(P)>>pccadp(P). Finaly, X is generated as foll ows:

[Step 1] Randomly choose apixel P that satisfies
MiN izcintpy{ te it (P)-145(P)} < 0
(where 0 [ 0,1] designates a predefined threshold).
[Step 2] Randomly choose a ¢assCL®"(P) that satisfies
Heiinite)(P)=H cLeandp)(P) < 0.
If CL®(P) = CL™(P), return to Step 1
[Step 3] Reassgn P to classCL“™(P). The obtained partition is X®™.

However, we @n further refine the process “Random” choices can be restrained so that (i) the lower
MiNzcinitp{ terinite) (P)—L4(P)}, the higher the probability of choosing P, and (i) the lower pic, initp)(P)— g candp)(P),
the higher the probabili ty of choosing CL®™(P). For instance, Step 2 can be rewritten as foll ows:

[Step 2] Seled CL®™(P) by roulette seledion: the probabili ty of assgning P to a given class k
isset to (4 (P) / 5 14’ (P), where 11'; (P) equals 14 (P) if Liciinitey(P)—14(P) < 0
and equals 0 atherwise. If CL"Y(P) = CL™Y(P), return to Step 1



Note that the fuzzy pre-classification may give a posshilistic partition [21]. In that case, Z; Wi (P) is not
necessarily equal to 1, even if o=1. Also note that the output X™ of a aisp pre-classificaion can be used to produce
afuzzy partition. Let P be apixel, and let R be aregion assgned to class k in X™. If P belongs to R, we @n give
u(P) avalue diredly propartional to the distance of P from the boundary of R. Otherwise, we an gve i (P) avalue
inversely propartional to the distance of P from all regions assigned to classk. Then, the RMA would tend to round
the regions which are expeded to be round, to elongate those which are expeded to be elongated, etc. The detail ed
algorithm is given below:

Initialization:

Set the iteration counter t to 1. Seled a value for it_max (maximum number of iterations for loop 2), IT_max
(maximum number of iterations for loop 1), and T, (initial temperature). Seled a cooling schedule a(T) (in our
experiments, we use a(T) = To/ t). Initialize X" — X™ | where X" denotes the partition issued from the pre-
classfication, and caculate Q(X™").

Iteration loop 1
Iteration loop 2
1. Using X™", generate a cadidate partition X"
2. Calculate 5= Q(X™) - Q(X®). If 5< 0, replaceX"™ by X=".
Otherwise, select arandom number r 0 [0,1], and if r < exp(8/T ), replaceX™" by X@".
Reped loop 2 it_max times,
Updatet - t+1and T « a(T).
Reped loop 1 urtil t exceals IT_max or Q reades a predefined value. X™" isthe final partiti on.

4. Experiments
4.1. Dataand Pre-Classification Algorithm

In[23], we tested our approach on a 1D synthetic image and on a RGB image of a knife. In the present paper, for
our first experiments on remote sensing data, we use a Landsat 7 multispedral image of Tikehau atoll in French
Polynesia. The image was aaquired on the 7" of August 1999 We exploit the first five bands (visible ad infra-red)
of the Enhanced Thematic Mapper Plus (ETM+) sensor onboard the Landsat 7 satellite. For ead band, the spatial
resolution is 30 meters. Theimagesin Figures 2 and 3(a)(b) are obtained by attaching Red, Green and Blue values to
the 4™, 2" and 1% channels respedively.

The dasdfier that produces the fuzzy partition we nedl is a supervised fuzzy classifier. It derives from the
unsupervised FCM (Fuzzy C-Means) [24] agorithm proposed by Gath and Geva [25]. It uses the Mahalanobis
distance, and requires that ead class be previoudy charaderized by a prototype made of a mean vedor and a
covariance matrix. Fig. 3(c) shows the set of training pixels. The fuzzy partition is into 8 classes. These dasses
describe the morphology of atypicd atoll rim of the Padfic Ocean (Fig. 2(b)(c)). Fig. 3(d) and Fig. 4(a) show the
crisp partition attached to the fuzzy partition (i.e., obtained by "defuzzficaion™).

Because they are both situated in a submerged domain of the aoll rim (shallow depth structures of the rim), the
classes “spillway” and “red flat” (classes 4 and 5) constitute one of the most important sources of misclassfication.
In general, their spedral charaderistics are very similar, and they cannot be distinguished one from the other by
conventional classfiers which uilize only spedral information and pixel-related knowledge [26][27]. For instance,
in Fig. 4(b)(c), the next highest membership degree of most of the pixels assigned to “spillway” is the membership
degree in class “reef flat”, and vice versa. The fundamental differences between the two classes are in their
orientations—transversal for “spillway”, paralel to the wast line for “reef flat” (Fig. 2(b)(c))—and locaions—
“spillway” is generally loceated before “red flat” in the transversal diredion from the lagoon to the ocean. Red flats
do not link ocean and lagoon. They may be encountered even in closed atolls, along the oceanic side of the rim.
Conversaly, spillways work as a link between the ocean and the lagoon. Their role is criticd for the renewal rate of
lagoonal waters and the water quality inside lagoons [28]. Consequently, estimation of water renewal rate requires a
clea discrimination and acairate quantification of the extent of spillways and red flats along the atoll rim. For
obtaining a high acairacy, consideration of geomorphologicd expertise isindispensable.



4.2. Expert Structural Knowledge

Knowledge 1
According to experts, along any cross gdion of the aoll rim, from the lagoon to the ocean, the geomorphologicd
classes are situated not in random order, but in the following spedfic order:

“lagoon” O (“intertidal”) O ( (“rubble”) O (“vegetation”) O “rubble” O (“intertidal”) ) O (“spillway”)
O (“intertidal™) O “reef flat”/ “intertidal” O (“intertidal”) O (“bre&king wave’) O “outer slope”,

where () means facultative gopearance and / means aternative gopeaance.

Knowledge 2
In addition to Knowledge 1, in order to distinguish between “spillway” and “reef flat”, experts implicitly carry out
the foll owing alternative ressoning:

1) Pick out aregion that is potentially classifiable into “spil lway” or “red flat”.
2) Generate asedion paralel to the mast line (about 1 km long) and a cross dion
that both passthrough the chosen region.
3) A.If the pardlel sedionincludes“rubble’ or “vegetation”, then the region is “ spil lway”.
B. Otherwise, if the sequence dongthe aoss gdion (cf. Knowledge 1) includes “rubde’
or “vegetation”, then the region is “reef flat”. Otherwise, the region is“ spillway”.

4.3. Knowledge Representation and Adequacy Degrees

In this paper, we simplify the clasdficaion problem described above by considering cross &dions of the &oll
rim and performing the RMA on "one-dimensional" partitions. Fifteen representative aoss ®ctions were seleded
(Fig. 4(a)). To eat sedion corresponds a one-dimensional fuzzy partition (Fig. 4(b)(c)), and a one-dimensional
crisp pertition P (obtained by defuzzficdion). P is composed of a cetain number of regions (segments). For eat
region R assgned to “spillway” or “reef flat”, two state flags p_flag(R) and v_flag(R) are defined:

1) If P contains “rubble” or “vegetation”, p_flag(R) is %t true. Otherwise, p_flag(R) is st false.
2) If any parall el sedion passing through R contains “rubble”’ or “vegetation”, v_flag(R) is set true.
Otherwise, v_flag(R) is <t false.

Knowledge 1 and Knowledge 2 can be represented by the foll owing If-Then production rules:

1) If (“spillway”), then (ESK1: “R conformsto the order in Knowledge 1")

and (ESK2: “v_flag(R) istrue” or (“v_flag(R) isfalse” and “p_flag(R) isfalse”)).
2) If (“red flat”), then (ESK1: “R conformsto the order in Knowledge 1)

and (ESKS: “v_flag(R) isfalse” and “p_flag(R) istrue”).
3) If (not “spillway” and not “reef flat”), then (ESK1: “R conformsto the order in Knowledge 1”).
The mmputation of q=**(R), the degreeof adequacy between R and Knowledge 1, raises a Sequence Comparison
Problem [29]. First, from the rule that represents Knowledge 1, the set S={s,, ... , 51} of al possble sequences
(there ae 512paosshle sequences), is produced. For instance, the foll owing sequencebelongsto S

“lagoon” O “spillway” O “intertidal” O “reef flat” O “bregking wave” 0 “outer Slope”.
Then gF*!(R) is caculated by using the Levenshtein distance [30], which is one of the most popular criteria for
evaluating a resemblance (similarity) between two words (sequences). Let P* be the sequence of classes in P. For
instance, if P =[1,1,1,2,2,3,1,1] (8 pixels, from the lagoon to the ocean), then P* = [1,2,3,1]. For eat possble order
sOS, the Levenshtein distance d(P’, ) between P and 5 is cdculated. The distance d(P’, S) between P* and Sis
given by: d(P’, S = min{d(P’, s)), ... ,d(P’, s510)}. If d(P", S) is zero, P’ corresponds to one sequencein S. The
vaue FY(R) is obtained by normalizing d(P’, 9: ¢=R) = max {0, 1-d(P", S) / 20}. Note that this value only
depends on P.



To compute gF¥*(R), we simply add a penalty distanceto d(P", ): =4R) = max{ 0,1~d(P",9+PD(R))/20} . If the
binary condition attached to ESK2 is true, the penalty distance PD,(R) is 0. Otherwise, PDy(R) is the number of
pixels of R. The same gplies to ESKS. Finally, the degree of adequacy between R and the expert knowledge is
cdculated as foll ows:

q(R) = FY(R), when Ris neither “spil lway” nor “reef flat”,
q(R) = min{ d&YR), F¥4R)}, when Ris*“spillway”,
a(R) = min{ g"~*(R), ™%(R)}, when Ris“reef flat”,

and the global adequacy degreeof P is Q(P) = F(q(Ry), ... , d(R,)), where n is the total number of regions R, in P,
and F() isthe aithmetic mean operator.

4.4. Selecting Parameter Values

Because the choice of values for Ty and it_max is criticd (Sedion 3.2), we first processed a test sedion (Fig.
4(Q)) with different pairs of values for these parameters. For eat pair, RMA was executed 10 times, and the average
CPU time required for reating Q(P)>0.9 was computed. Any experiment longer than 10 secnds induced the
considered pair to be rejeded. Note that the programs have been written in Java, and were exeauted on a P300
MM X laptop. Table 1 shows the result of this preliminary experimentation. From this table, it appeas that an
appropriate seledion should be such that: T¢<0.01 and it_max<100. For our experiments in Section 4.5, we chose
the following values: T, = 0.008 it_max =10, IT_max = 100, and o = 0.99.

TABLE 1. Selecting Valuesfor Toand it_max. The CPU Times Arein Milliseconds.
it_max
To 1000 300 250 100 50 10 5 1
0.5] refected | rgjected | rejected | rejected | 199 2544 2100 3079
0.1] rejected | rejected | TF585 4473 37A4 1957 2134 147E
D05| reected| 6937 5321 3404 2420 1393 1§20 33E4
001 7290 4053 2233 1EED 13 2412 1066 1771
0002|7290 3805 23TR 0 2FST 1a¥4 1257 1BRO0 21ER
0005 TsE 4022 2054 2082 1208 2157 2110 1244
0003 7ITa 3674 2575 1704 1384 1836 1440 1453
oot 749 4037 2E4F 1TSS 1997 21R4 3253 1594
00005) 7941 4834 2353 1685 1910 1510 2448 1073

45. Results

We goplied the RMA to the 15 representative aoss £dions $iown in Fig. 4(a). Table 2 shows the evolution of Q
and PA (“Percentage Agreement”) for each sedion. From this table, we can seethat Q and PA aways increased,
never deaeased. Q rose up to 10, and PA up to 37.94%. Tables 3 and 4 show the mnfusion matrices between the
control partition and the initial partition, and between the control partition and the final partition, considering all the
pixels in the different sedions. Thanks to the RMA, the percentage agreement PA rose from 73.07% to 87.64%.
When considering the classes “red flat” and “spillway” only, it rose from 50.72% to 8164%.

Fig. 5to Fig. 10 show detail ed results on the test sedion, and on sedions 1, 3, 5, 7 and 8. In these figures, corred
resssgnments performed by the RMA are highlighted in cream, incorrea reassgnments are highlighted in pink, and
desired and however impassible resssgnments (becaise of the strong and wrong opinion expressed by the fuzzy
partition) in light gray. The majority of the pixels “spillway” (“reef flat”) initially misclassified “reef flat”
(“spillway”) were mrredly reassgned by the RMA: 14" to 17‘“(Pixels in the test sedion (Fig. 5), 13" to 22 in
sedion 1 (Fig. 6), 30" in sedion 3 (Fig. 7), 16" to 17", 20" to 23" and 26" to 32" in sedion 5 (Fig. 8), 15", 17" to
19" 21% to 24™ and 28" in sedtion 8 (Fig. 10). The last figure, Fig. 11, shows the results on sections 4-1 to 47,
which are aljacent. We can seethat all of the 17" to 25" initially misclassified pixels were orredly reassgned.
Although some of the 26" to 33 pixels were changed for worse, the dassfication of this 42x7 extracted image was
globally improved (initial PA 72.95%, final PA 87.92%).



150W 1464 142W

Tuamote Archipelago
‘ mehau_;‘_‘ P 143
= :
% G : o188
ﬁ?l:-’:?;ﬁ;ﬂ oo ® Elevaled island
French Polynesia O Atolls

Tikehau Atoll

_ﬂ 5 | 4 T !
2o, : 6 )
(b) S o o
i S —
A ~ T
1 o i
- Rim -

(©

1/Vegetation 2/ Coral rubble and sand 3/ iIntertidal 4/ Spillway &/ Reef Flat
6/ Lagoon ¥ Outer slope 8/ Crest - Breaking waves

Fig. 2. Tikehau atoll and classes. (a) Location of Tikehau atoll. (b) Location, inside atypical portion
of atoll rim (bloc diagram from [23]), of the 8 classes considered in this paper. (c) The classes are readily
visible on a Landsat 7 image of the rim.
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Fig. 3. Landsat 7 image and classification. (&) Landsat 7 image of Tikehau atoll. (b) The studied portion.
(c) Training pixels. (d) Result of the supervised classification. The lagoon and the ocean were masked (in white).
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Fig. 4. Partitionsand cross sections. (a) Initial 2D crisp partition, and location of the sections considered.
(b) 1D fuzzy partition at section 8. (¢) Cumulative bar graph representation of (b).
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TABLE 2. Evolution of Q and PA for Each Section

In the confusion matrix below, the only pixels considered are the 453 pixels that belong to some section
(test section, and sections 1 to 8). N denotes the number of control pixels for each class. PA is 73.07%.
Note that PA for class 4 only is50.66%, PA for class 5 only is 50.91%, and PA for both classesis 50.72%.

In the confusion matrix below, the only pixels considered are the 453 pixels that belong to some section
(test section, and sections 1 to 8). N denotes the number of control pixels for each class. PA is 87.64%.
PA for class 4 only is 97.37%, PA for class 5 only is 38.18%, and PA for both classesis 81.64%.

class| 1 2 3 4 5 6 7 8 | total
1 24 o o o o o o o 24
2l o 15| o o o o o o 15
3 5| o 28 o o o o o 3
g o o o7 24 4 o o 105
51 1) o o 7088 o o o 9%
6f o o 1 2 o 8 1 o s
77 o o o o o 7 5 o 62
8] 1 o o 3 3 o o 20 27
N[ 31 15[ 20 1520088 95| 56 20| 453

TABLE 4. Final Partition versus Control Partition

class| 1 2 31 4] 5 6 7 8 [ total
1 25 o o o o o o o 25
2l o 15 o o o o o o 15
3 5| o 27 1 2 o o 1 36
4 o o 1348 26 3 o o 178
51 o o o 2 o o o 2
6] o o o 1 o 8 1 o a9
717 o o o o o 5 8| o 60
gl 1 o 1 o 6 o o 19 27
N[ 31| 15[ 20 1520088 95/ 56 20| 453

Section | Control Q | Initid Q | Final Q Initial PA | Fina PA | Improvement
test 0.919 0.721 0.9 69.23% 76.92% +7.69%
1 0.979 0.844 0.943 51.72% 89.66% +37.94%
2 0.941 0.775 0.945 75% 95.83% +20.83%
3 0.988 0.896 0.945 79.31% 79.31% +0%
4-1 1 0.85 1 89.29% 92.86% +3.57%
4-2 0.928 0.434 0.933 55.17% 82.76% +27.59%
4-3 0.975 0.814 1 79.31% 86.21% +6.9%
4-4 0.95 0.819 0.95 55.17% 75.86% +20.69%
4-5 0.957 0.81 0.993 66.67% 83.33% +16.66%
4-6 0.957 0.708 0.957 77.42% 93.55% +16.13%
4-7 0.9 0.743 0.9 87.1% 100% +12.9%
5 0.957 0.692 0.95 62.79% 86.05% +23.26%
6 1 0.846 0.95 92.86% 96.43% +3.57%
7 1 0.895 0.95 88% 88% +0%
8 0.877 0.463 0.925 73.81% 88.1% +14.29%
TABLE 3. Initial Partition versus Control Partition




Naturally, some pixels were not corredly reassigned by the RMA. Let us discuss sme incorred ressggnments.
In general, “vegetation” and “rubble” are corredly preclassfied. However in sedion 3, “intertidal” pixels appea in
the center of a region “vegetation” with very high membership values (seepixels 13" to 17", Fig. 7). These pixels
have no (or very little) chanceto be corredly reassigned by the RMA. For the same reason, several pixels “lagoon”
and “outer slope” were not reassigned: 30" pixel in the test sedion (Fig. 5), 4" in sedion 1 (Fig. 6), 4"to 5" in
sedion 7 (Fig. 9), and 4" to 5" in sedion 8 (Fig. 10). Another reason for incorred dedsions is that the RMA always
accets a modification of the partition when Q(X®"™) is equal to or higher than Q(X™"). As a result, to get a higher
Q, corredly classified pixelsin theinitial crisp partition may be changed for worse. For instance, in sedion 8 (Fig.
10), the 30" pixel correaly assgned to “spillway” in theinitial partition was reasigned to “intertidal”, because the
sequence ... 0 “spillway” O “intertidal” O “spillway” O “reef flat” O ... that appeasin the control partition is
not allowed by Knowledge 1 (note that the Q of the aontrol partition is lower than the Q of the final partition). On
the same sedtion, the 36" pixel was changed acddentally, because this modificaion gave Q the same value. The
same situation is observed at the 22" pixel in the test sedion (Fig. 5). In sedion 5, the 35" pixel, initialy
misclassified “spillway”, had no chance to be reassgned by the RMA. But the 33% and 34" pixels, initially well
asdgned to “reef flat”, were reassgned to “spillway”, in order to get a higher Q. The last example we want to spe&k
about concerns the 29" pixel in sedion 3. It was incorredly reassigned from “reef flat” to “spillway” because one of
the extraded sedions (the sedion paral el to the mast line) was badly oriented.

Finally, the efficiency of the Region Modification Approach depends on many fadors. In particular, the quality
of the fuzzy partition (and it would be worth considering using fuzzy posshilistic partitions, asin [26]), the quality
of the structural knowledge and the quality of its representation are most important.

5. Conclusion

In this paper, we have described a novel approacd that aims at improving the automatic dassification of remote
sensing images by exploiting expert structural knowledge. It is based on the computation of a fuzzy partition, and
the use of a cmbinatorial optimizétion strategy.

We have presented first experiments on remote sensing data, a Landsat 7 multispedral image of Tikehau atoll in
French Polynesia. Fifteen representative aoss ®dions of the aoll rim were considered. A "one-dimensional” fuzzy
partition, extraded from the partition produced by a supervised fuzzy classfier, was asciated with each cross
sedion. Our region modificaion approach was applied to the fifteen 1D partitions by introducing expert structural
knowledge concerning the general order of the eght geomorphologica classes along the cross ®dions, and spatial
relations on perpendicular sections. The results are very satisfying. For ead cross ®dion, the 1D crisp partition
attached to the 1D fuzzy partition was modified coherently by appropriately reassigning initialy misclassified
pixels. The whole image can concevably be processed in that way.

Much work still has to be done. First, we naturally intend to go one step farther and diredly handle 2D regions
(instead of 1D sedions). Also, we are aware that many factors can affed the results (e.g., the quality of the fuzzy
partition, the quality of the knowledge, the way to represent that knowledge and to evaluate its adequacy with image
regions). Finally, the cmputational time is a pradicd isaue that cannot be ignored. Remote sensing images often
contain millions of pixels. For instance, how to choose the threshold that is used to seled caendidate dasses? The
lower the threshold, the lower the computational time, but the less $gnificant the potential improvement over the
initial crisp partition. Which value constitutes a good compromise? We intend to introduce adynamic threshold
controlled with a deaeasing function of the number of iterations. We dso intend to integrate antextual information
into the pixel resssgnment process At the moment, only one pixel differentiates a candidate partition from its
parent partition. Many pixels could be simultaneously reassigned, espedally neighbors with similar membership
values.
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